1
|
Reguera-Gomez M, Munzen ME, Hamed MF, Charles-Niño CL, Martinez LR. IL-6 deficiency accelerates cerebral cryptococcosis and alters glial cell responses. J Neuroinflammation 2024; 21:242. [PMID: 39334365 PMCID: PMC11437997 DOI: 10.1186/s12974-024-03237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Cryptococcus neoformans (Cn) is an opportunistic encapsulated fungal pathogen that causes life-threatening meningoencephalitis in immunosuppressed individuals. Since IL-6 is important for blood-brain barrier support and its deficiency has been shown to facilitate Cn brain invasion, we investigated the impact of IL-6 on systemic Cn infection in vivo, focusing on central nervous system (CNS) colonization and glial responses, specifically microglia and astrocytes. IL-6 knock-out (IL-6-/-) mice showed faster mortality than C57BL/6 (Wild-type) and IL-6-/- supplemented with recombinant IL-6 (rIL-6; 40 pg/g/day) mice. Despite showing early lung inflammation but no major histological differences in pulmonary cryptococcosis progression among the experimental groups, IL-6-/- mice had significantly higher blood and brain tissue fungal burden at 7-days post infection. Exposure of cryptococci to rIL-6 in vitro increased capsule growth. In addition, IL-6-/- brains were characterized by an increased dystrophic microglia number during Cn infection, which are associated with neurodegeneration and senescence. In contrast, the brains of IL-6-producing or -supplemented mice displayed high numbers of activated and phagocytic microglia, which are related to a stronger anti-cryptococcal response or tissue repair. Likewise, culture of rIL-6 with microglia-like cells promoted high fungal phagocytosis and killing, whereas IL-6 silencing in microglia decreased fungal phagocytosis. Lastly, astrogliosis was high and moderate in infected brains removed from Wild-type and IL-6-/- supplemented with rIL-6 animals, respectively, while minimal astrogliosis was observed in IL-6-/- tissue, highlighting the potential of astrocytes in containing and combating cryptococcal infection. Our findings suggest a critical role for IL-6 in Cn CNS dissemination, neurocryptococcosis development, and host defense.
Collapse
Affiliation(s)
- Marta Reguera-Gomez
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, DG-48, P.O. Box 100424, Gainesville, FL, 32610, USA
| | - Melissa E Munzen
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, DG-48, P.O. Box 100424, Gainesville, FL, 32610, USA
| | - Mohamed F Hamed
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, DG-48, P.O. Box 100424, Gainesville, FL, 32610, USA
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Claudia L Charles-Niño
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, DG-48, P.O. Box 100424, Gainesville, FL, 32610, USA
| | - Luis R Martinez
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, DG-48, P.O. Box 100424, Gainesville, FL, 32610, USA.
- Emerging Pathogens Institute, Gainesville, FL, USA.
- Center for Immunology and Transplantation, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Abstract
Cryptococcosis is a disease caused by the pathogenic fungi Cryptococcus neoformans and Cryptococcus gattii, both environmental fungi that cause severe pneumonia and may even lead to cryptococcal meningoencephalitis. Although C. neoformans affects more fragile individuals, such as immunocompromised hosts through opportunistic infections, C. gattii causes a serious indiscriminate primary infection in immunocompetent individuals. Typically seen in tropical and subtropical environments, C. gattii has increased its endemic area over recent years, largely due to climatic factors that favor contagion in warmer climates. It is important to point out that not only C. gattii, but the Cryptococcus species complex produces a polysaccharidic capsule with immunomodulatory properties, enabling the pathogenic species of Cryptococccus to subvert the host immune response during the establishment of cryptococcosis, facilitating its dissemination in the infected organism. C. gattii causes a more severe and difficult-to-treat infection, with few antifungals eliciting an effective response during chronic treatment. Much of the immunopathology of this cryptococcosis is still poorly understood, with most studies focusing on cryptococcosis caused by the species C. neoformans. C. gattii became more important in the epidemiological scenario with the outbreaks in the Pacific Northwest of the United States, which resulted in phylogenetic studies of the virulent variant responsible for the severe infection in the region. Since then, the study of cryptococcosis caused by C. gattii has helped researchers understand the immunopathological aspects of different variants of this pathogen.
