1
|
Davaapil H, Hopkins J, Bonnin N, Papadaki V, Leung A, Kosuge H, Tashima T, Nakakido M, Sekido R, Tsumoto K, Sagoo MS, Ohnuma SI. PRELP secreted from mural cells protects the function of blood brain barrier through regulation of endothelial cell-cell integrity. Front Cell Dev Biol 2023; 11:1147625. [PMID: 37936982 PMCID: PMC10626469 DOI: 10.3389/fcell.2023.1147625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/13/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction: Proline/arginine-rich end leucine-rich repeat protein (PRELP), is a small secreted proteoglycan expressed by pericytes and vascular smooth muscle cells surrounding the brain vasculature of adult mouse. Methods: We utilised a Prelp knockout (Prelp -/-) mouse model to interrogate vasculature integrity in the brain alongside performing in vitro assays to characterise PRELP application to endothelial cells lines. Our findings were supplemented with RNA expression profiling to elucidate the mechanism of how PRELP maintains neurovasculature function. Results: Prelp -/- mice presented with neuroinflammation and reducedneurovasculature integrity, resulting in IgG and dextran leakage in the cerebellum and cortex. Histological analysis of Prelp -/- mice revealed reducedcell-cell integrity of the blood brain barrier, capillary attachment of pericytes andastrocyte end-feet. RNA-sequencing analysis found that cell-cell adhesion andinflammation are affected in Prelp -/- mice and gene ontology analysis as well as gene set enrichment analysis demonstrated that inflammation related processes and adhesion related processes such as epithelial-mesenchymal transition and apical junctions were significantly affected, suggesting PRELP is a regulator of cell-cell adhesion. Immunofluorescence analysis showed that adhesion junction protein expression levels of cadherin, claudin-5, and ZO-1, was suppressed in Prelp -/- mice neurovasculature. Additionally, in vitro studies revealed that PRELP application to endothelial cells enhances cell-cell integrity, induces mesenchymal-endothelial transition and inhibits TGF-β mediated damage to cell-cell adhesion. Discussion: Our study indicates that PRELP is a novel endogenous secreted regulator of neurovasculature integrity and that PRELP application may be a potential treatment for diseases associated with neurovascular damage.
Collapse
Affiliation(s)
| | - Jack Hopkins
- UCL Institute of Ophthalmology, UCL, London, Untited Kingdom
| | - Nadia Bonnin
- UCL Institute of Ophthalmology, UCL, London, Untited Kingdom
| | | | - Alex Leung
- UCL Institute of Ophthalmology, UCL, London, Untited Kingdom
| | - Hirofumi Kosuge
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takumi Tashima
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ryohei Sekido
- UCL Institute of Ophthalmology, UCL, London, Untited Kingdom
| | - Kouhei Tsumoto
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mandeep S. Sagoo
- UCL Institute of Ophthalmology, UCL, London, Untited Kingdom
- NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, London, Untited Kingdom
- Retinoblastoma Genetic Screening Unit, Barts Health NHS Trust, Royal London Hospital, London, Untited Kingdom
| | | |
Collapse
|
2
|
Wang Q, Qiu X, Liu T, Ahn C, Horowitz JF, Lin JD. The hepatokine TSK maintains myofiber integrity and exercise endurance and contributes to muscle regeneration. JCI Insight 2022; 7:154746. [PMID: 35025761 PMCID: PMC8876464 DOI: 10.1172/jci.insight.154746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Mammalian skeletal muscle contains heterogenous myofibers with different contractile and metabolic properties that sustain muscle mass and endurance capacity. The transcriptional regulators that govern these myofiber gene programs have been elucidated. However, the hormonal cues that direct the specification of myofiber types and muscle endurance remain largely unknown. Here we uncover the secreted factor Tsukushi (TSK) as an extracellular signal that is required for maintaining muscle mass, strength, and endurance capacity, and contributes to muscle regeneration. Mice lacking TSK exhibited reduced grip strength and impaired exercise capacity. Muscle transcriptomic analysis revealed that TSK deficiency results in a remarkably selective impairment in the expression of myofibrillar genes characteristic of slow-twitch muscle fibers that is associated with abnormal neuromuscular junction formation. AAV-mediated overexpression of TSK failed to rescue these myofiber defects in adult mice, suggesting that the effects of TSK on myofibers are likely restricted to certain developmental stages. Finally, mice lacking TSK exhibited diminished muscle regeneration following cardiotoxin-induced muscle injury. These findings support a crucial role of TSK as a hormonal cue in the regulation of contractile gene expression, endurance capacity, and muscle regeneration.
Collapse
Affiliation(s)
- Qiuyu Wang
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, United States of America
| | - Xiaoxue Qiu
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, United States of America
| | - Tongyu Liu
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, United States of America
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, United States of America
| | | | - Jiandie D Lin
- University of Michigan, Ann Arbor, United States of America
| |
Collapse
|
3
|
Wang D, Pan D, Xie B, Wang S, Xing X, Liu X, Ma Y, Andersson L, Wu J, Jiang L. Porcine ZBED6 regulates growth of skeletal muscle and internal organs via multiple targets. PLoS Genet 2021; 17:e1009862. [PMID: 34710100 PMCID: PMC8577783 DOI: 10.1371/journal.pgen.1009862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/09/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
ZBED6 (zinc finger BED domain containing protein 6) is a transcription factor unique to placental mammals and its interaction with the IGF2 (insulin-like growth factor 2) locus plays a prominent role in the regulation of postnatal skeletal muscle growth. Here, we generated lean Bama miniature pigs by generating ZBED6-knockout (ZBED6−/−) and investigated the mechanism underlying ZBED6 in growth of muscle and internal organs of placental mammals. ZBED6−/− pigs show markedly higher lean mass, lean mass rate, larger muscle fiber area and heavier internal organs (heart and liver) than wild-type (WT) pigs. The striking phenotypic changes of ZBED6-/- pigs coincided with remarkable upregulation of IGF2 mRNA and protein expression across three tissues (gastrocnemius muscle, longissimus dorsi, heart). Despite a significant increase in liver weight, ZBED6-/- pigs show comparable levels of IGF2 expression to those of WT controls. A mechanistic study revealed that elevated methylation in the liver abrogates ZBED6 binding at the IGF2 locus, explaining the unaltered hepatic IGF2 expression in ZBED6-/- pigs. These results indicate that a ZBED6-IGF2-independent regulatory pathway exists in the liver. Transcriptome analysis and ChIP-PCR revealed new ZBED6 target genes other than IGF2, including cyclin dependent kinase inhibitor 1A (CDKN1A) and tsukushi, small leucine rich proteoglycan (TSKU), that regulates growth of muscle and liver, respectively. The lean meat rate is an important economic trait for the swine industry and it is determined by muscle growth and development. A single base change in intron 3 of the insulin-like growth factor 2 (IGF2) gene increases meat production in pigs by disrupting a binding site for zinc finger BED domain containing protein 6 (ZBED6). Chinese indigenous pig breeds carrying the homozygous IGF2 wild-type allele produce low lean meat. We thus generate a lean pig model in Chinese Bama pig by knocking out ZBED6. In this model, we demonstrate that ZBED6 KO increases muscle and internal organ growth through ZBED6-IGF2 axis and other target genes. These results not only open new strategies for lean meat breeding in Chinese indigenous pigs, but also provide new insights to the global function of ZBED6 in organ growth and development.
