1
|
Liu S, Yu Q, Li S, Li M, Yang L, Wang Q, Tu Z, Tao F, Yang P, Kong L, Xin X. Expression and immunogenicity of recombinant porcine epidemic diarrhea virus Nsp9. Virology 2023; 587:109861. [PMID: 37572518 DOI: 10.1016/j.virol.2023.109861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes acute diarrhea, vomiting, dehydration, and high mortality in newborn piglets, which leads to significant economic losses. Coronavirus nonstructural protein 9 (Nsp9) is an essential RNA binding protein for coronavirus replication, which renders it a promising candidate for developing antiviral drugs and diagnosis targeting PEDV. In this study, PEDV Nsp9 protein fused with MBP protein and His-tag were expressed and purified in Escherichia coli. Furthermore, immunization of MBP-Nsp9 enhances both humoral and cellular immunity responses as compared with that of His-Nsp9 protein. Finally, the swine immunization showed that Nsp9 protein could stimulate the swine immunity system to carry out humoral immunity, and the generated antibody could inhibit the proliferation of PEDV in Vero cells. Altogether, our data provide direct evidence for the immunogenicity of PEDV Nsp9, which sheds light on the future developments of anti-PEDV drugs and vaccines for PED prevention.
Collapse
Affiliation(s)
- Shiguo Liu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qijia Yu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Sha Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Mingzhi Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Li Yang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Quansheng Wang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zewen Tu
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Feifei Tao
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Pingping Yang
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiu Xin
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
2
|
Zhang H, Zeng W, Zhao MM, Wang J, Wang Q, Chen T, Zhang Y, Lee W, Chen S, Zhang Y, Lan X, Xiang Y. Caenorhabditis elegans LIN-24, a homolog of bacterial pore-forming toxin, protects the host from microbial infection. FASEB J 2023; 37:e23162. [PMID: 37682220 DOI: 10.1096/fj.202300063r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
Aerolysin-like pore-forming protein (af-PFP) superfamily members are double-edge swords that assist the bacterial infection but shied bacteria from the host by various mechanisms in some species including the toad Bombina maxima and zebrafish. While members of this family are widely expressed in all kingdoms, especially non-bacteria species, it remains unclear whether their anti-bacterial function is conserved. LIN-24 is an af-PFP that is constitutively expressed throughout the Caenorhabditis elegans lifespan. Here, we observed that LIN-24 knockdown reduced the maximum lifespan of worms. RNA-seq analysis identified 323 differentially expressed genes (DEGs) post-LIN-24 knockdown that were enriched in "immune response" and "lysosome pathway," suggesting a possible role for LIN-24 in resisting microbial infection. In line with this, we found that Pseudomonas aeruginosa 14 (PA14) infection induced LIN-24 expression, and that survival after PA14 infection was significantly reduced by LIN-24 knockdown. In contrast, LIN-24 overexpression (LIN-24-OE) conferred protection against PA14 infection, with worms showing longer survival time and reduced bacterial load. Weighted gene co-expression network analysis of LIN-24-OE worms showed that the highest correlation module was enriched in factors related to immunity and the defense response. Finally, by predicting transcription factors from RNA-seq data and knocking down candidate transcription factors in LIN-24-OE worms, we revealed that LIN-24 may protect worms against bacterial infection by stimulating DAF-16-mediated immune responses. These findings agree with our previous studies showing an anti-microbial role for the amphibian-derived af-PFP complex βγ-CAT, suggesting that af-PFPs may play a conserved role in combatting microbial infections. Further research is needed to determine the roles this protein family plays in other physio-pathological processes, such as metabolism, longevity, and aging.
Collapse
Affiliation(s)
- Huijie Zhang
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Weirong Zeng
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Ming-Ming Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Jiali Wang
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Qiquan Wang
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Ting Chen
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Yuyan Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Wenhui Lee
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Shenghan Chen
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Xinqiang Lan
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Yang Xiang
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| |
Collapse
|
3
|
Liu LZ, Liu L, Shi ZH, Bian XL, Si ZR, Wang QQ, Xiang Y, Zhang Y. Amphibian pore-forming protein βγ-CAT drives extracellular nutrient scavenging under cell nutrient deficiency. iScience 2023; 26:106598. [PMID: 37128610 PMCID: PMC10148134 DOI: 10.1016/j.isci.2023.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/22/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023] Open
Abstract
Nutrient acquisition is essential for animal cells. βγ-CAT is a pore-forming protein (PFP) and trefoil factor complex assembled under tight regulation identified in toad Bombina maxima. Here, we reported that B. maxima cells secreted βγ-CAT under glucose, glutamine, and pyruvate deficiency to scavenge extracellular proteins for their nutrient supply and survival. AMPK signaling positively regulated the expression and secretion of βγ-CAT. The PFP complex selectively bound extracellular proteins and promoted proteins uptake through endolysosomal pathways. Elevated intracellular amino acids, enhanced ATP production, and eventually prolonged cell survival were observed in the presence of βγ-CAT and extracellular proteins. Liposome assays indicated that high concentration of ATP negatively regulated the opening of βγ-CAT channels. Collectively, these results uncovered that βγ-CAT is an essential element in cell nutrient scavenging under cell nutrient deficiency by driving vesicular uptake of extracellular proteins, providing a new paradigm for PFPs in cell nutrient acquisition and metabolic flexibility.
Collapse
Affiliation(s)
- Ling-Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Long Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zhi-Hong Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xian-Ling Bian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Ru Si
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qi-Quan Wang
- Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yang Xiang
- Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
- Corresponding author
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Corresponding author
| |
Collapse
|
4
|
Bian X, Si Z, Wang Q, Liu L, Shi Z, Tian C, Lee W, Zhang Y. IgG Fc-binding protein positively regulates the assembly of pore-forming protein complex βγ-CAT evolved to drive cell vesicular delivery and transport. J Biol Chem 2023; 299:104717. [PMID: 37068610 DOI: 10.1016/j.jbc.2023.104717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
Cell membranes form barriers for molecule exchange between the cytosol and the extracellular environments. βγ-CAT, a complex of pore-forming protein (PFP) BmALP1 (two βγ-crystallin domains with an aerolysin pore-forming domain) and the trefoil factor BmTFF3, has been identified in toad Bombina maxima. It plays pivotal roles, via inducing channel formation in various intra- or extra- cellular vesicles, as well as in nutrient acquisition, maintaining water balance, and antigen presentation. Thus, such a protein machine should be tightly regulated. Indeed, BmALP3 (a paralog of BmALP1) oxidizes BmALP1 to form a water-soluble polymer, leading to dissociation of the βγ-CAT complex and loss of biological activity. Here, we found that the B. maxima IgG Fc-binding protein (FCGBP), a well-conserved vertebrate mucin-like protein with unknown functions, acted as a positive regulator for βγ-CAT complex assembly. The interactions among FCGBP, BmALP1, and BmTFF3 were revealed by co-immunoprecipitation assays. Interestingly, FCGBP reversed the inhibitory effect of BmALP3 on the βγ-CAT complex. Furthermore, FCGBP reduced BmALP1 polymers and facilitated the assembly of βγ-CAT with the biological pore-forming activity in the presence of BmTFF3. Our findings define the role of FCGBP in mediating the assembly of a PFP machine evolved to drive cell vesicular delivery and transport.