Collapse
|
3
|
Dellière S, Sze Wah Wong S, Aimanianda V. Soluble mediators in anti-fungal immunity. Curr Opin Microbiol 2020; 58:24-31. [PMID: 32604018 DOI: 10.1016/j.mib.2020.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Although soluble mediators of our innate immune system have a substantial impact on invading microbes, their role against fungal pathogens has been underexplored. Constituting the humoral immunity, soluble mediators comprise the complement system, collectins, acute-phase proteins, antibodies and antimicrobial peptides. These components can prevent fungal infection either by directly interacting with invading microbes, leading to their aggregation (microbistatic), destruction (microbicidal) or linking them to cellular immunity. The composition of soluble-mediator varies with human body-fluids, resulting in different antifungal mechanisms. Moreover, cellular immune system deploys both oxidative and non-oxidative mechanisms to destroy extracellular or internalized fungal pathogens; however, cellular immune activation is mainly influenced as well as regulated by soluble mediators. This review outlines the antifungal mechanism employed, directly or indirectly, by soluble mediators, and in response, the evading strategies of the fungal pathogens.
Collapse
Affiliation(s)
- Sarah Dellière
- Institut Pasteur, Molecular Mycology Unit, UMR2000, CNRS, Paris, France; Parasitology-Mycoloy Laboratory, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | | | | |
Collapse
|
4
|
Murugaiah V, Tsolaki AG, Kishore U. Collectins: Innate Immune Pattern Recognition Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:75-127. [PMID: 32152944 PMCID: PMC7120701 DOI: 10.1007/978-981-15-1580-4_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
Collectins are collagen-containing C-type (calcium-dependent) lectins which are important pathogen pattern recognising innate immune molecules. Their primary structure is characterised by an N-terminal, triple-helical collagenous region made up of Gly-X-Y repeats, an a-helical coiled-coil trimerising neck region, and a C-terminal C-type lectin or carbohydrate recognition domain (CRD). Further oligomerisation of this primary structure can give rise to more complex and multimeric structures that can be seen under electron microscope. Collectins can be found in serum as well as in a range of tissues at the mucosal surfaces. Mannanbinding lectin can activate the complement system while other members of the collectin family are extremely versatile in recognising a diverse range of pathogens via their CRDs and bring about effector functions designed at the clearance of invading pathogens. These mechanisms include opsonisation, enhancement of phagocytosis, triggering superoxidative burst and nitric oxide production. Collectins can also potentiate the adaptive immune response via antigen presenting cells such as macrophages and dendritic cells through modulation of cytokines and chemokines, thus they can act as a link between innate and adaptive immunity. This chapter describes the structure-function relationships of collectins, their diverse functions, and their interaction with viruses, bacteria, fungi and parasites.
Collapse
Affiliation(s)
- Valarmathy Murugaiah
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Anthony G Tsolaki
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Uday Kishore
- College of Health and Life Sciences, Brunel University London, London, UB8 3PH, UK.
| |
Collapse
|
5
|
Abstract
The respiratory tract is tasked with responding to a constant and vast influx of foreign agents. It acts as an important first line of defense in the innate immune system and as such plays a crucial role in preventing the entry of invading pathogens. While physical barriers like the mucociliary escalator exert their effects through the clearance of these pathogens, diverse and dynamic cellular mechanisms exist for the activation of the innate immune response through the recognition of pathogen-associated molecular patterns (PAMPs). These PAMPs are recognized by pattern recognition receptors (PRRs) that are expressed on a number of myeloid cells such as dendritic cells, macrophages, and neutrophils found in the respiratory tract. C-type lectin receptors (CLRs) are PRRs that play a pivotal role in the innate immune response and its regulation to a variety of respiratory pathogens such as viruses, bacteria, and fungi. This chapter will describe the function of both activating and inhibiting myeloid CLRs in the recognition of a number of important respiratory pathogens as well as the signaling events initiated by these receptors.