Collapse
Affiliation(s)
- Dandan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Dengke Pan
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Baocai Xie
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shengnan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | | | - Xuexue Liu
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuehui Ma
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Jiangwei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JW); (LJ)
| | - Lin Jiang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- National Germplasm Center of Domestic Animal Resources, Ministry of Technology, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * E-mail: (JW); (LJ)
| |
Collapse
|
4
|
Deng X, Li Y, Guo C, Zhao Z, Yuan G. Novel roles of Tsukushi in signaling pathways and multiple disease processes. Biofactors 2021; 47:512-521. [PMID: 33759220 DOI: 10.1002/biof.1723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
Tsukushi (TSK), a newly identified hepatokine, is a member of the small leucine-rich proteoglycans (SLRPs) family. TSK was originally isolated and identified in the lens of the chicken. Preliminary research on TSK has focused on its role in various physiological processes such as growth and development, wound healing, and cartilage formation. In recent years, the role of TSK in regulating cell signaling pathways, cell proliferation, and differentiation has been studied. In addition, the research has gradually expanded to the fields of glycolipid metabolism and energy balance. This article briefly reviews the role of TSK in the physiological and pathological process.
Collapse
Affiliation(s)
- Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanyan Li
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Chang Guo
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhicong Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
5
|
Miwa T, Ito N, Ohta K. Tsukushi is essential for the formation of the posterior semicircular canal that detects gait performance. J Cell Commun Signal 2021; 15:581-594. [PMID: 34061311 DOI: 10.1007/s12079-021-00627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/25/2021] [Indexed: 11/27/2022] Open
Abstract
Tsukushi is a small, leucine-rich repeat proteoglycan that interacts with and regulates essential cellular signaling cascades in the chick retina and murine subventricular zone, hippocampus, dermal hair follicles, and the cochlea. However, its function in the vestibules of the inner ear remains unknown. Here, we investigated the function of Tsukushi in the vestibules and found that Tsukushi deficiency in mice resulted in defects in posterior semicircular canal formation in the vestibules, but did not lead to vestibular hair cell loss. Furthermore, Tsukushi accumulated in the non-prosensory and prosensory regions during the embryonic and postnatal developmental stages. The downregulation of Tsukushi altered the expression of key genes driving vestibule differentiation in the non-prosensory regions. Our results indicate that Tsukushi interacts with Wnt2b, bone morphogenetic protein 4, fibroblast growth factor 10, and netrin 1, thereby controlling semicircular canal formation. Therefore, Tsukushi may be an essential component of the molecular pathways regulating vestibular development.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Ougimaci, Kita-ku, Osaka, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kumamoto University, Honjo, Kumamoto, Japan.
| | - Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, Honjo, Kumamoto, Japan
- K.K. Sciex Japan, Shinagawa, Tokyo, Japan
| | - Kunimasa Ohta
- Department of Stem Cell Biology, Faculty of Arts and Science, Kyushu University, Motooka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
6
|
Huang H, Zhang D, Fu J, Zhao L, Li D, Sun H, Liu X, Xu J, Tian T, Zhang L, Liu Y, Zhang Y, Zhao Y. Tsukushi is a novel prognostic biomarker and correlates with tumor-infiltrating B cells in non-small cell lung cancer. Aging (Albany NY) 2021; 13:4428-4451. [PMID: 33428594 PMCID: PMC7906171 DOI: 10.18632/aging.202403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/03/2020] [Indexed: 01/21/2023]
Abstract
A recent study has reported that tsukushi (TSKU) may be related to the development of lung cancer. However, few studies focused on if TSKU associated with the prognosis and immune infiltration cells in non-small cell lung cancer (NSCLC). The effect of TSKU expression on prognosis with NSCLC was analyzed in the PrognoScan database and validated in The Cancer Genome Atlas. The composition of tumor infiltrating cells was quantified by methylation and expression data. We combined levels of tumor infiltrating cells with TSKU to evaluate the survival of patients. The analysis of a cohort (GSE31210, N=204) of lung cancer patients demonstrated that high TSKU expression was strongly associated with poor overall survival (P =1.90E-05). The combination of high TSKU expression and low infiltration B cells identified a subtype of patients with poor survival in NSCLC. Besides, the proportion of B cells in NSCLC patients with TSKU hypermethylation were higher than those patients with TSKU hypomethylation (P <0.001). Overall, high TSKU expression combined with low infiltration of B cells may associate with a poor prognosis of NSCLC patients. TSKU might be a potential prognostic biomarker involved in tumor immune infiltration in NSCLC.