Collapse
Affiliation(s)
- Xianling Bian
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ziru Si
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qiquan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Lingzhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhihong Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Changlin Tian
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Wenhui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
5
|
A Pore Forming Toxin-like Protein Derived from Chinese Red Belly Toad Bombina maxima Triggers the Pyroptosis of Hippomal Neural Cells and Impairs the Cognitive Ability of Mice. Toxins (Basel) 2023; 15:toxins15030191. [PMID: 36977082 PMCID: PMC10054870 DOI: 10.3390/toxins15030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Toxin-like proteins and peptides of skin secretions from amphibians play important physiological and pathological roles in amphibians. βγ-CAT is a Chinese red-belly toad-derived pore-forming toxin-like protein complex that consists of aerolysin domain, crystalline domain, and trefoil factor domain and induces various toxic effects via its membrane perforation process, including membrane binding, oligomerization, and endocytosis. Here, we observed the death of mouse hippocampal neuronal cells induced by βγ-CAT at a concentration of 5 nM. Subsequent studies showed that the death of hippocampal neuronal cells was accompanied by the activation of Gasdermin E and caspase-1, suggesting that βγ-CAT induces the pyroptosis of hippocampal neuronal cells. Further molecular mechanism studies revealed that the pyroptosis induced by βγ-CAT is dependent on the oligomerization and endocytosis of βγ-CAT. It is well known that the damage of hippocampal neuronal cells leads to the cognitive attenuation of animals. The impaired cognitive ability of mice was observed after intraperitoneal injection with 10 μg/kg βγ-CAT in a water maze assay. Taken together, these findings reveal a previously unknown toxicological function of a vertebrate-derived pore-forming toxin-like protein in the nerve system, which triggers the pyroptosis of hippocampal neuronal cells, ultimately leading to hippocampal cognitive attenuation.
Collapse
|
6
|
A pore-forming protein drives macropinocytosis to facilitate toad water maintaining. Commun Biol 2022; 5:730. [PMID: 35869260 PMCID: PMC9307623 DOI: 10.1038/s42003-022-03686-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 07/07/2022] [Indexed: 02/07/2023] Open
Abstract
Maintaining water balance is a real challenge for amphibians in terrestrial environments. Our previous studies with toad Bombina maxima discovered a pore-forming protein and trefoil factor complex βγ-CAT, which is assembled under tight regulation depending on environmental cues. Here we report an unexpected role for βγ-CAT in toad water maintaining. Deletion of toad skin secretions, in which βγ-CAT is a major component, increased animal mortality under hypertonic stress. βγ-CAT was constitutively expressed in toad osmoregulatory organs, which was inducible under the variation of osmotic conditions. The protein induced and participated in macropinocytosis in vivo and in vitro. During extracellular hyperosmosis, βγ-CAT stimulated macropinocytosis to facilitate water import and enhanced exosomes release, which simultaneously regulated aquaporins distribution. Collectively, these findings uncovered that besides membrane integrated aquaporin, a secretory pore-forming protein can facilitate toad water maintaining via macropinocytosis induction and exocytosis modulation, especially in responses to osmotic stress. In addition to membrane-integrated aquaporins, a novel secretory pore-forming protein, βγ-CAT, can facilitate toad water maintaining via macropinocytosis induction and exocytosis modulation, especially in responses to osmotic stress.
Collapse
|
7
|
Shi ZH, Zhao Z, Liu LZ, Bian XL, Zhang Y. Pore-forming protein βγ-CAT promptly responses to fasting with capacity to deliver macromolecular nutrients. FASEB J 2022; 36:e22533. [PMID: 36065711 DOI: 10.1096/fj.202200528r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
Abstract
During animal fasting, the nutrient supply and metabolism switch from carbohydrates to a new reliance on the catabolism of energy-dense lipid stores. Assembled under tight regulation, βγ-CAT (a complex of non-lens βγ-crystallin and trefoil factor) is a pore-forming protein and trefoil factor complex identified in toad Bombina maxima. Here, we determined that this protein complex is a constitutive component in toad blood, that actively responds to the animal fasting. The protein complex was able to promote cellular albumin and albumin-bound fatty acid (FA) uptake in a variety of epithelial and endothelial cells, and the effects were attenuated by a macropinocytosis inhibitor. Endothelial cell-derived exosomes containing largely enriched albumin and FAs, called nutrisomes, were released in the presence of βγ-CAT. These specific nutrient vesicles were readily taken up by starved myoblast cells to support their survival. The results uncovered that pore-forming protein βγ-CAT is a fasting responsive element able to drive cell vesicular import and export of macromolecular nutrients.
Collapse
Affiliation(s)
- Zhi-Hong Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Zhong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Ling-Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Xian-Ling Bian
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,School of Life Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
8
|
Liu L, Deng CJ, Duan YL, Ye CJ, Gong DH, Guo XL, Lee WH, Zhou J, Li SA, Zhang Y. An Aerolysin-like Pore-Forming Protein Complex Targets Viral Envelope to Inactivate Herpes Simplex Virus Type 1. THE JOURNAL OF IMMUNOLOGY 2021; 207:888-901. [PMID: 34290105 DOI: 10.4049/jimmunol.2001056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/20/2021] [Indexed: 01/12/2023]
Abstract
Because most of animal viruses are enveloped, cytoplasmic entry of these viruses via fusion with cellular membrane initiates their invasion. However, the strategies in which host cells counteract cytoplasmic entry of such viruses are incompletely understood. Pore-forming toxin aerolysin-like proteins (ALPs) exist throughout the animal kingdom, but their functions are mostly unknown. In this study, we report that βγ-crystallin fused aerolysin-like protein and trefoil factor complex (βγ-CAT), an ALP and trefoil factor complex from the frog Bombina maxima, directly blocks enveloped virus invasion by interfering with cytoplasmic entry. βγ-CAT targeted acidic glycosphingolipids on the HSV type 1 (HSV-1) envelope to induce pore formation, as indicated by the oligomer formation of protein and potassium and calcium ion efflux. Meanwhile, βγ-CAT formed ring-like oligomers of ∼10 nm in diameter on the liposomes and induced dye release from liposomes that mimic viral envelope. Unexpectedly, transmission electron microscopy analysis showed that the βγ-CAT-treated HSV-1 was visibly as intact as the vehicle-treated HSV-1, indicating that βγ-CAT did not lyse the viral envelope. However, the cytoplasmic entry of the βγ-CAT-treated HSV-1 into HeLa cells was totally hindered. In vivo, topical application of βγ-CAT attenuated the HSV-1 corneal infection in mice. Collectively, these results uncovered that βγ-CAT possesses the capacity to counteract enveloped virus invasion with its featured antiviral-acting manner. Our findings will also largely help to illustrate the putative antiviral activity of animal ALPs.