Collapse
|
6
|
Walsh NM, Botts MR, McDermott AJ, Ortiz SC, Wüthrich M, Klein B, Hull CM. Infectious particle identity determines dissemination and disease outcome for the inhaled human fungal pathogen Cryptococcus. PLoS Pathog 2019; 15:e1007777. [PMID: 31247052 PMCID: PMC6597114 DOI: 10.1371/journal.ppat.1007777] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2018] [Accepted: 04/22/2019] [Indexed: 01/01/2023] Open
Abstract
The majority of invasive human fungal pathogens gain access to their human hosts via the inhalation of spores from the environment into the lung, but relatively little is known about this infectious process. Among human fungal pathogens the most frequent cause of inhaled fatal fungal disease is Cryptococcus, which can disseminate from the lungs to other tissues, including the brain, where it causes meningoencephalitis. To determine the mechanisms by which distinct infectious particles of Cryptococcus cause disseminated disease, we evaluated two developmental cell types (spores and yeast) in mouse models of infection. We discovered that while both yeast and spores from several strains cause fatal disease, there was a consistently higher fungal burden in the brains of spore-infected mice. To determine the basis for this difference, we compared the pathogenesis of avirulent yeast strains with their spore progeny derived from sexual crosses. Strikingly, we discovered that spores produced by avirulent yeast caused uniformly fatal disease in the murine inhalation model of infection. We determined that this difference in outcome is associated with the preferential dissemination of spores to the lymph system. Specifically, mice infected with spores harbored Cryptococcus in their lung draining lymph nodes as early as one day after infection, whereas mice infected with yeast did not. Furthermore, phagocyte depletion experiments revealed this dissemination to the lymph nodes to be dependent on CD11c+ phagocytes, indicating a critical role for host immune cells in preferential spore trafficking. Taken together, these data support a model in which spores capitalize on phagocytosis by immune cells to escape the lung and gain access to other tissues, such as the central nervous system, to cause fatal disease. These previously unrealized insights into early interactions between pathogenic fungal spores and lung phagocytes provide new opportunities for understanding cryptococcosis and other spore-mediated fungal diseases.
Collapse
Affiliation(s)
- Naomi M. Walsh
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael R. Botts
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrew J. McDermott
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sébastien C. Ortiz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Marcel Wüthrich
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bruce Klein
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christina M. Hull
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
7
|
Goyal S, Castrillón-Betancur JC, Klaile E, Slevogt H. The Interaction of Human Pathogenic Fungi With C-Type Lectin Receptors. Front Immunol 2018; 9:1261. [PMID: 29915598 PMCID: PMC5994417 DOI: 10.3389/fimmu.2018.01261] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023] Open
Abstract
Fungi, usually present as commensals, are a major cause of opportunistic infections in immunocompromised patients. Such infections, if not diagnosed or treated properly, can prove fatal. However, in most cases healthy individuals are able to avert the fungal attacks by mounting proper antifungal immune responses. Among the pattern recognition receptors (PRRs), C-type lectin receptors (CLRs) are the major players in antifungal immunity. CLRs can recognize carbohydrate ligands, such as β-glucans and mannans, which are mainly found on fungal cell surfaces. They induce proinflammatory immune reactions, including phagocytosis, oxidative burst, cytokine, and chemokine production from innate effector cells, as well as activation of adaptive immunity via Th17 responses. CLRs such as Dectin-1, Dectin-2, Mincle, mannose receptor (MR), and DC-SIGN can recognize many disease-causing fungi and also collaborate with each other as well as other PRRs in mounting a fungi-specific immune response. Mutations in these receptors affect the host response and have been linked to a higher risk in contracting fungal infections. This review focuses on how CLRs on various immune cells orchestrate the antifungal response and on the contribution of single nucleotide polymorphisms in these receptors toward the risk of developing such infections.
Collapse
Affiliation(s)
- Surabhi Goyal
- Institute for Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Juan Camilo Castrillón-Betancur
- Septomics Research Center, Jena University Hospital, Jena, Germany.,International Leibniz Research School for Microbial and Biomolecular Interactions, Leibniz Institute for Natural Product Research and Infection Biology/Hans Knöll Institute, Jena, Germany
| | - Esther Klaile
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Hortense Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany
| |
Collapse
|
8
|
Taylor-Smith LM. Cryptococcus-Epithelial Interactions. J Fungi (Basel) 2017; 3:jof3040053. [PMID: 29371569 PMCID: PMC5753155 DOI: 10.3390/jof3040053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 12/12/2022] Open
Abstract
The fungal pathogen, Cryptococcus neoformans, causes devastating levels of morbidity and mortality. Infections with this fungus tend to be predominantly in immunocompromised individuals, such as those with HIV. Infections initiate with inhalation of cryptococcal cells and entry of the pathogen into the lungs. The bronchial epithelial cells of the upper airway and the alveolar epithelial cells of the lower airway are likely to be the first host cells that Cryptococcus engage with. Thus the interaction of cryptococci and the respiratory epithelia will be the focus of this review. C. neoformans has been shown to adhere to respiratory epithelial cells, although if the role of the capsule is in aiding or hindering this adhesion is debatable. The epithelia are also able to react to cryptococci with the release of cytokines and chemokines to start the immune response to this invading pathogen. The activity of surfactant components that line this mucosal barrier towards Cryptococcus and the metabolic and transcriptional reaction of cryptococci when encountering epithelial cells will also be discussed.