Collapse
Affiliation(s)
- Hao Huang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Ding Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jinming Fu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Liyuan Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Dapeng Li
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Hongru Sun
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xinyan Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jing Xu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Tian Tian
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Lei Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Ying Liu
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yuanyuan Zhang
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Yashuang Zhao
- Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
7
|
Papadaki V, Asada K, Watson JK, Tamura T, Leung A, Hopkins J, Dellett M, Sasai N, Davaapil H, Nik-Zainal S, Longbottom R, Nakakido M, Torii R, Veerakumarasivam A, Kaneko S, Sagoo MS, Murphy G, Mitani A, Tsumoto K, Kelly JD, Hamamoto R, Ohnuma SI. Two Secreted Proteoglycans, Activators of Urothelial Cell-Cell Adhesion, Negatively Contribute to Bladder Cancer Initiation and Progression. Cancers (Basel) 2020; 12:E3362. [PMID: 33202923 PMCID: PMC7697838 DOI: 10.3390/cancers12113362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023] Open
Abstract
Osteomodulin (OMD) and proline/arginine-rich end leucine repeat protein (PRELP) are secreted extracellular matrix proteins belonging to the small leucine-rich proteoglycans family. We found that OMD and PRELP were specifically expressed in umbrella cells in bladder epithelia, and their expression levels were dramatically downregulated in all bladder cancers from very early stages and various epithelial cancers. Our in vitro studies including gene expression profiling using bladder cancer cell lines revealed that OMD or PRELP application suppressed the cancer progression by inhibiting TGF-β and EGF pathways, which reversed epithelial-mesenchymal transition (EMT), activated cell-cell adhesion, and inhibited various oncogenic pathways. Furthermore, the overexpression of OMD in bladder cancer cells strongly inhibited the anchorage-independent growth and tumorigenicity in mouse xenograft studies. On the other hand, we found that in the bladder epithelia, the knockout mice of OMD and/or PRELP gene caused partial EMT and a loss of tight junctions of the umbrella cells and resulted in formation of a bladder carcinoma in situ-like structure by spontaneous breakdowns of the umbrella cell layer. Furthermore, the ontological analysis of the expression profiling of an OMD knockout mouse bladder demonstrated very high similarity with those obtained from human bladder cancers. Our data indicate that OMD and PRELP are endogenous inhibitors of cancer initiation and progression by controlling EMT. OMD and/or PRELP may have potential for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Vasiliki Papadaki
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK; (V.P.); (T.T.); (A.L.); (J.H.); (M.D.); (N.S.); (H.D.); (R.L.); (M.N.); (M.S.S.)
- Institute of Fundamental Biological Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece
| | - Ken Asada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Julie K. Watson
- The Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; (J.K.W.); (A.V.); (G.M.); (J.D.K.)
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
- Stem Cell Technologies, Building 7100, Cambridge Research Park, Beach Drive, Waterbeach, Cambridge CB25 9TL, UK
| | - Toshiya Tamura
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK; (V.P.); (T.T.); (A.L.); (J.H.); (M.D.); (N.S.); (H.D.); (R.L.); (M.N.); (M.S.S.)
- Integrated Biology, Research Division Axcelead Drug Discovery Partners, Inc. 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Alex Leung
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK; (V.P.); (T.T.); (A.L.); (J.H.); (M.D.); (N.S.); (H.D.); (R.L.); (M.N.); (M.S.S.)
| | - Jack Hopkins
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK; (V.P.); (T.T.); (A.L.); (J.H.); (M.D.); (N.S.); (H.D.); (R.L.); (M.N.); (M.S.S.)
| | - Margaret Dellett
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK; (V.P.); (T.T.); (A.L.); (J.H.); (M.D.); (N.S.); (H.D.); (R.L.); (M.N.); (M.S.S.)
- C-TRIC, Altnagelvin Hospital Campus, NI Centre for Stratified Medicine, Glenshane Road, Derry/Londonderry BT47 6SB, UK
| | - Noriaki Sasai
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK; (V.P.); (T.T.); (A.L.); (J.H.); (M.D.); (N.S.); (H.D.); (R.L.); (M.N.); (M.S.S.)
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma 630-0192, Japan
| | - Hongorzul Davaapil
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK; (V.P.); (T.T.); (A.L.); (J.H.); (M.D.); (N.S.); (H.D.); (R.L.); (M.N.); (M.S.S.)
- Cambridge Biomedical Campus, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Wellcome—MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Serena Nik-Zainal
- MRC Cancer Unit University of Cambridge Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK;
- Academic Laboratory of Medical Genetics, Box 238, Lv 6 Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Rebecca Longbottom
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK; (V.P.); (T.T.); (A.L.); (J.H.); (M.D.); (N.S.); (H.D.); (R.L.); (M.N.); (M.S.S.)
- Critical Care, University College London Hospital, 3rd floor, 235 Euston Road, London NW1 2PG, UK
| | - Makoto Nakakido
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK; (V.P.); (T.T.); (A.L.); (J.H.); (M.D.); (N.S.); (H.D.); (R.L.); (M.N.); (M.S.S.)
- Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan;
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK;
| | - Abhi Veerakumarasivam
- The Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; (J.K.W.); (A.V.); (G.M.); (J.D.K.)
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (K.A.); (S.K.)
| | - Mandeep S. Sagoo
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK; (V.P.); (T.T.); (A.L.); (J.H.); (M.D.); (N.S.); (H.D.); (R.L.); (M.N.); (M.S.S.)
- Retinoblastoma Service, Royal London Hospital, Whitechapel Road, London E1 1BB, UK
- Ocular Oncology Service, Moorfields Eye Hospital, City Road, London EC1V 2PD, UK
- National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, City Road, London EC1V 2PD, UK
| | - Gillian Murphy
- The Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; (J.K.W.); (A.V.); (G.M.); (J.D.K.)
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Akihisa Mitani
- Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Kohei Tsumoto
- Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan;
| | - John D. Kelly
- The Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; (J.K.W.); (A.V.); (G.M.); (J.D.K.)
- Division of Surgery and Interventional Science, University College London, 74 Huntley Street, London WC1E 6AU, UK
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- The Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; (J.K.W.); (A.V.); (G.M.); (J.D.K.)
- Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan;
| | - Shin-ichi Ohnuma
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK; (V.P.); (T.T.); (A.L.); (J.H.); (M.D.); (N.S.); (H.D.); (R.L.); (M.N.); (M.S.S.)
