1
|
Likhoshvai VA, Khlebodarova TM. Evolution and extinction can occur rapidly: a modeling approach. PeerJ 2021; 9:e11130. [PMID: 33954033 PMCID: PMC8051336 DOI: 10.7717/peerj.11130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/27/2021] [Indexed: 11/25/2022] Open
Abstract
Fossil record of Earth describing the last 500 million years is characterized by evolution discontinuity as well as recurring global extinctions of some species and their replacement by new types, the causes of which are still debate. We developed a model of evolutionary self-development of a large ecosystem. This model of biota evolution based on the universal laws of living systems functioning: reproduction, dependence of reproduction efficiency and mortality on biota density, mutational variability in the process of reproduction and selection of the most adapted individuals. We have shown that global extinctions and phases of rapid growth and biodiversity stasis can be a reflection of the emergence of bistability in a self-organizing system, which is the Earth’s biota. Bistability was found to be characteristic only for ecosystems with predominant sexual reproduction. The reason for the transition from one state to another is the selection of the most adapted individuals. That is, we explain the characteristics of the Earth’s fossil record during the last 500 million years by the internal laws of Earth’s ecosystem functioning, which appeared at a certain stage of evolution as a result of the emergence of life forms with an increased adaptive diversification associated with sexual dimorphism.
Collapse
Affiliation(s)
- Vitaly A Likhoshvai
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Tamara M Khlebodarova
- Department of Systems Biology, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Kurchatov Genomics Center, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| |
Collapse
|
2
|
Rampino MR, Prokoph A. Are Impact Craters and Extinction Episodes Periodic? Implications for Planetary Science and Astrobiology. ASTROBIOLOGY 2020; 20:1097-1108. [PMID: 32865423 DOI: 10.1089/ast.2019.2043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A review of the results of published spectral analyses of the ages of terrestrial impact craters (58 analyses) and biotic extinction events (35 analyses) reveals that about 60% of the crater trials support a statistically significant cycle averaging ∼29.7 million years (My), and about 67% of the trials of extinction episodes found a significant cycle averaging ∼26.5 My. Cross-wavelet transform analysis of the records of craters and extinctions over the past 260 My shows a mutual ∼26 My cycle and a common phase, suggesting a connection. About 50% of the best-dated impact craters seem to occur in approximately nine pairs or clusters in the past 260 My, apparently carrying the signal of an ∼26- to 30-My cycle. It has been suggested that periodic modulation of impacts and extinctions might be related to periodic comet storms that follow the solar system's oscillations in and out of the galactic mid-plane. Problems arise, however, with regard to the compatibility of such periodic pulses of comet flux with the makeup of the steady-state Near Earth Object (NEO) population, the estimated long-term NEO cratering rates on the terrestrial planets, and the predicted small contribution of Oort Cloud-derived comets to the terrestrial cratering record. Asteroid storms may be possible, but at present there are no accepted mechanisms for creating an ∼30-My period in asteroid breakup events and impacts. Astrobiological implications arise if extra-solar habitable planets suffer similar cyclical or episodic catastrophic bombardment episodes affecting long-term biotic evolution on those planets. Other planetary systems might commonly have comet reservoirs, but they are less likely to contain an asteroid belt in the proper orbital position. Further, frequent impacts of ∼1-km diameter comets and asteroids could affect the establishment and longevity of technological civilizations, including our own.
Collapse
Affiliation(s)
- Michael R Rampino
- Department of Biology, New York University, New York, New York, USA
- Department of Environmental Studies, New York University, New York, New York, USA
- NASA, Goddard Institute for Space Studies, New York, New York, USA
| | | |
Collapse
|
3
|
Khlebodarova TM, Likhoshvai VA. Causes of global extinctions in the history of life: facts and hypotheses. Vavilovskii Zhurnal Genet Selektsii 2020; 24:407-419. [PMID: 33659824 PMCID: PMC7716527 DOI: 10.18699/vj20.633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Paleontologists define global extinctions on Earth as a loss of about three-quarters of plant and animal species over a relatively short period of time. At least five global extinctions are documented in the Phanerozoic fossil record (~500-million-year period): ~65, 200, 260, 380, and 440 million years ago. In addition, there is evidence of global extinctions in earlier periods of life on Earth - during the Late Cambrian (~500 million years ago) and Ediacaran periods (more than 540 million years ago). There is still no common opinion on the causes of their occurrence. The current study is a systematized review of the data on recorded extinctions of complex life forms on Earth from the moment of their occurrence during the Ediacaran period to the modern period. The review discusses possible causes for mass extinctions in the light of the influence of abiogenic factors, planetary or astronomical, and the consequences of their actions. We evaluate the pros and cons of the hypothesis on the presence of periodicity in the extinction of Phanerozoic marine biota. Strong evidence that allows us to hypothesize that additional mechanisms associated with various internal biotic factors are responsible for the emergence of extinctions in the evolution of complex life forms is discussed. Developing the idea of the internal causes of periodicity and discontinuity in evolution, we propose our own original hypothesis, according to which the bistability phenomenon underlies the complex dynamics of the biota development, which is manifested in the form of global extinctions. The bistability phenomenon arises only in ecosystems with predominant sexual reproduction. Our hypothesis suggests that even in the absence of global abiotic catastrophes, extinctions of biota would occur anyway. However, our hypothesis does not exclude the possibility that in different periods of the Earth's history the biota was subjected to powerful external influences that had a significant impact on its further development, which is reflected in the Earth's fossil record.