Collapse
Affiliation(s)
- Leanne M Taylor-Smith
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, West Midlands, UK.
| |
Collapse
|
9
|
Abstract
Cryptococcus species are encapsulated fungi found in the environment that predominantly cause disease in immunocompromised hosts after inhalation into the lungs. Even with contemporary antifungal regimens, patients with cryptococcosis continue to have high morbidity and mortality rates. The development of more effective therapies may depend on our understanding of the cellular and molecular mechanisms by which the host promotes sterilizing immunity against the fungus. This review will highlight our current knowledge of how Cryptococcus, primarily the species C. neoformans, is sensed by the mammalian host and how subsequent signaling pathways direct the anti-cryptococcal response by effector cells of the innate immune system.
Collapse
Affiliation(s)
- Lena J Heung
- Infectious Diseases Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
10
|
Carreto-Binaghi LE, Aliouat EM, Taylor ML. Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response. Respir Res 2016; 17:66. [PMID: 27250970 PMCID: PMC4888672 DOI: 10.1186/s12931-016-0385-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2015] [Accepted: 05/25/2016] [Indexed: 12/20/2022] Open
Abstract
Pulmonary surfactant is a complex fluid that comprises phospholipids and four proteins (SP-A, SP-B, SP-C, and SP-D) with different biological functions. SP-B, SP-C, and SP-D are essential for the lungs’ surface tension function and for the organization, stability and metabolism of lung parenchyma. SP-A and SP-D, which are also known as pulmonary collectins, have an important function in the host’s lung immune response; they act as opsonins for different pathogens via a C-terminal carbohydrate recognition domain and enhance the attachment to phagocytic cells or show their own microbicidal activity by increasing the cellular membrane permeability. Interactions between the pulmonary collectins and bacteria or viruses have been extensively studied, but this is not the same for fungal pathogens. SP-A and SP-D bind glucan and mannose residues from fungal cell wall, but there is still a lack of information on their binding to other fungal carbohydrate residues. In addition, both their relation with immune cells for the clearance of these pathogens and the role of surfactant proteins’ regulation during respiratory fungal infections remain unknown. Here we highlight the relevant findings associated with SP-A and SP-D in those respiratory mycoses where the fungal infective propagules reach the lungs by the airways.
Collapse
Affiliation(s)
- Laura Elena Carreto-Binaghi
- Laboratorio de Inmunología de Hongos, Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM); Circuito Interior, Ciudad Universitaria, Av. Universidad 3000, México, D.F., 04510, Mexico
| | - El Moukhtar Aliouat
- Laboratoire Biologie et Diversité des Pathogènes Eucaryotes Emergents, CIIL Institut Pasteur de Lille, Bâtiment Guérin, 1 rue du Professeur Calmette, Lille, France
| | - Maria Lucia Taylor
- Laboratorio de Inmunología de Hongos, Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM); Circuito Interior, Ciudad Universitaria, Av. Universidad 3000, México, D.F., 04510, Mexico.
| |
Collapse
|
11
|
Gibson JF, Johnston SA. Immunity to Cryptococcus neoformans and C. gattii during cryptococcosis. Fungal Genet Biol 2014; 78:76-86. [PMID: 25498576 PMCID: PMC4503824 DOI: 10.1016/j.fgb.2014.11.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2014] [Revised: 11/25/2014] [Accepted: 11/29/2014] [Indexed: 10/25/2022]
Abstract
The vast majority of infection with cryptococcal species occurs with Cryptococcus neoformans in the severely immunocompromised. A significant exception to this is the infections of those with apparently normal immune systems by Cryptococcus gattii. Susceptibility to cryptococcosis can be broadly categorised as a defect in adaptive immune responses, especially in T cell immunity. However, innate immune cells such as macrophages play a key role and are likely the primary effector cell in the killing and ultimate clearance of cryptococcal infection. In this review we discuss the current state of our understanding of how the immune system responds to cryptococcal infection in health and disease, with reference to the work communicated at the 9th International Conference on Cryptococcus and Cryptococcosis (ICCC9). We have focussed on cell mediated responses, particularly early in infection, but with the aim of presenting a broad overview of our understanding of immunity to cryptococcal infection, highlighting some recent advances and offering some perspectives on future directions.