Collapse
Affiliation(s)
- Long Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Cheng-Jie Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ya-Li Duan
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chen-Jun Ye
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dao-Hua Gong
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao-Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jumin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China;
| | - Sheng-An Li
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, China; and
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Science/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
9
|
Abstract
Secretory pore-forming proteins (PFPs) have been identified in organisms from all kingdoms of life. Our studies with the toad species Bombina maxima found an interaction network among aerolysin family PFPs (af-PFPs) and trefoil factors (TFFs). As a toad af-PFP, BmALP1 can be reversibly regulated between active and inactive forms, with its paralog BmALP3 acting as a negative regulator. BmALP1 interacts with BmTFF3 to form a cellular active complex called βγ-CAT. This PFP complex is characterized by acting on endocytic pathways and forming pores on endolysosomes, including stimulating cell macropinocytosis. In addition, cell exocytosis can be induced and/or modulated in the presence of βγ-CAT. Depending on cell contexts and surroundings, these effects can facilitate the toad in material uptake and vesicular transport, while maintaining mucosal barrier function as well as immune defense. Based on experimental evidence, we hereby propose a secretory endolysosome channel (SELC) pathway conducted by a secreted PFP in cell endocytic and exocytic systems, with βγ-CAT being the first example of a SELC protein. With essential roles in cell interactions and environmental adaptations, the proposed SELC protein pathway should be conserved in other living organisms.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Qi-Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zhong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Cheng-Jie Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
10
|
Deng C, Liu L, Liu L, Wang Q, Guo X, Lee W, Li S, Zhang Y. A secreted pore‐forming protein modulates cellular endolysosomes to augment antigen presentation. FASEB J 2020; 34:13609-13625. [DOI: 10.1096/fj.202001176r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Cheng‐Jie Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Long Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Ling‐Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Qi‐Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Xiao‐Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
| | - Wen‐Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
| | - Sheng‐An Li
- Department of Pathogen Biology and Immunology Faculty of Basic Medical Science Kunming Medical University Kunming China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| |
Collapse
|
11
|
Hoffmann W. Trefoil Factor Family (TFF) Peptides and Their Diverse Molecular Functions in Mucus Barrier Protection and More: Changing the Paradigm. Int J Mol Sci 2020; 21:ijms21124535. [PMID: 32630599 PMCID: PMC7350206 DOI: 10.3390/ijms21124535] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Trefoil factor family peptides (TFF1, TFF2, TFF3) are typically co-secreted together with mucins. Tff1 represents a gastric tumor suppressor gene in mice. TFFs are also synthesized in minute amounts in the immune and central nervous systems. In mucous epithelia, they support rapid repair by enhancing cell migration ("restitution") via their weak chemotactic and anti-apoptotic effects. For a long time, as a paradigm, this was considered as their major biological function. Within recent years, the formation of disulfide-linked heterodimers was documented for TFF1 and TFF3, e.g., with gastrokine-2 and IgG Fc binding protein (FCGBP). Furthermore, lectin activities were recognized as enabling binding to a lipopolysaccharide of Helicobacter pylori (TFF1, TFF3) or to a carbohydrate moiety of the mucin MUC6 (TFF2). Only recently, gastric TFF1 was demonstrated to occur predominantly in monomeric forms with an unusual free thiol group. Thus, a new picture emerged, pointing to diverse molecular functions for TFFs. Monomeric TFF1 might protect the gastric mucosa as a scavenger for extracellular reactive oxygen/nitrogen species. Whereas, the TFF2/MUC6 complex stabilizes the inner layer of the gastric mucus. In contrast, the TFF3-FCGBP heterodimer (and also TFF1-FCGBP) are likely part of the innate immune defense of mucous epithelia, preventing the infiltration of microorganisms.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
12
|
Wang Q, Bian X, Zeng L, Pan F, Liu L, Liang J, Wang L, Zhou K, Lee W, Xiang Y, Li S, Teng M, Li X, Guo X, Zhang Y. A cellular endolysosome-modulating pore-forming protein from a toad is negatively regulated by its paralog under oxidizing conditions. J Biol Chem 2020; 295:10293-10306. [PMID: 32499370 DOI: 10.1074/jbc.ra120.013556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/22/2020] [Indexed: 01/05/2023] Open
Abstract
Endolysosomes are key players in cell physiology, including molecular exchange, immunity, and environmental adaptation. They are the molecular targets of some pore-forming aerolysin-like proteins (ALPs) that are widely distributed in animals and plants and are functionally related to bacterial toxin aerolysins. βγ-CAT is a complex of an ALP (BmALP1) and a trefoil factor (BmTFF3) in the firebelly toad (Bombina maxima). It is the first example of a secreted endogenous pore-forming protein that modulates the biochemical properties of endolysosomes by inducing pore formation in these intracellular vesicles. Here, using a large array of biochemical and cell biology methods, we report the identification of BmALP3, a paralog of BmALP1 that lacks membrane pore-forming capacity. We noted that both BmALP3 and BmALP1 contain a conserved cysteine in their C-terminal regions. BmALP3 was readily oxidized to a disulfide bond-linked homodimer, and this homodimer then oxidized BmALP1 via disulfide bond exchange, resulting in the dissociation of βγ-CAT subunits and the elimination of biological activity. Consistent with its behavior in vitro, BmALP3 sensed environmental oxygen tension in vivo, leading to modulation of βγ-CAT activity. Interestingly, we found that this C-terminal cysteine site is well conserved in numerous vertebrate ALPs. These findings uncover the existence of a regulatory ALP (BmALP3) that modulates the activity of an active ALP (BmALP1) in a redox-dependent manner, a property that differs from those of bacterial toxin aerolysins.
Collapse
Affiliation(s)
- Qiquan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xianling Bian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Lin Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Fei Pan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lingzhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jinyang Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lingyan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Kaifeng Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wenhui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yang Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Sheng'an Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at Microscale, Innovation Center for Cell Signaling Network, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaolong Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
13
|
Trefoil Factor Family (TFF) Modules Are Characteristic Constituents of Separate Mucin Complexes in the Xenopus laevis Integumentary Mucus: In Vitro Binding Studies with FIM-A.1. Int J Mol Sci 2020; 21:ijms21072400. [PMID: 32244312 PMCID: PMC7177656 DOI: 10.3390/ijms21072400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
The skin of the frog Xenopus laeevis is protected from microbial infections by a mucus barrier that contains frog integumentary mucins (FIM)-A.1, FIM-B.1, and FIM-C.1. These gel-forming mucins are synthesized in mucous glands consisting of ordinary mucous cells and one or more cone cells at the gland base. FIM-A.1 and FIM-C.1 are unique because their cysteine-rich domains belong to the trefoil factor family (TFF). Furthermore, FIM-A.1 is unusually short (about 400 amino acid residues). In contrast, FIM-B.1 contains cysteine-rich von Willebrand D (vWD) domains. Here, we separate skin extracts by the use of size exclusion chromatography and analyze the distribution of FIM-A.1 and FIM-C.1. Two mucin complexes were detected, i.e., a high-molecular-mass Complex I, which contains FIM-C.1 and little FIM-A.1, whereas Complex II is of lower molecular mass and contains the bulk of FIM-A.1. We purified FIM-A.1 by a combination of size-exclusion chromatography (SEC) and anion-exchange chromatography and performed first in vitro binding studies with radioactively labeled FIM-A.1. Binding of 125I-labeled FIM-A.1 to the high-molecular-mass Complex I was observed. We hypothesize that the presence of FIM-A.1 in Complex I is likely due to lectin interactions, e.g., with FIM-C.1, creating a complex mucus network.
Collapse
|
14
|
Mariano DOC, Messias MDG, Spencer PJ, Pimenta DC. Protein identification from the parotoid macrogland secretion of Duttaphrynus melanostictus. J Venom Anim Toxins Incl Trop Dis 2019; 25:e20190029. [PMID: 31467513 PMCID: PMC6707386 DOI: 10.1590/1678-9199-jvatitd-2019-0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/11/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Bufonid parotoid macrogland secretion contains several low molecular mass
molecules, such as alkaloids and steroids. Nevertheless, its protein content
is poorly understood. Herein, we applied a sample preparation methodology
that allows the analysis of viscous matrices in order to examine its
proteins. Methods: Duttaphrynus melanostictus parotoid macrogland secretion
was submitted to ion-exchange batch sample preparation, yielding two
fractions: salt-displaced fraction and acid-displaced fraction. Each sample
was then fractionated by anionic-exchange chromatography, followed by
in-solution proteomic analysis. Results: Forty-two proteins could be identified, such as acyl-CoA-binding protein,
alcohol dehydrogenase, calmodulin, galectin and histone. Moreover,
de novo analyses yielded 153 peptides, whereas BLAST
analyses corroborated some of the proteomic-identified proteins.