- The Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK; (J.K.W.); (A.V.); (G.M.); (J.D.K.)
| |
Collapse
|
8
|
Bone marrow niche crosses paths with BMPs: a road to protection and persistence in CML. Biochem Soc Trans 2020; 47:1307-1325. [PMID: 31551354 DOI: 10.1042/bst20190221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/23/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022]
Abstract
Chronic myeloid leukaemia (CML) is a paradigm of precision medicine, being one of the first cancers to be treated with targeted therapy. This has revolutionised CML therapy and patient outcome, with high survival rates. However, this now means an ever-increasing number of patients are living with the disease on life-long tyrosine kinase inhibitor (TKI) therapy, with most patients anticipated to have near normal life expectancy. Unfortunately, in a significant number of patients, TKIs are not curative. This low-level disease persistence suggests that despite a molecularly targeted therapeutic approach, there are BCR-ABL1-independent mechanisms exploited to sustain the survival of a small cell population of leukaemic stem cells (LSCs). In CML, LSCs display many features akin to haemopoietic stem cells, namely quiescence, self-renewal and the ability to produce mature progeny, this all occurs through intrinsic and extrinsic signals within the specialised microenvironment of the bone marrow (BM) niche. One important avenue of investigation in CML is how the disease highjacks the BM, thereby remodelling this microenvironment to create a niche, which enables LSC persistence and resistance to TKI treatment. In this review, we explore how changes in growth factor levels, in particular, the bone morphogenetic proteins (BMPs) and pro-inflammatory cytokines, impact on cell behaviour, extracellular matrix deposition and bone remodelling in CML. We also discuss the challenges in targeting LSCs and the potential of dual targeting using combination therapies against BMP receptors and BCR-ABL1.
Collapse
|
9
|
Ahmad SAI, Anam MB, Istiaq A, Ito N, Ohta K. Tsukushi is essential for proper maintenance and terminal differentiation of mouse hippocampal neural stem cells. Dev Growth Differ 2020; 62:108-117. [DOI: 10.1111/dgd.12649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Shah Adil Ishtiyaq Ahmad
- Department of Developmental Neurobiology Graduate School of Life Sciences Kumamoto University Kumamoto Japan
- Stem Cell‐Based Tissue Regeneration Research and Education Unit Kumamoto University Kumamoto Japan
- Department of Biotechnology and Genetic Engineering Mawlana Bhashani Science and Technology University Tangail Bangladesh
| | - Mohammad Badrul Anam
- Department of Developmental Neurobiology Graduate School of Life Sciences Kumamoto University Kumamoto Japan
- Stem Cell‐Based Tissue Regeneration Research and Education Unit Kumamoto University Kumamoto Japan
- HIGO Program Kumamoto University Kumamoto Japan
| | - Arif Istiaq
- Department of Developmental Neurobiology Graduate School of Life Sciences Kumamoto University Kumamoto Japan
- Stem Cell‐Based Tissue Regeneration Research and Education Unit Kumamoto University Kumamoto Japan
- HIGO Program Kumamoto University Kumamoto Japan
| | - Naofumi Ito
- Department of Developmental Neurobiology Graduate School of Life Sciences Kumamoto University Kumamoto Japan
- Stem Cell‐Based Tissue Regeneration Research and Education Unit Kumamoto University Kumamoto Japan
| | - Kunimasa Ohta
- Department of Developmental Neurobiology Graduate School of Life Sciences Kumamoto University Kumamoto Japan
- Stem Cell‐Based Tissue Regeneration Research and Education Unit Kumamoto University Kumamoto Japan
- HIGO Program Kumamoto University Kumamoto Japan
- AMED Core Research for Evolutional Science and Technology (AMED‐CREST) Japan Agency for Medical Research and Development (AMED) Tokyo Japan
| |
Collapse
|
10
|
Mouchiroud M, Camiré É, Aldow M, Caron A, Jubinville É, Turcotte L, Kaci I, Beaulieu MJ, Roy C, Labbé SM, Varin TV, Gélinas Y, Lamothe J, Trottier J, Mitchell PL, Guénard F, Festuccia WT, Joubert P, Rose CF, Karvellas CJ, Barbier O, Morissette MC, Marette A, Laplante M. The hepatokine Tsukushi is released in response to NAFLD and impacts cholesterol homeostasis. JCI Insight 2019; 4:129492. [PMID: 31391339 PMCID: PMC6693835 DOI: 10.1172/jci.insight.129492] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) prevails in obesity and is linked to several health complications including dyslipidemia and atherosclerosis. How exactly NAFLD induces atherogenic dyslipidemia to promote cardiovascular diseases is still elusive. Here, we identify Tsukushi (TSK) as a hepatokine induced in response to NAFLD. We show that both endoplasmic reticulum stress and inflammation promote the expression and release of TSK in mice. In humans, hepatic TSK expression is also associated with steatosis, and its circulating levels are markedly increased in patients suffering from acetaminophen-induced acute liver failure (ALF), a condition linked to severe hepatic inflammation. In these patients, elevated blood TSK levels were associated with decreased transplant-free survival at hospital discharge, suggesting that TSK could have a prognostic significance. Gain- and loss-of-function studies in mice revealed that TSK impacts systemic cholesterol homeostasis. TSK reduces circulating HDL cholesterol, lowers cholesterol efflux capacity, and decreases cholesterol-to-bile acid conversion in the liver. Our data identify the hepatokine TSK as a blood biomarker of liver stress that could link NAFLD to the development of atherogenic dyslipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Mathilde Mouchiroud
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Étienne Camiré
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Manal Aldow
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Alexandre Caron
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Éric Jubinville
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Laurie Turcotte
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Inès Kaci
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Marie-Josée Beaulieu
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Christian Roy
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Sébastien M. Labbé
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
- IPS Thérapeutique, Sherbrooke, Québec, Canada
| | - Thibault V. Varin
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec City, Québec, Canada
| | - Yves Gélinas
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Jennifer Lamothe
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, Endocrinology-Nephrology Axis, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada
- Faculty of Pharmacy, Université Laval, Québec City, Québec, Canada
| | - Patricia L. Mitchell
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Frédéric Guénard
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec City, Québec, Canada
| | - William T. Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Philippe Joubert
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
| | - Christopher F. Rose
- Hepato-Neuro Laboratory, Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
| | - Constantine J. Karvellas
- Liver Unit, Division of Gastroenterology, Department of Critical Care Medicine, School of Public Health Science, University of Alberta, Edmonton, Alberta, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, Endocrinology-Nephrology Axis, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada
- Faculty of Pharmacy, Université Laval, Québec City, Québec, Canada
| | - Mathieu C. Morissette
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
- Département de Médecine and
| | - André Marette
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec City, Québec, Canada
- Département de Médecine and
| | - Mathieu Laplante
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec – Université Laval (CRIUCPQ), Québec City, Québec, Canada
- Département de Médecine and
- Centre de Recherche sur le Cancer de l’Université Laval, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
11
|
Zou W, Wan J, Li M, Xing J, Chen Q, Zhang Z, Gong Y. Small leucine rich proteoglycans in host immunity and renal diseases. J Cell Commun Signal 2018; 13:463-471. [PMID: 30357553 DOI: 10.1007/s12079-018-0489-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/19/2018] [Indexed: 02/03/2023] Open
Abstract
The small leucine rich proteoglycans (SLRPs), structurally consisting of protein cores and various glycosaminoglycan side chains, are grouped into five classes based on common structural and functional properties. Besides being an important structural component of extracellular matrix (ECM), SLRPs have been implicated in the complex network of signal transduction and host immune responses. The focus of this review is on SLRPs in host immunity. Because host immunity plays an important part in the pathogenesis of renal diseases, the role of SLRPs in this set of diseases will also be discussed.