Collapse
Affiliation(s)
- Josie F Gibson
- Department of Infection and Immunity, Medical School, University of Sheffield, S10 2RX, UK; Bateson Centre, Department of Biomedical Sciences, University of Sheffield, S10 2TN, UK
| | - Simon A Johnston
- Department of Infection and Immunity, Medical School, University of Sheffield, S10 2RX, UK; Bateson Centre, Department of Biomedical Sciences, University of Sheffield, S10 2TN, UK.
| |
Collapse
|
12
|
Coelho C, Bocca AL, Casadevall A. The intracellular life of Cryptococcus neoformans. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2013; 9:219-38. [PMID: 24050625 DOI: 10.1146/annurev-pathol-012513-104653] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
Cryptococcus neoformans is a fungal pathogen with worldwide distribution. Serological studies of human populations show a high prevalence of human infection, which rarely progresses to disease in immunocompetent hosts. However, decreased host immunity places individuals at high risk for cryptococcal disease. The disease can result from acute infection or reactivation of latent infection, in which yeasts within granulomas and host macrophages emerge to cause disease. In this review, we summarize what is known about the cellular recognition, ingestion, and killing of C. neoformans and discuss the unique and remarkable features of its intracellular life, including the proposed mechanisms for fungal persistence and killing in phagocytic cells.
Collapse
Affiliation(s)
- Carolina Coelho
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461;
| | | | | |
Collapse
|
13
|
Ding C, Festa RA, Chen YL, Espart A, Palacios Ò, Espín J, Capdevila M, Atrian S, Heitman J, Thiele DJ. Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. Cell Host Microbe 2013; 13:265-76. [PMID: 23498952 PMCID: PMC3668348 DOI: 10.1016/j.chom.2013.02.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2012] [Revised: 01/04/2013] [Accepted: 02/01/2013] [Indexed: 11/24/2022]
Abstract
Copper (Cu) is an essential metal that is toxic at high concentrations. Thus, pathogens often rely on host Cu for growth, but host cells can hyperaccumulate Cu to exert antimicrobial effects. The human fungal pathogen Cryptococcus neoformans encodes many Cu-responsive genes, but their role in infection is unclear. We determined that pulmonary C. neoformans infection results in Cu-specific induction of genes encoding the Cu-detoxifying metallothionein (Cmt) proteins. Mutant strains lacking CMTs or expressing Cmt variants defective in Cu-coordination exhibit severely attenuated virulence and reduced pulmonary colonization. Consistent with the upregulation of Cmt proteins, C. neoformans pulmonary infection results in increased serum Cu concentrations and increases and decreases alveolar macrophage expression of the Cu importer (Ctr1) and ATP7A, a transporter implicated in phagosomal Cu compartmentalization, respectively. These studies indicate that the host mobilizes Cu as an innate antifungal defense but C. neoformans senses and neutralizes toxic Cu to promote infection.