Furthermore, the de novo peptide analyses indicate the
presence of proteins related to apoptosis, cellular structure, catalysis and
transport processes. Conclusions: Proper sample preparation allowed the proteomic and de novo
identification of different proteins in the D.
melanostictus parotoid macrogland secretion. These results may
increase the knowledge about the universe of molecules that compose
amphibian skin secretion, as well as to understand their
biological/physiological role in the granular gland.
Collapse
Affiliation(s)
| | | | - Patrick Jack Spencer
- Biotechnology Center, Nuclear and Energy Research Institute (IPEN), São Paulo, SP, Brazil
| | | |
Collapse
|
15
|
Guo XL, Liu LZ, Wang QQ, Liang JY, Lee WH, Xiang Y, Li SA, Zhang Y. Endogenous pore-forming protein complex targets acidic glycosphingolipids in lipid rafts to initiate endolysosome regulation. Commun Biol 2019; 2:59. [PMID: 30775460 PMCID: PMC6370762 DOI: 10.1038/s42003-019-0304-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/08/2019] [Indexed: 12/23/2022] Open
Abstract
Bacterial pore-forming toxin aerolysin-like proteins (ALPs) are widely distributed in animals and plants. However, functional studies on these ALPs remain in their infancy. βγ-CAT is the first example of a secreted pore-forming protein that functions to modulate the endolysosome pathway via endocytosis and pore formation on endolysosomes. However, the specific cell surface molecules mediating the action of βγ-CAT remain elusive. Here, the actions of βγ-CAT were largely attenuated by either addition or elimination of acidic glycosphingolipids (AGSLs). Further study revealed that the ALP and trefoil factor (TFF) subunits of βγ-CAT bind to gangliosides and sulfatides, respectively. Additionally, disruption of lipid rafts largely impaired the actions of βγ-CAT. Finally, the ability of βγ-CAT to clear pathogens was attenuated in AGSL-eliminated frogs. These findings revealed a previously unknown double binding pattern of an animal-secreted ALP in complex with TFF that initiates ALP-induced endolysosomal pathway regulation, ultimately leading to effective antimicrobial responses.
Collapse
Affiliation(s)
- Xiao-Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Ling-Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Qi-Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Jin-Yang Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yang Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Sheng-An Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
16
|
Gao ZH, Deng CJ, Xie YY, Guo XL, Wang QQ, Liu LZ, Lee WH, Li SA, Zhang Y. Pore‐forming toxin‐like protein complex expressed by frog promotes tissue repair. FASEB J 2018; 33:782-795. [DOI: 10.1096/fj.201800087r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhen-Hua Gao
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming Institute of Zoology Kunming China
- Kunming College of Life ScienceUniversity of Chinese Academy of Sciences Kunming China
- First Affiliated Hospital of Kunming Medical University Kunming China
| | - Cheng-Jie Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming Institute of Zoology Kunming China
- Kunming College of Life ScienceUniversity of Chinese Academy of Sciences Kunming China
| | - Yue-Ying Xie
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Kunming College of Life ScienceUniversity of Chinese Academy of Sciences Kunming China
| | - Xiao-Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Kunming College of Life ScienceUniversity of Chinese Academy of Sciences Kunming China
| | - Qi-Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming Institute of Zoology Kunming China
- Kunming College of Life ScienceUniversity of Chinese Academy of Sciences Kunming China
| | - Ling-Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming Institute of Zoology Kunming China
- Kunming College of Life ScienceUniversity of Chinese Academy of Sciences Kunming China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming Institute of Zoology Kunming China
| | - Sheng-An Li
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming Institute of Zoology Kunming China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms Kunming China
- Key Laboratory of Bioactive Peptides of Yunnan ProvinceKunming Institute of Zoology Kunming China
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of Sciences Kunming China
| |
Collapse
|
17
|
Hayashi N, Sato T, Kokabu S, Usui M, Yumoto M, Ikami E, Sakamoto Y, Nifuji A, Hayata T, Noda M, Yoda T. Possible association of oestrogen and Cryba4 with masticatory muscle tendon-aponeurosis hyperplasia. Oral Dis 2018; 25:274-281. [PMID: 29683234 DOI: 10.1111/odi.12876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Masticatory muscle tendon-aponeurosis hyperplasia, which is associated with limited mouth opening, progresses very slowly from adolescence. The prevalence rates of this disease are higher among women than among men, suggesting oestrogen involvement. As parafunctional habits are frequently observed, mechanical stress is likely involved in the pathogenesis and advancement of this disease. To elucidate the pathological condition, we examined the effect of oestrogen on tenocyte function and the relationship between mechanical stress and crystallin beta A4 (Cryba4), using murine TT-D6 tenocytes. MATERIALS AND METHODS Cell proliferation assays, RT-PCR, real-time RT-PCR, Western blot analysis and mechanical loading experiments were performed. RESULTS The physiological dose of oestrogen increased the levels of scleraxis and tenomodulin in TT-D6 tenocytes. In contrast, forced expression of Cryba4 inhibited scleraxis expression in these cells. Surprisingly, oestrogen significantly promoted cell differentiation in the Cryba4-overexpressing TT-D6 tenocytes. Moreover, tensile force induced Cryba4 expression in these tendon cells. CONCLUSION Oestrogen and Cryba4 may be associated with the progression of masticatory muscle tendon-aponeurosis hyperplasia.
Collapse
Affiliation(s)
- N Hayashi
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan
| | - T Sato
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan
| | - S Kokabu
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan.,Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - M Usui
- Division of Periodontology, Department of Cardiology and Periodontology, Kyushu Dental University, Fukuoka, Japan
| | - M Yumoto
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan
| | - E Ikami
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan
| | - Y Sakamoto
- Division of Analytical Science, Department of Biomedical Research Center, Saitama Medical University, Saitama, Japan
| | - A Nifuji
- Department of Pharmacology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - T Hayata
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - M Noda
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - T Yoda
- Department of Oral and Maxillofacial Surgery, Saitama Medical University, Saitama, Japan
| |
Collapse
|
18
|
Gao Q, Xiang Y, Chen Z, Zeng L, Ma X, Zhang Y. βγ-CAT, a non-lens betagamma-crystallin and trefoil factor complex, induces calcium-dependent platelet apoptosis. Thromb Haemost 2017; 105:846-54. [DOI: 10.1160/th10-10-0690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 01/29/2011] [Indexed: 11/05/2022]
Abstract
SummaryIn recent years, it has been reported that apoptosis may occur in platelets and play a role in the clearance of effete platelets. βγ-CAT, a newly identified non-lens βγ-crystallin and trefoil factor complex from frog Bombina maxima skin secretions, caused several in vivo toxic effects on mammals. Through determined haematological parameters of rabbits, it has been found that βγ-CAT significantly reduced the number of platelets in a time-dependent manner. Here, in order to explore the effect of βγ-CAT on platelets, washed platelets were incubated with various concentrations of βγ-CAT for 30 minutes. We found that βγ-CAT induced several apoptosis events in human platelets, including caspase-3 activation, phosphatidylserine (PS) exposure, depolarisation of mitochondrial inner transmembrane potential (ΔΨm), cytochrome c re-lease and strong expression of pro-apoptotic Bax and Bak proteins. However, βγ-CAT did not significantly induce platelet activation as detected by P-selectin surface expression, GPIIb/IIIa activation and platelet aggregation. In addition, we observed that βγ-CAT-induced PS exposure and ΔΨm depolarisation in platelets are Ca2+-dependent. Taken together, βγ-CAT can induce Ca2+-dependent platelet apoptosis but does not cause platelet activation.