Collapse
Affiliation(s)
- Wei Zou
- Department of Infectious Diseases, The 1st Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Junhui Wan
- Department of Gynecology and Obstetrics, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Min Li
- Department of Gynecology and Obstetrics, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Juanjuan Xing
- Department of Burn, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Chen
- Department of Gynecology and Obstetrics, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhi Zhang
- Department of Gynecology and Obstetrics, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Gong
- Department of Gynecology and Obstetrics, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
12
|
Nodal and BMP dispersal during early zebrafish development. Dev Biol 2018; 447:14-23. [PMID: 29653088 DOI: 10.1016/j.ydbio.2018.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/30/2022]
Abstract
The secreted TGF-β superfamily signals Nodal and BMP coordinate the patterning of vertebrate embryos. Nodal specifies endoderm and mesoderm during germ layer formation, and BMP specifies ventral fates and patterns the dorsal/ventral axis. Five major models have been proposed to explain how the correct distributions of Nodal and BMP are achieved within tissues to orchestrate embryogenesis: source/sink, transcriptional determination, relay, self-regulation, and shuttling. Here, we discuss recent experiments probing these signal dispersal models, focusing on early zebrafish development.
Collapse
|
13
|
Ahmad SAI, Anam MB, Ito N, Ohta K. Involvement of Tsukushi in diverse developmental processes. J Cell Commun Signal 2018; 12:205-210. [PMID: 29352451 PMCID: PMC5842206 DOI: 10.1007/s12079-018-0452-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
Tsukushi (TSK) is a small signaling molecule which takes part in different developmental processes of multiple vertebrate organisms. The diverse activity of TSK depends on its ability to bind various intermediate molecules from different major signaling pathways. Interactions of TSK with BMP, FGF, TGF-β and Wnt pathways have already been confirmed. In this review, we will introduce the latest information regarding the involvement of TSK in developmental events. We suggest a fine tuning role for TSK in multiple signaling cascades. Also, we recommend further studies on the developmental role of TSK to fully reveal its potential.
Collapse
Affiliation(s)
- Shah Adil Ishtiyaq Ahmad
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Mohammad Badrul Anam
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Naofumi Ito
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
- Stem Cell-Based Tissue Regeneration Research and Education Unit, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
- AMED Core Research for Evolutional Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo, 100-0004, Japan.
| |
Collapse
|
14
|
Yano K, Washio K, Tsumanuma Y, Yamato M, Ohta K, Okano T, Izumi Y. The role of Tsukushi (TSK), a small leucine-rich repeat proteoglycan, in bone growth. Regen Ther 2017; 7:98-107. [PMID: 30271858 PMCID: PMC6147151 DOI: 10.1016/j.reth.2017.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Endochondral ossification is one of a key process for bone maturation. Tsukushi (TSK) is a novel member of the secreted small leucine-rich repeat proteoglycan (SLRP) family. SLRPs localize to skeletal regions and play significant roles during whole phases of bone development. Although prior evidence suggests that TSK may be involved in the regulation of bone formation, its role in skeletal development has not yet been elucidated. METHODS In the present study, we examined TSK's function during bone growth by comparing skeletal growth of TSK deficient (TSK-/-) mice and wild type (WT) mice. And an in vitro experiment using siRNA transfection of a chondrogenic cell line was performed. RESULTS TSK-/- mice exhibited decreased weight and short stature at 3 weeks of age due to decreased longitudinal bone growth coupled with low bone mass. Furthermore, an in vitro experiment using siRNA transfection into a chondrogenic cell line revealed that decreased TSK expression induced down-regulation of key chondrogenic marker gene expression and up-regulation of mid-to-late chondrogenic markers gene expression. CONCLUSIONS Our results reveal that TSK regulates bone elongation and bone mass by modulating growth plate chondrocyte function and consequently, overall body size.
Collapse
Key Words
- BMP, bone morphogenetic protein
- Chondrocyte
- ECM, extracellular matrix
- EDTA, ethylenediaminetetraacetic Acid
- Endochondral ossification
- FBS, fetal bovine serum
- FGF, fibroblast growth factor
- Growth plate
- ITS, insulin-transferrin-selenium supplements
- SLRP, small leucine-rich repeat proteoglycan
- SLRPs
- Skeletal development
- TGF, transforming growth factor
- TRAP, tartrate-resistant acid phosphatase
- TSK, Tsukushi
- Tsukushi
- WT, wild type
- β-gal, β-Galactosidase
Collapse
Affiliation(s)
- Kosei Yano
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Institute of Advanced Biomedical Engineering and Sciences, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Kaoru Washio
- Institute of Advanced Biomedical Engineering and Sciences, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Yuka Tsumanuma
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Sciences, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Kunimasa Ohta
- Department of Developmental Neurobiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Sciences, Tokyo Women's Medical University (TWIns), 8-1 Kawada-cho, Shinjuku, Tokyo 162-8666, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
15
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
16
|
Abstract
The discovery of the transforming growth factor β (TGF-β) family ligands and the realization that their bioactivities need to be tightly controlled temporally and spatially led to intensive research that has identified a multitude of extracellular modulators of TGF-β family ligands, uncovered their functions in developmental and pathophysiological processes, defined the mechanisms of their activities, and explored potential modulator-based therapeutic applications in treating human diseases. These studies revealed a diverse repertoire of extracellular and membrane-associated molecules that are capable of modulating TGF-β family signals via control of ligand availability, processing, ligand-receptor interaction, and receptor activation. These molecules include not only soluble ligand-binding proteins that were conventionally considered as agonists and antagonists of TGF-β family of growth factors, but also extracellular matrix (ECM) proteins and proteoglycans that can serve as "sink" and control storage and release of both the TGF-β family ligands and their regulators. This extensive network of soluble and ECM modulators helps to ensure dynamic and cell-specific control of TGF-β family signals. This article reviews our knowledge of extracellular modulation of TGF-β growth factors by diverse proteins and their molecular mechanisms to regulate TGF-β family signaling.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
17
|
Luehders K, Sasai N, Davaapil H, Kurosawa-Yoshida M, Hiura H, Brah T, Ohnuma SI. The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway. Development 2016; 142:3351-61. [PMID: 26443635 DOI: 10.1242/dev.124438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Small leucine-rich repeat proteoglycan (SLRP) family proteins play important roles in a number of biological events. Here, we demonstrate that the SLRP family member Asporin (ASPN) plays a crucial role in the early stages of eye development in Xenopus embryos. During embryogenesis, ASPN is broadly expressed in the neuroectoderm of the embryo. Overexpression of ASPN causes the induction of ectopic eyes. By contrast, blocking ASPN function with a morpholino oligonucleotide (ASPN-MO) inhibits eye formation, indicating that ASPN is an essential factor for eye development. Detailed molecular analyses revealed that ASPN interacts with insulin growth factor receptor (IGFR) and is essential for activating the IGF receptor-mediated intracellular signalling pathway. Moreover, ASPN perturbed the Wnt, BMP and Activin signalling pathways, suggesting that ASPN thereby creates a favourable environment in which the IGF signal can dominate. ASPN is thus a novel secreted molecule essential for eye induction through the coordination of multiple signalling pathways.