Collapse
Affiliation(s)
- Chen Ding
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA 27710
| | - Richard A. Festa
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA 27710
| | - Ying-Lien Chen
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA 27710
| | - Anna Espart
- Departament de Genètica, Universitat de Barcelona, 08028-Barcelona, Spain
| | - Òscar Palacios
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès, Spain
| | - Jordi Espín
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès, Spain
| | - Sílvia Atrian
- Departament de Genètica, Universitat de Barcelona, 08028-Barcelona, Spain
| | - Joseph Heitman
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA 27710
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA 27710
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA 27710
| |
Collapse
|
14
|
Cryptococcus neoformans Rim101 is associated with cell wall remodeling and evasion of the host immune responses. mBio 2013; 4:mBio.00522-12. [PMID: 23322637 PMCID: PMC3551547 DOI: 10.1128/mbio.00522-12] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
Infectious microorganisms often play a role in modulating the immune responses of their infected hosts. We demonstrate that Cryptococcus neoformans signals through the Rim101 transcription factor to regulate cell wall composition and the host-pathogen interface. In the absence of Rim101, C. neoformans exhibits an altered cell surface in response to host signals, generating an excessive and ineffective immune response that results in accelerated host death. This host immune response to the rim101Δ mutant strain is characterized by increased neutrophil influx into the infected lungs and an altered pattern of host cytokine expression compared to the response to wild-type cryptococcal infection. To identify genes associated with the observed phenotypes, we performed whole-genome RNA sequencing experiments under capsule-inducing conditions. We defined the downstream regulon of the Rim101 transcription factor and determined potential cell wall processes involved in the capsule attachment defects and altered mechanisms of virulence in the rim101Δ mutant. The cell wall generates structural stability for the cell and allows the attachment of surface molecules such as capsule polysaccharides. In turn, the capsule provides an effective mask for the immunogenic cell wall, shielding it from recognition by the host immune system. Cryptococcus neoformans is an opportunistic human pathogen that is a significant cause of death in immunocompromised individuals. There are two major causes of death due to this pathogen: meningitis due to uncontrolled fungal proliferation in the brain in the face of a weakened immune system and immune reconstitution inflammatory syndrome characterized by an overactive immune response to subclinical levels of the pathogen. In this study, we examined how C. neoformans uses the conserved Rim101 transcription factor to specifically remodel the host-pathogen interface, thus regulating the host immune response. These studies explored the complex ways in which successful microbial pathogens induce phenotypes that ensure their own survival while simultaneously controlling the nature and degree of the associated host response.
Collapse
|
15
|
Nayak A, Dodagatta-Marri E, Tsolaki AG, Kishore U. An Insight into the Diverse Roles of Surfactant Proteins, SP-A and SP-D in Innate and Adaptive Immunity. Front Immunol 2012; 3:131. [PMID: 22701116 PMCID: PMC3369187 DOI: 10.3389/fimmu.2012.00131] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2011] [Accepted: 05/07/2012] [Indexed: 01/20/2023] Open
Abstract
Surfactant proteins SP-A and SP-D are hydrophilic, collagen-containing calcium-dependent lectins, which appear to have a range of innate immune functions at pulmonary as well as extrapulmonary sites. These proteins bind to target ligands on pathogens, allergens, and apoptotic cells, via C-terminal homotrimeric carbohydrate recognition domains, while the collagen region brings about the effector functions via its interaction with cell surface receptors. SP-A and SP-D deal with various pathogens, using a range of innate immune mechanisms such as agglutination/aggregation, enhancement of phagocytosis, and killing mechanisms by phagocytic cells and direct growth inhibition. SP-A and SP-D have also been shown to be involved in the control of pulmonary inflammation including allergy and asthma. Emerging evidence suggest that SP-A and SP-D are capable of linking innate immunity with adaptive immunity that includes modulation of dendritic cell function and helper T cell polarization. This review enumerates immunological properties of SP-A and SP-D inside and outside lungs and discusses their importance in human health and disease.
Collapse
Affiliation(s)
- Annapurna Nayak
- Centre for Infection, Immunity and Disease Mechanisms, School of Health Sciences and Social Care, Brunel University London, UK
| | | | | | | |
Collapse
|
16
|
Abstract
Concurrent with the global escalation of the AIDS pandemic, cryptococcal infections are increasing and are of significant medical importance. Furthermore, Cryptococcus neoformans has become a primary human pathogen, causing infection in seemingly healthy individuals. Although numerous studies have elucidated the virulence properties of C. neoformans, less is understood regarding lung host immune factors during early stages of fungal infection. Based on our previous studies documenting that pulmonary surfactant protein D (SP-D) protects C. neoformans cells against macrophage-mediated defense mechanisms in vitro (S. Geunes-Boyer et al., Infect. Immun. 77:2783-2794, 2009), we postulated that SP-D would facilitate fungal infection in vivo. To test this hypothesis, we examined the role of SP-D in response to C. neoformans using SP-D⁻/⁻ mice. Here, we demonstrate that mice lacking SP-D were partially protected during C. neoformans infection; they displayed a longer mean time to death and decreased fungal burden at several time points postinfection than wild-type mice. This effect was reversed by the administration of exogenous SP-D. Furthermore, we show that SP-D bound to the surface of the yeast cells and protected the pathogenic microbes against macrophage-mediated defense mechanisms and hydrogen peroxide (H₂O₂)-induced oxidative stress in vitro and in vivo. These findings indicate that C. neoformans is capable of coopting host SP-D to increase host susceptibility to the yeast. This study establishes a new paradigm for the role played by SP-D during host responses to C. neoformans and consequently imparts insight into potential future preventive and/or treatment strategies for cryptococcosis.