Collapse
|
19
|
Xiang Y, Zhao MM, Sun S, Guo XL, Wang Q, Li SA, Lee WH, Zhang Y. A high concentration of DMSO activates caspase-1 by increasing the cell membrane permeability of potassium. Cytotechnology 2017; 70:313-320. [PMID: 28965287 DOI: 10.1007/s10616-017-0145-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is widely used in the laboratory and in clinical situations because it is soluble in both aqueous and organic media and can be used to treat many types of diseases. Thus, it is meaningful to assess the comprehensive and in-depth biological activities of DMSO. Here, we showed that a high concentration of DMSO induced pro-inflammatory cytokine interleukin-1β (IL-1β) secretion from the monocytic cell line THP-1. DMSO-induced IL-1β secretion was dependent on intracellular caspase-1 activation. Further study revealed that the activation of caspase-1 by DMSO relied on NLRP3 inflammasome formation. It is generally accepted that the NLRP3 inflammasome is activated by reactive oxygen species generation or potassium efflux; however, the common NLRP3 inflammasome trigger remains controversial. Here, we showed that although DMSO is a ROS scavenger, this chemical increases membrane permeability and potassium efflux, and the formation of the NLRP3 inflammasome reflects the increased membrane permeability and potassium efflux induced by DMSO. The present study reveals a new characteristic of DMSO, which should be considered when using this chemical in either the laboratory or the clinic.
Collapse
Affiliation(s)
- Yang Xiang
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, China. .,Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Ming-Ming Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sujiao Sun
- Medical Cosmetology Teaching and Research Section, Dali University School of Clinical Medicine, Jiashibo Road 32, Dali, Yunnan Province, 671000, China
| | - Xiao-Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Qiquan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng-An Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
20
|
Li SA, Liu L, Guo XL, Zhang YY, Xiang Y, Wang QQ, Lee WH, Zhang Y. Host Pore-Forming Protein Complex Neutralizes the Acidification of Endocytic Organelles to Counteract Intracellular Pathogens. J Infect Dis 2017; 215:1753-1763. [DOI: 10.1093/infdis/jix183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
|
21
|
Zhang Y. Why do we study animal toxins? DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 36:183-222. [PMID: 26228472 PMCID: PMC4790257 DOI: 10.13918/j.issn.2095-8137.2015.4.183] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/25/2015] [Indexed: 12/31/2022]
Abstract
Venom (toxins) is an important trait evolved along the evolutionary tree of animals. Our knowledges on venoms, such as their origins and loss, the biological relevance and the coevolutionary patterns with other organisms are greatly helpful in understanding many fundamental biological questions, i.e., the environmental adaptation and survival competition, the evolution shaped development and balance of venoms, and the sophisticated correlations among venom, immunity, body power, intelligence, their genetic basis, inherent association, as well as the cost-benefit and trade-offs of biological economy. Lethal animal envenomation can be found worldwide. However, from foe to friend, toxin studies have led lots of important discoveries and exciting avenues in deciphering and fighting human diseases, including the works awarded the Nobel Prize and lots of key clinic therapeutics. According to our survey, so far, only less than 0.1% of the toxins of the venomous animals in China have been explored. We emphasize on the similarities shared by venom and immune systems, as well as the studies of toxin knowledge-based physiological toxin-like proteins/peptides (TLPs). We propose the natural pairing hypothesis. Evolution links toxins with humans. Our mission is to find out the right natural pairings and interactions of our body elements with toxins, and with endogenous toxin-like molecules. Although, in nature, toxins may endanger human lives, but from a philosophical point of view, knowing them well is an effective way to better understand ourselves. So, this is why we study toxins.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223,
| |
Collapse
|
22
|
Increased expression of protease-activated receptor 4 and Trefoil factor 2 in human colorectal cancer. PLoS One 2015; 10:e0122678. [PMID: 25876034 PMCID: PMC4395443 DOI: 10.1371/journal.pone.0122678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/24/2015] [Indexed: 01/24/2023] Open
Abstract
Protease-activated receptor 4 (PAR4), a member of G-protein coupled receptors family, was recently reported to exhibit decreased expression in gastric cancer and esophageal squamous cancer, yet increased expression during the progression of prostate cancer. Trefoil factor 2 (TFF2), a small peptide constitutively expressed in the gastric mucosa, plays a protective role in restitution of gastric mucosa. Altered TFF2 expression was also related to the development of gastrointestinal cancer. TFF2 has been verified to promote cell migration via PAR4, but the roles of PAR4 and TFF2 in the progress of colorectal cancer are still unknown. In this study, the expression level of PAR4 and TFF2 in colorectal cancer tissues was measured using real-time PCR (n = 38), western blotting (n=38) and tissue microarrays (n = 66). The mRNA and protein expression levels of PAR4 and TFF2 were remarkably increased in colorectal cancer compared with matched noncancerous tissues, especially in positive lymph node and poorly differentiated cancers. The colorectal carcinoma cell LoVo showed an increased response to TFF2 as assessed by cell invasion upon PAR4 expression. However, after intervention of PAR4 expression, PAR4 positive colorectal carcinoma cell HT-29 was less responsive to TFF2 in cell invasion. Genomic bisulfite sequencing showed the hypomethylation of PAR4 promoter in colorectal cancer tissues and the hypermethylation in the normal mucosa that suggested the low methylation of promoter was correlated to the increased PAR4 expression. Taken together, the results demonstrated that the up-regulated expression of PAR4 and TFF2 frequently occurs in colorectal cancer tissues, and that overexpression of PAR4 may be resulted from promoter hypomethylation. While TFF2 promotes invasion activity of LoVo cells overexpressing PAR4, and this effect was significantly decreased when PAR4 was knockdowned in HT-29 cells. Our findings will be helpful in further investigations into the functions and molecular mechanisms of Proteinase-activated receptors (PARs) and Trefoil factor factors (TFFs) during the progression of colorectal cancer.
Collapse
|
23
|
Slingsby C, Wistow GJ. Functions of crystallins in and out of lens: roles in elongated and post-mitotic cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:52-67. [PMID: 24582830 PMCID: PMC4104235 DOI: 10.1016/j.pbiomolbio.2014.02.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/18/2014] [Indexed: 12/25/2022]
Abstract
The vertebrate lens evolved to collect light and focus it onto the retina. In development, the lens grows through massive elongation of epithelial cells possibly recapitulating the evolutionary origins of the lens. The refractive index of the lens is largely dependent on high concentrations of soluble proteins called crystallins. All vertebrate lenses share a common set of crystallins from two superfamilies (although other lineage specific crystallins exist). The α-crystallins are small heat shock proteins while the β- and γ-crystallins belong to a superfamily that contains structural proteins of uncertain function. The crystallins are expressed at very high levels in lens but are also found at lower levels in other cells, particularly in retina and brain. All these proteins have plausible connections to maintenance of cytoplasmic order and chaperoning of the complex molecular machines involved in the architecture and function of cells, particularly elongated and post-mitotic cells. They may represent a suite of proteins that help maintain homeostasis in such cells that are at risk from stress or from the accumulated insults of aging.