Collapse
Affiliation(s)
- Kristin Luehders
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Noriaki Sasai
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5, Takayama-cho, Ikoma 630-0192, Japan
| | - Hongorzul Davaapil
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Maiko Kurosawa-Yoshida
- Department of Oncology, The Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK
| | - Hitoshi Hiura
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Tara Brah
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Shin-ichi Ohnuma
- Ocular Biology and Therapeutic unit (ORBIT), Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK Department of Oncology, The Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK
| |
Collapse
|
18
|
Acharjee UK, Gejima R, Felemban Athary Abdulhaleem M, Riyadh MA, Tanaka H, Ohta K. Tsukushi expression is dependent on Notch signaling and oscillated in the presomitic mesoderm during chick somitogenesis. Biochem Biophys Res Commun 2015; 465:625-30. [DOI: 10.1016/j.bbrc.2015.08.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022]
|
19
|
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol 2015; 42:11-55. [PMID: 25701227 PMCID: PMC4859157 DOI: 10.1016/j.matbio.2015.02.003] [Citation(s) in RCA: 804] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.
Collapse
Affiliation(s)
- Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Liliana Schaefer
- Pharmazentrum Frankfurt/ZAFES, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany.
| |
Collapse
|
20
|
Pollak DD, Minh BQ, Cicvaric A, Monje FJ. A novel fibroblast growth factor receptor family member promotes neuronal outgrowth and synaptic plasticity in aplysia. Amino Acids 2014; 46:2477-88. [PMID: 25059541 PMCID: PMC4200351 DOI: 10.1007/s00726-014-1803-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/30/2014] [Indexed: 02/06/2023]
Abstract
Fibroblast Growth Factor (FGF) Receptors (FGFRs) regulate essential biological processes, including embryogenesis, angiogenesis, cellular growth and memory-related long-term synaptic plasticity. Whereas canonical FGFRs depend exclusively on extracellular Immunoglobulin (Ig)-like domains for ligand binding, other receptor types, including members of the tropomyosin-receptor-kinase (Trk) family, use either Ig-like or Leucine-Rich Repeat (LRR) motifs, or both. Little is known, however, about the evolutionary events leading to the differential incorporation of LRR domains into Ig-containing tyrosine kinase receptors. Moreover, although FGFRs have been identified in many vertebrate species, few reports describe their existence in invertebrates. Information about the biological relevance of invertebrate FGFRs and evolutionary divergences between them and their vertebrate counterparts is therefore limited. Here, we characterized ApLRRTK, a neuronal cell-surface protein recently identified in Aplysia. We unveiled ApLRRTK as the first member of the FGFRs family deprived of Ig-like domains that instead contains extracellular LRR domains. We describe that ApLRRTK exhibits properties typical of canonical vertebrate FGFRs, including promotion of FGF activity, enhancement of neuritic outgrowth and signaling via MAPK and the transcription factor CREB. ApLRRTK also enhanced the synaptic efficiency of neurons known to mediate in vivo memory-related defensive behaviors. These data reveal a novel molecular regulator of neuronal function in invertebrates, provide the first evolutionary linkage between LRR proteins and FGFRs and unveil an unprecedented mechanism of FGFR gene diversification in primeval central nervous systems.
Collapse
Affiliation(s)
- Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Center for Physiology and Pharmacology, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | | | | | | |
Collapse
|
21
|
Ni GX, Li Z, Zhou YZ. The role of small leucine-rich proteoglycans in osteoarthritis pathogenesis. Osteoarthritis Cartilage 2014; 22:896-903. [PMID: 24795272 DOI: 10.1016/j.joca.2014.04.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/09/2014] [Accepted: 04/23/2014] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To give an overview of the literature on the role of small leucine-rich proteoglycans (SLRPs) in osteoarthritis (OA) pathogenesis. METHOD A literature search was performed and reviewed using the narrative approach. RESULTS (1) OA is an organ disease with many tissue types and specific roles for each in the pathogenic process. (2) Key biological functions of SLRPs include interacting with collagens to modulate fibril formation, and binding various cell surface receptors and growth factors to influence cellular functions; (3) Accumulating evidence has demonstrated the involvement of SLRPs in OA pathogenesis, most of which came from SLRP-deficient mice models; (4) Possible mechanisms for SLRPs being involved in OA pathogenic process include their roles in the extracellular collagen network, TGF-β signaling pathways, subchondral bone, muscle weakness, and the innate immune inflammation; (5) SLRP-deficient mice offer a potential to understand the molecular mechanisms of OA initiation and progression. (6) Targeting SLRPs may offer a new therapeutic modality for OA through controlling and modifying the TGF-β-ECM system. (7) Monitoring SLRP fragmentation may be a promising biomarker strategy to evaluate OA status. CONCLUSIONS Recent literature has shown that SLRPs may play an important role in OA pathogenesis. Possible mechanisms by which SLRPs are involved in this process have also been proposed. However, further investigations are needed in this field to better understand its mechanisms, develop treatments to slow down the degenerative process, and explore new approaches for effective and timely diagnosis of OA.