Collapse
|
17
|
Abstract
The pathogenic fungus Cryptococcus neoformans exhibits a striking propensity to cause central nervous system (CNS) disease in people with HIV/AIDS. Given that cryptococcal infections are generally initiated by pulmonary colonization, dissemination requires that the fungus withstand phagocytic killing, cross the alveolar-capillary interface in the lung, survive in the circulatory system and breach the blood-brain barrier. We know little about the molecular mechanisms underlying dissemination, but there is a rapidly growing list of mutants that fail to cause CNS disease. These mutants reveal a remarkable diversity of functions and therefore illustrate the complexity of the cryptococcal-host interaction. The challenge now is to extend the analysis of these mutants to acquire a detailed understanding of each step in dissemination.
Collapse
|
18
|
Abstract
The interaction of pathogenic Cryptococcus species with their various hosts is somewhat unique compared to other fungal pathogens such as Aspergillus fumigatus and Candida albicans. Cryptococcus shares an intimate association with host immune cells, leading to enhanced intracellular growth. Furthermore, unlike most other fungal pathogens, the signs and symptoms of cryptococcal disease are typically self-inflicted by the host during the host's attempt to clear this invader from sensitive organ systems such as the central nervous system. In this review, we will summarize the story of host-Cryptococcus interactions to date and explore strategies to exploit the current knowledge for treatment of cryptococcal infections.
Collapse
Affiliation(s)
- Michael S Price
- Department of Medicine, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
19
|
Wang JP, Lee CK, Akalin A, Finberg RW, Levitz SM. Contributions of the MyD88-dependent receptors IL-18R, IL-1R, and TLR9 to host defenses following pulmonary challenge with Cryptococcus neoformans. PLoS One 2011; 6:e26232. [PMID: 22039448 PMCID: PMC3198470 DOI: 10.1371/journal.pone.0026232] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2011] [Accepted: 09/22/2011] [Indexed: 01/19/2023] Open
Abstract
Signaling via the adapter protein, MyD88, is important in the host defense against Cryptococcus neoformans infection. While certain Toll-like receptors (TLRs) can enhance the clearance of Cryptococcus, the contributions of MyD88-dependent, TLR-independent pathways have not been fully investigated. We examined the roles of IL-1R and IL-18R in vivo by challenging C57BL/6 mice with a lethal strain of Cryptococcus. We found that the absence of IL-18R, but not IL-1R, causes a shift in the survival curve following pulmonary delivery of a virulent strain of C. neoformans (H99). Specifically, IL-18R-deficient mice have significantly shorter median survival times compared to wild-type mice following infection. Cytokine analysis of lung homogenates revealed that deficiency of IL-IR, IL-18R, or MyD88 is associated with diminished lung levels of IL-1β. In order to compare these findings with those related to TLR-deficiency, we studied the effects of TLR9-deficiency and found that deficiency of TLR9 also affects the survival curve of mice following challenge with C. neoformans. Yet the lungs from infected TLR9-deficient mice have robust levels of IL-1β. In summary, we found that multiple signaling components can contribute the MyD88-dependent host responses to cryptococcal infection in vivo and each drives distinct pulmonary responses.
Collapse
Affiliation(s)
- Jennifer P Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America.
| | | | | | | | | |
Collapse
|
20
|
Seider K, Heyken A, Lüttich A, Miramón P, Hube B. Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr Opin Microbiol 2010; 13:392-400. [PMID: 20627672 DOI: 10.1016/j.mib.2010.05.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2010] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Pathogenic yeasts, either from the environment or the normal flora, have to face phagocytic cells that constitute the first line of defence during infection. In order to evade or counteract attack by phagocytes, pathogenic yeasts have acquired a repertoire of strategies to survive, colonize and infect the host. In this review we focus on the interaction of yeasts, such as Candida, Histoplasma or Cryptococcus species, with macrophages or neutrophils. We discuss strategies used by these fungi to prevent phagocytosis or to counteract phagocytic activities. We go on to describe the strategies that permit intracellular survival within phagocytes and that may eventually lead to damage of and escape from the phagocyte.