Collapse
Affiliation(s)
- Christine Slingsby
- Department of Biological Sciences, Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, UK.
| | - Graeme J Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, Bg 6, Rm 106, National Institutes of Health, Bethesda, MD 20892-0608, USA
| |
Collapse
|
24
|
Host-derived, pore-forming toxin-like protein and trefoil factor complex protects the host against microbial infection. Proc Natl Acad Sci U S A 2014; 111:6702-7. [PMID: 24733922 DOI: 10.1073/pnas.1321317111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aerolysins are virulence factors belonging to the bacterial β-pore-forming toxin superfamily. Surprisingly, numerous aerolysin-like proteins exist in vertebrates, but their biological functions are unknown. βγ-CAT, a complex of an aerolysin-like protein subunit (two βγ-crystallin domains followed by an aerolysin pore-forming domain) and two trefoil factor subunits, has been identified in frogs (Bombina maxima) skin secretions. Here, we report the rich expression of this protein, in the frog blood and immune-related tissues, and the induction of its presence in peritoneal lavage by bacterial challenge. This phenomena raises the possibility of its involvement in antimicrobial infection. When βγ-CAT was administrated in a peritoneal infection model, it greatly accelerated bacterial clearance and increased the survival rate of both frogs and mice. Meanwhile, accelerated Interleukin-1β release and enhanced local leukocyte recruitments were determined, which may partially explain the robust and effective antimicrobial responses observed. The release of interleukin-1β was potently triggered by βγ-CAT from the frog peritoneal cells and murine macrophages in vitro. βγ-CAT was rapidly endocytosed and translocated to lysosomes, where it formed high molecular mass SDS-stable oligomers (>170 kDa). Lysosomal destabilization and cathepsin B release were detected, which may explain the activation of caspase-1 inflammasome and subsequent interleukin-1β maturation and release. To our knowledge, these results provide the first functional evidence of the ability of a host-derived aerolysin-like protein to counter microbial infection by eliciting rapid and effective host innate immune responses. The findings will also largely help to elucidate the possible involvement and action mechanisms of aerolysin-like proteins and/or trefoil factors widely existing in vertebrates in the host defense against pathogens.
Collapse
|
25
|
Mishra A, Krishnan B, Srivastava SS, Sharma Y. Microbial βγ-crystallins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:42-51. [PMID: 24594023 DOI: 10.1016/j.pbiomolbio.2014.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 01/24/2023]
Abstract
βγ-Crystallins have emerged as a superfamily of structurally homologous proteins with representatives across the domains of life. A major portion of this superfamily is constituted by members from microorganisms. This superfamily has also been recognized as a novel group of Ca(2+)-binding proteins with huge diversity. The βγ domain shows variable properties in Ca(2+) binding, stability and association with other domains. The various members present a series of evolutionary adaptations culminating in great diversity in properties and functions. Most of the predicted βγ-crystallins are yet to be characterized experimentally. In this review, we outline the distinctive features of microbial βγ-crystallins and their position in the βγ-crystallin superfamily.
Collapse
Affiliation(s)
- Amita Mishra
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | - Bal Krishnan
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | | | - Yogendra Sharma
- CSIR - Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
26
|
Srivastava SS, Mishra A, Krishnan B, Sharma Y. Ca2+-binding motif of βγ-crystallins. J Biol Chem 2014; 289:10958-10966. [PMID: 24567326 DOI: 10.1074/jbc.o113.539569] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
βγ-Crystallin-type double clamp (N/D)(N/D)XX(S/T)S motif is an established but sparsely investigated motif for Ca(2+) binding. A βγ-crystallin domain is formed of two Greek key motifs, accommodating two Ca(2+)-binding sites. βγ-Crystallins make a separate class of Ca(2+)-binding proteins (CaBP), apparently a major group of CaBP in bacteria. Paralleling the diversity in βγ-crystallin domains, these motifs also show great diversity, both in structure and in function. Although the expression of some of them has been associated with stress, virulence, and adhesion, the functional implications of Ca(2+) binding to βγ-crystallins in mediating biological processes are yet to be elucidated.
Collapse
Affiliation(s)
- Shanti Swaroop Srivastava
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India
| | - Amita Mishra
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India
| | - Bal Krishnan
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India
| | - Yogendra Sharma
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad-500 007, India.
| |
Collapse
|
27
|
Jiang P, Yu G, Zhang Y, Xiang Y, Zhu Z, Feng W, Lee W, Zhang Y. Promoter hypermethylation and downregulation of trefoil factor 2 in human gastric cancer. Oncol Lett 2014; 7:1525-1531. [PMID: 24765170 PMCID: PMC3997660 DOI: 10.3892/ol.2014.1904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 11/21/2013] [Indexed: 01/22/2023] Open
Abstract
Trefoil factor 2 (TFF2) plays a protective role in gastric mucosa and may be involved in the progression of gastric cancer, but the detailed functions and underlying molecular mechanisms are not clear. The present study used a combination of clinical observations and molecular methods to investigate the correlation between abnormal expression of TFF2 and gastric cancer progression. TFF2 expression was evaluated by reverse transcription polymerase chain reaction (RT-PCR), quantitative PCR (qPCR), and western blot and immunohistochemistry analyses. TFF2 methylation levels were analyzed by genomic bisulfite sequencing method. The results showed that TFF2 mRNA and protein expression were decreased in gastric cancer tissues compared with the matched non-cancerous mucosa, and the decreased level was associated with the differentiation and invasion of gastric cancer. Moreover, the average TFF2 methylation level of CpG sites in the promoter region was 70.4% in three gastric cancer tissues, while the level in associated non-neoplastic tissues was 41.0%. Furthermore, the promoter hypermethylation of TFF2 was also found in gastric cancer cell lines, AGS and N87, and gene expression was significantly increased following treatment with a demethylating agent, 5-Aza-2′-deoxycytidine. In conclusion, TFF2 expression was markedly decreased in gastric cancer and promoter hypermethylation was found to regulate the downregulation of TFF2. TFF2 has been suggested as a tumor suppressor in gastric carcinogenesis and metastasis.
Collapse
Affiliation(s)
- Ping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China ; Department of Pathology and Pathophysiology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Guoyu Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China ; Department of Biochemistry, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yong Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China
| | - Yang Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China
| | - Zhu Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Weiyang Feng
- Department of Biochemistry, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wenhui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, P.R. China
| |
Collapse
|
28
|
Marsan M, Van den Eynden G, Limame R, Neven P, Hauspy J, Van Dam PA, Vergote I, Dirix LY, Vermeulen PB, Van Laere SJ. A core invasiveness gene signature reflects epithelial-to-mesenchymal transition but not metastatic potential in breast cancer cell lines and tissue samples. PLoS One 2014; 9:e89262. [PMID: 24586640 PMCID: PMC3931724 DOI: 10.1371/journal.pone.0089262] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/15/2014] [Indexed: 01/07/2023] Open
Abstract
Introduction Metastases remain the primary cause of cancer-related death. The acquisition of invasive tumour cell behaviour is thought to be a cornerstone of the metastatic cascade. Therefore, gene signatures related to invasiveness could aid in stratifying patients according to their prognostic profile. In the present study we aimed at identifying an invasiveness gene signature and investigated its biological relevance in breast cancer. Methods & Results We collected a set of published gene signatures related to cell motility and invasion. Using this collection, we identified 16 genes that were represented at a higher frequency than observed by coincidence, hereafter named the core invasiveness gene signature. Principal component analysis showed that these overrepresented genes were able to segregate invasive and non-invasive breast cancer cell lines, outperforming sets of 16 randomly selected genes (all P<0.001). When applied onto additional data sets, the expression of the core invasiveness gene signature was significantly elevated in cell lines forced to undergo epithelial-mesenchymal transition. The link between core invasiveness gene expression and epithelial-mesenchymal transition was also confirmed in a dataset consisting of 2420 human breast cancer samples. Univariate and multivariate Cox regression analysis demonstrated that CIG expression is not associated with a shorter distant metastasis free survival interval (HR = 0.956, 95%C.I. = 0.896–1.019, P = 0.186). Discussion These data demonstrate that we have identified a set of core invasiveness genes, the expression of which is associated with epithelial-mesenchymal transition in breast cancer cell lines and in human tissue samples. Despite the connection between epithelial-mesenchymal transition and invasive tumour cell behaviour, we were unable to demonstrate a link between the core invasiveness gene signature and enhanced metastatic potential.