Collapse
Affiliation(s)
- G-X Ni
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, China.
| | - Z Li
- Department of Orthopeadics and Traumatology, Nanfang Hospital, Southern Medical University, China
| | - Y-Z Zhou
- Department of Rehabilitation Medicine, 1st Affiliated Hospital, Fujian Medical University, China
| |
Collapse
|
22
|
The combinatorial guidance activities of draxin and Tsukushi are essential for forebrain commissure formation. Dev Biol 2013. [DOI: 10.1016/j.ydbio.2012.11.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
mNanog possesses dorsal mesoderm-inducing ability by modulating both BMP and Activin/nodal signaling in Xenopus ectodermal cells. PLoS One 2012; 7:e46630. [PMID: 23071603 PMCID: PMC3469649 DOI: 10.1371/journal.pone.0046630] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 09/06/2012] [Indexed: 11/19/2022] Open
Abstract
Background In Xenopus early embryogenesis, various genes are involved with mesoderm formation. In particular, dorsal mesoderm contains the organizer region and induces neural tissues through the inhibition of bone morphogenetic protein (BMP) signaling. In our initial study to identify novel genes necessary for maintaining the undifferentiated state, we unexpectedly revealed mesoderm-inducing activity for mNanog in Xenopus. Methodology/Principal Findings The present series of experiments investigated the effect of mNanog gene expression on Xenopus embryo. Ectopic expression of mNanog induced dorsal mesoderm gene activity, secondary axis formation, and weakly upregulated Activin/nodal signaling. The injection of mNanog also effectively inhibited the target genes of BMP signaling, while Xvent2 injection downregulated the dorsal mesoderm gene expression induced by mNanog injection. Conclusions/Significance These results suggested that mNanog expression induces dorsal mesoderm by regulating both Activin/nodal signaling and BMP signaling in Xenopus. This finding highlights the possibly novel function for mNanog in stimulating the endogenous gene network in Xenopus mesoderm formation.
Collapse
|
24
|
Henke A, Grace OC, Ashley GR, Stewart GD, Riddick ACP, Yeun H, O’Donnell M, Anderson RA, Thomson AA. Stromal expression of decorin, Semaphorin6D, SPARC, Sprouty1 and Tsukushi in developing prostate and decreased levels of decorin in prostate cancer. PLoS One 2012; 7:e42516. [PMID: 22880013 PMCID: PMC3411755 DOI: 10.1371/journal.pone.0042516] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 07/09/2012] [Indexed: 11/18/2022] Open
Abstract
Background and Aim During prostate development, mesenchymal-epithelial interactions regulate organ growth and differentiation. In adult prostate, stromal-epithelial interactions are important for tissue homeostasis and also play a significant role in prostate cancer. In this study we have identified molecules that show a mesenchymal expression pattern in the developing prostate, and one of these showed reduced expression in prostate cancer stroma. Methodology and Principal Findings Five candidate molecules identified by transcript profiling of developmental prostate mesenchyme were selected using a wholemount in situ hybridisation screen and studied Decorin (Dcn), Semaphorin6D (Sema6D), SPARC/Osteonectin (SPARC), Sprouty1 (Spry-1) and Tsukushi (Tsku). Expression in rat tissues was evaluated using wholemount in situ hybridisation (postnatal day (P) 0.5) and immunohistochemistry (embryonic day (E) E17.5, E19.5; P0.5; P6; 28 & adult). Four candidates (Decorin, SPARC, Spry-1, Tsukushi) were immunolocalised in human foetal prostate (weeks 14, 16, 19) and expression of Decorin was evaluated on a human prostate cancer tissue microarray. In embryonic and perinatal rats Decorin, Semaphorin6D, SPARC, Spry-1 and Tsukushi were expressed with varying distribution patterns throughout the mesenchyme at E17.5, E19.5, P0.5 and P6.5. In P28 and adult prostates there was either a decrease in the expression (Semaphorin6D) or a switch to epithelial expression of SPARC, and Spry-1, whereas Decorin and Tsukushi were specific to mesenchyme/stroma at all ages. Expression of Decorin, SPARC, Spry-1 and Tsukushi in human foetal prostates paralleled that in rat. Decorin showed mesenchymal and stromal-specific expression at all ages and was further examined in prostate cancer, where stromal expression was significantly reduced compared with non-malignant prostate. Conclusion and Significance We describe the spatio-temporal expression of Decorin, Semaphorin6D, SPARC, Spry-1 and Tsukushi in developing prostate and observed similar mesenchymal expression patterns in rat and human. Additionally, Decorin showed reduced expression in prostate cancer stroma compared to non-malignant prostate stroma.