Collapse
Affiliation(s)
- T M Khlebodarova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V A Likhoshvai
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
4
|
Timing and periodicity of Phanerozoic marine biodiversity and environmental change. Sci Rep 2019; 9:6116. [PMID: 30992505 PMCID: PMC6467882 DOI: 10.1038/s41598-019-42538-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/02/2019] [Indexed: 11/16/2022] Open
Abstract
We examine how the history of Phanerozoic marine biodiversity relates to environmental change. Our focus is on North America, which has a relatively densely sampled history. By transforming time series into the time-frequency domain using wavelets, histories of biodiversity are shown to be similar to sea level, temperature and oceanic chemistry at multiple timescales. Fluctuations in sea level play an important role in driving Phanerozoic biodiversity at timescales >50 Myr, and during finite intervals at shorter periods. Subsampled and transformed marine genera time series reinforce the idea that Permian-Triassic, Triassic-Jurassic, and Cretaceous-Paleogene mass extinctions were geologically rapid, whereas the Ordovician-Silurian and Late Devonian ‘events’ were longer lived. High cross wavelet power indicates that biodiversity is most similar to environmental variables (sea level, plate fragmentation, δ18O, δ13C, δ34S and 87Sr/86Sr) at periods >200 Myr, when they are broadly in phase (i.e. no time lag). They are also similar at shorter periods for finite durations of time (e.g. during some mass extinctions). These results suggest that long timescale processes (e.g. plate kinematics) are the primary drivers of biodiversity, whilst processes with significant variability at shorter periods (e.g. glacio-eustasy, continental uplift and erosion, volcanism, asteroid impact) play a moderating role. Wavelet transforms are a useful approach for isolating information about times and frequencies of biological activity and commonalities with environmental variables.
Collapse
|
5
|
The evolutionary origins of Lévy walk foraging. PLoS Comput Biol 2017; 13:e1005774. [PMID: 28972973 PMCID: PMC5640246 DOI: 10.1371/journal.pcbi.1005774] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 10/13/2017] [Accepted: 09/14/2017] [Indexed: 11/19/2022] Open
Abstract
We study through a reaction-diffusion algorithm the influence of landscape diversity on the efficiency of search dynamics. Remarkably, the identical optimal search strategy arises in a wide variety of environments, provided the target density is sparse and the searcher’s information is restricted to its close vicinity. Our results strongly impact the current debate on the emergentist vs. evolutionary origins of animal foraging. The inherent character of the optimal solution (i.e., independent on the landscape for the broad scenarios assumed here) suggests an interpretation favoring the evolutionary view, as originally implied by the Lévy flight foraging hypothesis. The latter states that, under conditions of scarcity of information and sparse resources, some organisms must have evolved to exploit optimal strategies characterized by heavy-tailed truncated power-law distributions of move lengths. These results strongly suggest that Lévy strategies—and hence the selection pressure for the relevant adaptations—are robust with respect to large changes in habitat. In contrast, the usual emergentist explanation seems not able to explain how very similar Lévy walks can emerge from all the distinct non-Lévy foraging strategies that are needed for the observed large variety of specific environments. We also report that deviations from Lévy can take place in plentiful ecosystems, where locomotion truncation is very frequent due to high encounter rates. So, in this case normal diffusion strategies—performing as effectively as the optimal one—can naturally emerge from Lévy. Our results constitute the strongest theoretical evidence to date supporting the evolutionary origins of experimentally observed Lévy walks. How organisms improve the search for food, mates, etc., is a key factor to their survival. Mathematically, the best strategy to look for randomly distributed re-visitable resources—under scarce information and sparse conditions—results from Lévy distributions of move lengths (the probability of taking a step ℓ is proportional to 1/ℓ2). Today it is well established that many animal species in different habitats do perform Lévy foraging. This fact has raised a heated debate, viz., the emergent versus evolutionary hypotheses. For the former, a Lévy foraging is an emergent property, a consequence of searcher-environment interactions: certain landscapes induce Lévy patterns, but others not. In this view, the optimal strategy depends on the particular habitat. The evolutionary explanation, in contrast, is that Lévy foraging strategies are adaptations that evolved via natural selection. In this article, through simulations we exhaustively analyze the influence of distinct environments on the foraging efficiency. We find that the optimal procedure is the same in all situations, provided density is low and landscape information is scarce. So, the best search strategy is remarkably independent of details. These results constitute the strongest theoretical evidence to date supporting the evolutionary origins of experimentally observed Lévy walks.