Collapse
Affiliation(s)
- Melike Marsan
- Translational Cancer Research Unit, Oncology Center, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
- Department of oncology, KU Leuven, Leuven, Belgium
- * E-mail:
| | - Gert Van den Eynden
- Translational Cancer Research Unit, Oncology Center, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Ridha Limame
- Laboratory for Cancer Research and Clinical Oncology, University of Antwerp, Antwerp, Belgium
| | | | - Jan Hauspy
- Translational Cancer Research Unit, Oncology Center, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | | | | | - Luc Y. Dirix
- Translational Cancer Research Unit, Oncology Center, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Peter B. Vermeulen
- Translational Cancer Research Unit, Oncology Center, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Steven J. Van Laere
- Translational Cancer Research Unit, Oncology Center, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
- Department of oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Jiang P, Yu GY, Zhang Y, Xiang Y, Hua HR, Bian L, Wang CY, Lee WH, Zhang Y. Down-regulation of protease-activated receptor 4 in lung adenocarcinoma is associated with a more aggressive phenotype. Asian Pac J Cancer Prev 2014; 14:3793-8. [PMID: 23886184 DOI: 10.7314/apjcp.2013.14.6.3793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The role of protease-activated receptors (PARs) in lung tumors is controversial. Although PAR4 is preferentially expressed in human lung tissues, its possible significance in lung cancer has not been defined. The studies reported herein used a combination of clinical observations and molecular methods. Surgically resected lung adenocarcinomas and associated adjacent normal lung tissues were collected and BEAS-2B and NCI-H157 cell lines were grown in tissue culture. PAR4 expression was evaluated by RT-PCR, RT-qPCR, Western blotting and immunohistochemistry analysis. The results showed that PAR4 mRNA expression was generally decreased in lung adenocarcinoma tissues as compared with matched noncancerous tissues (67.7%) and was associated with poor differentiation (p=0.017) and metastasis (p=0.04). Western blotting and immunohistochemical analysis also showed that PAR4 protein levels were mostly decreased in lung adenocarcinoma tissues (61.3%), and were also associated with poor differentiation (p=0.035) and clinical stage (p=0.027). Moreover, PAR4 expression was decreased in NCI-H157 cells as compared with BEAS-2B cells. In conclusion, PAR4 expression is significantly decreased in lung adenocarcinoma, and down-regulation of PAR4 is associated with a more clinically aggressive phenotype. PAR4 may acts as a tumor suppressor in lung adenocarcinoma.
Collapse
Affiliation(s)
- Ping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jiang P, Xiang Y, Wang YJ, Li SM, Wang Y, Hua HR, Yu GY, Zhang Y, Lee WH, Zhang Y. Differential expression and subcellular localization of Prohibitin 1 are related to tumorigenesis and progression of non-small cell lung cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2013; 6:2092-2101. [PMID: 24133587 PMCID: PMC3796231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/18/2013] [Indexed: 06/02/2023]
Abstract
Lung cancer remains the leading cause of cancer-related deaths worldwide and non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer. With a variety of biological functions, Prohibitin1 (PHB1) has been proved tumor-associated. But there are conflicting data regarding the involvement of PHB1 in tumorigenesis and few studies regarding the role of PHB1 in lung cancer. The studies reported herein used a combination of clinical observations and molecular methods to investigate the possible role of PHB1 in NSCLC tissues and cell lines. PHB1 expression was evaluated by RT-PCR, RT-qPCR, Western blotting and immunohistochemistry analysis. Flow cytometric analysis was used to determine the surface expression profiles of PHB1 in lung cell lines. The results showed that PHB1 expression were generally increased in lung cancer tissues when compared with matched noncancerous tissues and closely related with tumor differentiation and lymph node invasion. PHB1 expression levels was also increased in three lung cancer cell lines (SK-MES-1, NCI-H157 and NCI-H292) as compared with BEAS-2B cells. Moreover, there were various subcellular localization of PHB1 in different lung cancer cells and the presence of PHB1 on the surface of lung cancer cells was significantly reduced. In conclusion, PHB1 expression is increased in NSCLC and the up-regulation of PHB1 is associated with clinically aggressive phenotype. The different subcellular localization of PHB1 in NSCLC cells and the loss of the membrane-associated PHB1 probably related to the tumorigenesis and progression of NSCLC and suggests that PHB1 may play different roles in various types of NSCLC.
Collapse
Affiliation(s)
- Ping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, Yunnan 650223, China
- University of Chinese Academy of SciencesBeijing 100049, China
- Department of Pathology and Pathophysiology, Kunming Medical UniversityKunming, Yunnan 650500, China
| | - Yang Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, Yunnan 650223, China
| | - Yan-Jie Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, Yunnan 650223, China
| | - Si-Man Li
- Department of Biochemistry, Kunming Medical UniversityKunming, Yunnan 650500, China
| | - Yan Wang
- Department of Pathology, The Secondly Affiliated Hospital of Kunming Medical UniversityKunming 650032, China
| | - Hai-Rong Hua
- Department of Pathology and Pathophysiology, Kunming Medical UniversityKunming, Yunnan 650500, China
| | - Guo-Yu Yu
- Department of Pathology, The Secondly Affiliated Hospital of Kunming Medical UniversityKunming 650032, China
| | - Yong Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, Yunnan 650223, China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, Yunnan 650223, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of SciencesKunming, Yunnan 650223, China
| |
Collapse
|
31
|
Zhao F, Yan C, Wang X, Yang Y, Wang G, Lee W, Xiang Y, Zhang Y. Comprehensive transcriptome profiling and functional analysis of the frog (Bombina maxima) immune system. DNA Res 2013; 21:1-13. [PMID: 23942912 PMCID: PMC3925390 DOI: 10.1093/dnares/dst035] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Amphibians occupy a key phylogenetic position in vertebrates and evolution of the immune system. But, the resources of its transcriptome or genome are still little now. Bombina maxima possess strong ability to survival in very harsh environment with a more mature immune system. We obtained a comprehensive transcriptome by RNA-sequencing technology. 14.3% of transcripts were identified to be skin-specific genes, most of which were not isolated from skin secretion in previous works or novel non-coding RNAs. 27.9% of transcripts were mapped into 242 predicted KEGG pathways and 6.16% of transcripts related to human disease and cancer. Of 39 448 transcripts with the coding sequence, at least 1501 transcripts (570 genes) related to the immune system process. The molecules of immune signalling pathway were almost presented, several transcripts with high expression in skin and stomach. Experiments showed that lipopolysaccharide or bacteria challenge stimulated pro-inflammatory cytokine production and activation of pro-inflammatory caspase-1. These frog's data can remarkably expand the existing genome or transcriptome resources of amphibians, especially immunity data. The entity of the data provides a valuable platform for further investigation on more detailed immune response in B. maxima and a comparative study with other amphibians.