Collapse
Affiliation(s)
- Alexander Henke
- Medical Research Council, Centre for Reproductive Health, The Queens’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
- * E-mail: (AH); (AAT)
| | - O. Cathal Grace
- Medical Research Council, Centre for Reproductive Health, The Queens’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - George R. Ashley
- Medical Research Council, Centre for Reproductive Health, The Queens’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Grant D. Stewart
- Edinburgh Urological Cancer Group, Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Antony C. P. Riddick
- Edinburgh Urological Cancer Group, Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Henry Yeun
- Edinburgh Urological Cancer Group, Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie O’Donnell
- Edinburgh Urological Cancer Group, Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. Anderson
- Medical Research Council, Centre for Reproductive Health, The Queens’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Axel A. Thomson
- Medical Research Council, Centre for Reproductive Health, The Queens’s Medical Research Institute, Edinburgh, Scotland, United Kingdom
- * E-mail: (AH); (AAT)
| |
Collapse
|
25
|
Dellett M, Hu W, Papadaki V, Ohnuma SI. Small leucine rich proteoglycan family regulates multiple signalling pathways in neural development and maintenance. Dev Growth Differ 2012; 54:327-40. [DOI: 10.1111/j.1440-169x.2012.01339.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Margaret Dellett
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| | - Wanzhou Hu
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| | - Vasiliki Papadaki
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| | - Shin-ichi Ohnuma
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| |
Collapse
|
26
|
Tsukushi functions as a Wnt signaling inhibitor by competing with Wnt2b for binding to transmembrane protein Frizzled4. Proc Natl Acad Sci U S A 2011; 108:14962-7. [PMID: 21856951 DOI: 10.1073/pnas.1100513108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Wnt signaling pathway is essential for the development of diverse tissues during embryogenesis. Signal transduction is activated by the binding of Wnt proteins to the type I receptor low-density lipoprotein receptor-related protein 5/6 and the seven-pass transmembrane protein Frizzled (Fzd), which contains a Wnt-binding site in the form of a cysteine-rich domain. Known extracellular antagonists of the Wnt signaling pathway can be subdivided into two broad classes depending on whether they bind primarily to Wnt or to low-density lipoprotein receptor-related protein 5/6. We show that the secreted protein Tsukushi (TSK) functions as a Wnt signaling inhibitor by binding directly to the cysteine-rich domain of Fzd4 with an affinity of 2.3 × 10(-10) M and competing with Wnt2b. In the developing chick eye, TSK is expressed in the ciliary/iris epithelium, whereas Wnt2b is expressed in the adjacent anterior rim of the optic vesicle, where it controls the differentiation of peripheral eye structures, such as the ciliary body and iris. TSK overexpression effectively antagonizes Wnt2b signaling in chicken embryonic retinal cells both in vivo and in vitro and represses Wnt-dependent specification of peripheral eye fates. Conversely, targeted inactivation of the TSK gene in mice causes expansion of the ciliary body and up-regulation of Wnt2b and Fzd4 expression in the developing peripheral eye. Thus, we uncover a crucial role for TSK as a Wnt signaling inhibitor that regulates peripheral eye formation.
Collapse
|
27
|
Ito A, Shinmyo Y, Abe T, Oshima N, Tanaka H, Ohta K. Tsukushi is required for anterior commissure formation in mouse brain. Biochem Biophys Res Commun 2010; 402:813-8. [DOI: 10.1016/j.bbrc.2010.10.127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 10/27/2010] [Indexed: 01/15/2023]
|
28
|
Extracellular BMP-antagonist regulation in development and disease: tied up in knots. Trends Cell Biol 2010; 20:244-56. [PMID: 20188563 DOI: 10.1016/j.tcb.2010.01.008] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 01/11/2023]
Abstract
Developmental processes are regulated by the bone morphogenetic protein (BMP) family of secreted molecules. BMPs bind to serine/threonine kinase receptors and signal through the canonical Smad pathway and other intracellular effectors. Integral to the control of BMPs is a diverse group of secreted BMP antagonists that bind to BMPs and prevent engagement with their cognate receptors. Tight temporospatial regulation of both BMP and BMP-antagonist expression provides an exquisite control system for developing tissues. Additional facets of BMP-antagonist biology, such as crosstalk with Wnt and Sonic hedgehog signaling during development, have been revealed in recent years. In addition, previously unappreciated roles for the BMP antagonists in kidney fibrosis and cancer have been elucidated. This review provides a description of BMP-antagonist biology, together with highlights of recent novel insights into the role of these antagonists in development, signal transduction and human disease.
Collapse
|
29
|
Uejima A, Amano T, Nomura N, Noro M, Yasue T, Shiroishi T, Ohta K, Yokoyama H, Tamura K. Anterior shift in gene expression precedes anteriormost digit formation in amniote limbs. Dev Growth Differ 2010; 52:223-34. [DOI: 10.1111/j.1440-169x.2009.01161.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Merline R, Schaefer RM, Schaefer L. The matricellular functions of small leucine-rich proteoglycans (SLRPs). J Cell Commun Signal 2009; 3:323-35. [PMID: 19809894 PMCID: PMC2778586 DOI: 10.1007/s12079-009-0066-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 09/02/2009] [Indexed: 12/11/2022] Open
Abstract
The small leucine-rich proteoglycans (SLRPs) are biologically active components of the extracellular matrix (ECM), consisting of a protein core with leucine rich-repeat (LRR) motifs covalently linked to glycosaminoglycan (GAG) side chains. The diversity in composition resulting from the various combinations of protein cores substituted with one or more GAG chains along with their pericellular localization enables SLRPs to interact with a host of different cell surface receptors, cytokines, growth factors, and other ECM components, leading to modulation of cellular functions. SLRPs are capable of binding to: (i) different types of collagens, thereby regulating fibril assembly, organization, and degradation; (ii) Toll-like receptors (TLRs), complement C1q, and tumor necrosis factor-alpha (TNFalpha), regulating innate immunity and inflammation; (iii) epidermal growth factor receptor (EGF-R), insulin-like growth factor receptor (IGF-IR), and c-Met, influencing cellular proliferation, survival, adhesion, migration, tumor growth and metastasis as well as synthesis of other ECM components; (iv) low-density lipoprotein receptor-related protein (LRP-1) and TGF-beta, modulating cytokine activity and fibrogenesis; and (v) growth factors such as bone morphogenic protein (BMP-4) and Wnt-I-induced secreted protein-1 (WISP-1), controlling cell proliferation and differentiation. Thus, the ability of SLRPs, as ECM components, to directly or indirectly regulate cell-matrix crosstalk, resulting in the modulation of various biological processes, aptly qualifies these compounds as matricellular proteins.
Collapse
|
31
|
Schaefer L, Iozzo RV. Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem 2008; 283:21305-9. [PMID: 18463092 DOI: 10.1074/jbc.r800020200] [Citation(s) in RCA: 379] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The small leucine-rich proteoglycan (SLRP) family has significantly expanded in the past decade to now encompass five discrete classes, grouped by common structural and functional properties. Some of these gene products are not classical proteoglycans, whereas others have new and unique features. In addition to being structural proteins, SLRPs constitute a network of signal regulation: being mostly extracellular, they are upstream of multiple signaling cascades. They affect intracellular phosphorylation, a major conduit of information for cellular responses, and modulate distinct pathways, including those driven by bone morphogenetic protein/transforming growth factor beta superfamily members, receptor tyrosine kinases such as ErbB family members and the insulin-like growth factor I receptor, and Toll-like receptors. The wealth of mechanistic insights into the molecular and cellular functions of SLRPs has revealed both the sophistication of this family of regulatory proteins and the challenges that remain in uncovering the totality of their functions. This review is focused on novel biological functions of SLRPs with special emphasis on their protein cores, newly described genetic diseases, and signaling events in which SLRPs play key functions.
Collapse
|
32
|
|