Collapse
|
6
|
Abstract
The past century has witnessed a number of significant breakthroughs in the study of extinction in the fossil record, from the discovery of a bolide impact as the probable cause of the end-Cretaceous (K/T) mass extinction to the designation of the “Big 5” mass extinction events. Here, I summarize the major themes that have emerged from the past thirty years of extinction research and highlight a number of promising directions for future research. These directions explore a central theme—the evolutionary consequences of extinction— and focus on three broad research areas: the effects of selectivity, the importance of recovery intervals, and the influence of spatial patterns. Examples of topics explored include the role that trait variation plays in survivorship, the comparative effects of extinctions of varying magnitudes on evolutionary patterns, the re-establishment of macroevolutionary patterns in the aftermath of extinction, and the extent to which spatial autocorrelation affects extinction patterns. These topics can be approached by viewing extinctions as repeated natural experiments in the history of life and developing hypotheses to explicitly test across multiple events. Exploring the effects of extinction also requires an interdisciplinary approach, applying evolutionary, ecological, geochronological, geochemical, tectonic, and paleoclimatic tools to both extinction and recovery intervals.
Collapse
|
7
|
Punctuated equilibrium as an emergent process and its modified thermodynamic characterization. J Theor Biol 2017; 412:113-122. [PMID: 27984080 DOI: 10.1016/j.jtbi.2016.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/05/2016] [Accepted: 10/21/2016] [Indexed: 12/31/2022]
Abstract
We address evolutionary dynamics and consider under which conditions the ecosystem interaction network allows punctuated equilibrium (i.e., alternation between hectic and quasi-stable phases). We focus on the links connecting various species and on the strength and sign of those links. For this study we consider the Tangled Nature model, which allows considerable flexibility and plasticity in the analysis of interspecies interactions. We find that it is necessary to have a proper balance of connectivity and interaction intensities so as to establish the kind of mutual cooperation and competition found in nature. It suggests evolutionary punctuated equilibrium as an emergent process, thus displaying features of complex systems. To explicitly demonstrate this fact we consider an extended form of thermodynamics, defining (for the present context) relevant out-of-equilibrium "collective" functions. We then show how to characterize the punctuated equilibrium through entropy-like and free energy-like quantities. Finally, from a close analogy to thermodynamic systems, we propose a protocol similar to simulated annealing. It is based on controlling the species' rate of mutation during the hectic periods, in this way enhancing the exploration of the genome space (similar to the known behavior of bacteria in stressful environments). This allows the system to more rapidly converge to long-duration quasi-stable phases.
Collapse
|
8
|
Global redox cycle of biospheric carbon: Interaction of photosynthesis and earth crust processes. Biosystems 2015; 137:1-11. [DOI: 10.1016/j.biosystems.2015.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 11/19/2022]
|
9
|
Abstract
Ionizing radiation is a ubiquitous feature of the Cosmos, from exogenous cosmic rays (CR) to the intrinsic mineral radioactivity of a habitable world, and its influences on the emergence and persistence of life are wide-ranging and profound. Much attention has already been focused on the deleterious effects of ionizing radiation on organisms and the complex molecules of life, but ionizing radiation also performs many crucial functions in the generation of habitable planetary environments and the origins of life. This review surveys the role of CR and mineral radioactivity in star formation, generation of biogenic elements, and the synthesis of organic molecules and driving of prebiotic chemistry. Another major theme is the multiple layers of shielding of planetary surfaces from the flux of cosmic radiation and the various effects on a biosphere of violent but rare astrophysical events such as supernovae and gamma-ray bursts. The influences of CR can also be duplicitous, such as limiting the survival of surface life on Mars while potentially supporting a subsurface biosphere in the ocean of Europa. This review highlights the common thread that ionizing radiation forms between the disparate component disciplines of astrobiology.