Collapse
Affiliation(s)
- Katja Seider
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute Jena (HKI), Jena, Germany
| | | | | | | | | |
Collapse
|
21
|
Alves CC, Azevedo AL, Rodrigues MF, Machado RP, Souza MA, Machado MA, Teixeira HC, Ferreira AP. Cellular and humoral immune responses during intrathoracic paracoccidioidomycosis in BALB/c mice. Comp Immunol Microbiol Infect Dis 2009; 32:513-25. [DOI: 10.1016/j.cimid.2008.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
|
22
|
Elucidating the pathogenesis of spores from the human fungal pathogen Cryptococcus neoformans. Infect Immun 2009; 77:3491-500. [PMID: 19451235 DOI: 10.1128/iai.00334-09] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus neoformans was first described as a human fungal pathogen more than a century ago. One aspect of the C. neoformans infectious life cycle that has been the subject of earnest debate is whether the spores are pathogenic. Despite much speculation, no direct evidence has been presented to resolve this outstanding question. We present evidence that C. neoformans spores are pathogenic in a mouse intranasal inhalation model of infection. In addition, we provide mechanistic insights into spore-host interactions. We found that C. neoformans spores were phagocytosed by alveolar macrophages via interactions between fungal beta-(1,3)-glucan and the host receptors Dectin-1 and CD11b. Moreover, we discovered an important link between spore survival and macrophage activation state: intracellular spores were susceptible to reactive oxygen-nitrogen species. We anticipate these results will serve as the basis for a model to further investigate the pathogenic implications of infections caused by fungal spores.
Collapse
|
23
|
Surfactant protein D increases phagocytosis of hypocapsular Cryptococcus neoformans by murine macrophages and enhances fungal survival. Infect Immun 2009; 77:2783-94. [PMID: 19451250 DOI: 10.1128/iai.00088-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
Cryptococcus neoformans is a facultative intracellular opportunistic pathogen and the leading cause of fungal meningitis in humans. In the absence of a protective cellular immune response, the inhalation of C. neoformans cells or spores results in pulmonary infection. C. neoformans cells produce a polysaccharide capsule composed predominantly of glucuronoxylomannan, which constitutes approximately 90% of the capsular material. In the lungs, surfactant protein A (SP-A) and SP-D contribute to immune defense by facilitating the aggregation, uptake, and killing of many microorganisms by phagocytic cells. We hypothesized that SP-D plays a role in C. neoformans pathogenesis by binding to and enhancing the phagocytosis of the yeast. Here, the abilities of SP-D to bind to and facilitate the phagocytosis and survival of the wild-type encapsulated strain H99 and the cap59Delta mutant hypocapsular strain are assessed. SP-D binding to cap59Delta mutant cells was approximately sixfold greater than binding to wild-type cells. SP-D enhanced the phagocytosis of cap59Delta cells by approximately fourfold in vitro. To investigate SP-D binding in vivo, SP-D(-/-) mice were intranasally inoculated with Alexa Fluor 488-labeled cap59Delta or H99 cells. By confocal microscopy, a greater number of phagocytosed C. neoformans cells in wild-type mice than in SP-D(-/-) mice was observed, consistent with in vitro data. Interestingly, SP-D protected C. neoformans cells against macrophage-mediated defense mechanisms in vitro, as demonstrated by an analysis of fungal viability using a CFU assay. These findings provide evidence that C. neoformans subverts host defense mechanisms involving surfactant, establishing a novel virulence paradigm that may be targeted for therapy.
Collapse
|
24
|
Nicola AM, Casadevall A, Goldman DL. Fungal killing by mammalian phagocytic cells. Curr Opin Microbiol 2008; 11:313-7. [PMID: 18573683 DOI: 10.1016/j.mib.2008.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2008] [Accepted: 05/09/2008] [Indexed: 02/07/2023]
Abstract
Phagocytes are considered the most important effector cells in the immune response against fungal infections. To exert their role, they must recognize the invading fungi, internalise, and kill them within the phagosome. Major advances in the field have elucidated the roles of pattern-recognition receptors in the innate immunity sensing and the importance of reactive oxygen and nitrogen species in intracellular killing of fungi. Surprising exit mechanisms for intracellular pathogens and extracellular traps have also been discovered. These and several other recent breakthroughs in our understanding of the mechanisms used by phagocytes to kill fungal pathogens are reviewed in this work.
Collapse
|