Collapse
Affiliation(s)
- Lewis R Dartnell
- UCL Institute for Origins, University College London, London, UK.
| |
Collapse
|
10
|
Melott AL, Thomas BC. Astrophysical ionizing radiation and Earth: a brief review and census of intermittent intense sources. ASTROBIOLOGY 2011; 11:343-361. [PMID: 21545268 DOI: 10.1089/ast.2010.0603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cosmic radiation backgrounds are a constraint on life, and their distribution will affect the Galactic Habitable Zone. Life on Earth has developed in the context of these backgrounds, and characterizing event rates will elaborate the important influences. This in turn can be a base for comparison with other potential life-bearing planets. In this review, we estimate the intensities and rates of occurrence of many kinds of strong radiation bursts by astrophysical entities, ranging from gamma-ray bursts at cosmological distances to the Sun itself. Many of these present potential hazards to the biosphere; on timescales long compared with human history, the probability of an event intense enough to disrupt life on the land surface or in the oceans becomes large. Both photons (e.g., X-rays) and high-energy protons and other nuclei (often called "cosmic rays") constitute hazards. For either species, one of the mechanisms that comes into play even at moderate intensities is the ionization of Earth's atmosphere, which leads through chemical changes (specifically, depletion of stratospheric ozone) to increased ultraviolet B flux from the Sun reaching the surface. UVB is extremely hazardous to most life due to its strong absorption by the genetic material DNA and subsequent breaking of chemical bonds. This often leads to mutation or cell death. It is easily lethal to the microorganisms that lie at the base of the food chain in the ocean. We enumerate the known sources of radiation and characterize their intensities at Earth and rates or upper limits on these quantities. When possible, we estimate a "lethal interval," our best estimate of how often a major extinction-level event is probable given the current state of knowledge; we base these estimates on computed or expected depletion of stratospheric ozone. In general, moderate-level events are dominated by the Sun, but the far more severe infrequent events are probably dominated by gamma-ray bursts and supernovae. We note for the first time that so-called "short-hard" gamma-ray bursts are a substantial threat, comparable in magnitude to supernovae and greater than that of the higher-luminosity long bursts considered in most past work. Given their precursors, short bursts may come with little or no warning.
Collapse
Affiliation(s)
- Adrian L Melott
- Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA.
| | | |
Collapse
|
11
|
Melott AL, Atri D, Thomas BC, Medvedev MV, Wilson GW, Murray MJ. Atmospheric consequences of cosmic ray variability in the extragalactic shock model: 2. Revised ionization levels and their consequences. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010je003591] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
|
13
|
Long-term cycles in the history of life: periodic biodiversity in the paleobiology database. PLoS One 2008; 3:e4044. [PMID: 19107212 PMCID: PMC2603586 DOI: 10.1371/journal.pone.0004044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 11/24/2008] [Indexed: 11/19/2022] Open
Abstract
Time series analysis of fossil biodiversity of marine invertebrates in the Paleobiology Database (PBDB) shows a significant periodicity at approximately 63 My, in agreement with previous analyses based on the Sepkoski database. I discuss how this result did not appear in a previous analysis of the PBDB. The existence of the 63 My periodicity, despite very different treatment of systematic error in both PBDB and Sepkoski databases strongly argues for consideration of its reality in the fossil record. Cross-spectral analysis of the two datasets finds that a 62 My periodicity coincides in phase by 1.6 My, equivalent to better than the errors in either measurement. Consequently, the two data sets not only contain the same strong periodicity, but its peaks and valleys closely correspond in time. Two other spectral peaks appear in the PBDB analysis, but appear to be artifacts associated with detrending and with the increased interval length. Sampling-standardization procedures implemented by the PBDB collaboration suggest that the signal is not an artifact of sampling bias. Further work should focus on finding the cause of the 62 My periodicity.
Collapse
|
14
|
Melott AL, Krejci AJ, Thomas BC, Medvedev MV, Wilson GW, Murray MJ. Atmospheric consequences of cosmic-ray variability in the extragalactic shock model. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2008je003206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|