Collapse
Affiliation(s)
- Feng Zhao
- 1Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Characteristics of hemolytic activity induced by skin secretions of the frog Kaloula pulchra hainana. J Venom Anim Toxins Incl Trop Dis 2013; 19:9. [PMID: 24499077 PMCID: PMC3710140 DOI: 10.1186/1678-9199-19-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/11/2013] [Indexed: 11/29/2022] Open
Abstract
Background The hemolytic activity of skin secretions obtained by stimulating the frog Kaloula pulchra hainana with diethyl ether was tested using human, cattle, rabbit, and chicken erythrocytes. The skin secretions had a significant concentration-dependent hemolytic effect on erythrocytes. The hemolytic activity of the skin secretions was studied in the presence of osmotic protectants (polyethylene glycols and carbohydrates), cations (Mg2+, Ca2+, Ba2+, Cu2+, and K+), or antioxidants (ascorbic acid, reduced glutathione, and cysteine). Results Depending on their molecular mass, osmotic protectants effectively inhibited hemolysis. The inhibition of skin hemolysis was observed after treatment with polyethylene glycols (1000, 3400, and 6000 Da). Among divalent cations, only 1 mM Cu2+ markedly inhibited hemolytic activity. Antioxidant compounds slightly reduced the hemolytic activity. Conclusions The results suggested that skin secretions of K. pulchra hainana induce a pore-forming mechanism to form pores with a diameter of 1.36-2.0 nm rather than causing oxidative damage to the erythrocyte membrane.
Collapse
|
33
|
Slingsby C, Wistow GJ, Clark AR. Evolution of crystallins for a role in the vertebrate eye lens. Protein Sci 2013; 22:367-80. [PMID: 23389822 PMCID: PMC3610043 DOI: 10.1002/pro.2229] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 12/18/2022]
Abstract
The camera eye lens of vertebrates is a classic example of the re-engineering of existing protein components to fashion a new device. The bulk of the lens is formed from proteins belonging to two superfamilies, the α-crystallins and the βγ-crystallins. Tracing their ancestry may throw light on the origin of the optics of the lens. The α-crystallins belong to the ubiquitous small heat shock proteins family that plays a protective role in cellular homeostasis. They form enormous polydisperse oligomers that challenge modern biophysical methods to uncover the molecular basis of their assembly structure and chaperone-like protein binding function. It is argued that a molecular phenotype of a dynamic assembly suits a chaperone function as well as a structural role in the eye lens where the constraint of preventing protein condensation is paramount. The main cellular partners of α-crystallins, the β- and γ-crystallins, have largely been lost from the animal kingdom but the superfamily is hugely expanded in the vertebrate eye lens. Their structures show how a simple Greek key motif can evolve rapidly to form a complex array of monomers and oligomers. Apart from remaining transparent, a major role of the partnership of α-crystallins with β- and γ-crystallins in the lens is to form a refractive index gradient. Here, we show some of the structural and genetic features of these two protein superfamilies that enable the rapid creation of different assembly states, to match the rapidly changing optical needs among the various vertebrates.
Collapse
Affiliation(s)
- Christine Slingsby
- Department of Biological Sciences, Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, United Kingdom.
| | | | | |
Collapse
|
34
|
Abstract
Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins) and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision.
Collapse
Affiliation(s)
- Graeme Wistow
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-0608, USA.
| |
Collapse
|
35
|
Liu ZC, Zhang R, Zhao F, Chen ZM, Liu HW, Wang YJ, Jiang P, Zhang Y, Wu Y, Ding JP, Lee WH, Zhang Y. Venomic and Transcriptomic Analysis of Centipede Scolopendra subspinipes dehaani. J Proteome Res 2012; 11:6197-212. [DOI: 10.1021/pr300881d] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zi-Chao Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Zhang
- Key Laboratory of Molecular
Biophysics, Huazhong University of Science and Technology, the Ministry of Education, Wuhan, Hubei 430074, China
| | - Feng Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Ming Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Hao-Wen Liu
- Key Laboratory of Molecular
Biophysics, Huazhong University of Science and Technology, the Ministry of Education, Wuhan, Hubei 430074, China
| | - Yan-Jie Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ying Wu
- Key Laboratory of Molecular
Biophysics, Huazhong University of Science and Technology, the Ministry of Education, Wuhan, Hubei 430074, China
| | - Jiu-Ping Ding
- Key Laboratory of Molecular
Biophysics, Huazhong University of Science and Technology, the Ministry of Education, Wuhan, Hubei 430074, China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
36
|
Fan J, Dong L, Mishra S, Chen Y, FitzGerald P, Wistow G. A role for γS-crystallin in the organization of actin and fiber cell maturation in the mouse lens. FEBS J 2012; 279:2892-904. [PMID: 22715935 PMCID: PMC3429115 DOI: 10.1111/j.1742-4658.2012.08669.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
γS-crystallin (γS) is a highly conserved component of the eye lens. To gain insights into the functional role(s) of this protein, the mouse gene (Crygs) was deleted. Although mutations in γS can cause severe cataracts, loss of function of γS in knockout (KO) mice produced no obvious lens opacity, but was associated with focusing defects. Electron microscopy showed no major differences in lens cell organization, suggesting that the optical defects are primarily cytoplasmic in origin. KO lenses were also grossly normal by light microscopy but showed evidence of incomplete clearance of cellular organelles in maturing fiber cells. Phalloidin labeling showed an unusual distribution of F-actin in a band of mature fiber cells in KO lenses, suggesting a defect in the organization or processing of the actin cytoskeleton. Indeed, in wild-type lenses, γS and F-actin colocalize along the fiber cell plasma membrane. Relative levels of F-actin and G-actin in wild-type and KO lenses were estimated from fluorescent staining profiles and from isolation of actin fractions from whole lenses. Both methods showed a two-fold reduction in the F-actin/G-actin ratio in KO lenses, whereas no difference in tubulin organization was detected. In vitro experiments showed that recombinant mouse γS can directly stabilize F-actin. This suggests that γS may have a functional role related to actin, perhaps in 'shepherding' filaments to maintain the optical properties of the lens cytoplasm and normal fiber cell maturation.
Collapse
Affiliation(s)
- Jianguo Fan
- Section on Molecular Structure and Functional Genomics, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-0608, USA
| | | | | | | | | | | |
Collapse
|
37
|
Bacterial expression and purification of biologically active human TFF2. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:144-50. [PMID: 22467388 DOI: 10.3724/sp.j.1141.2012.02144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human trefoil factor 2 (hTFF2) is considered as one of the most important initiators of mucosal healing in the gastrointestinal tract by promoting cell migration and suppressing apoptosis. However, it is hard to obtain hTFF2 from human tissue and many recombinant hTFF2 produced in vitro exist as fusion proteins. The purpose of the present study was to produce native hTFF2 while maintaining its biological activities. The open reading frame of hTFF2 was inserted into a pET-32a(+) expression vector, and hTFF2-TRX fusion protein was successfully expressed in Escherichia coli and purified by Nickel-nitrilotriacetic acid affinity chromatography and reverse-phase HPLC steps. The recombinant fusion protein (purity>95%) was cleaved by Factor Xa at 23 Degrees Celsius to release hTFF2. After removal of Factor Xa and undigested fusion proteins, hTFF2 was purified and identified by SDS-PAGE and Western blotting. The yield of recombinant hTFF2 was about 5 mg/L. The recombinant hTFF2 could promote IEC-6 cells migration and in vitro wound healing via the activation of ERK1/2. Recombinant hTFF2 could also inhibit apoptosis of HCT-116 cells induced by 50 μmol/L ceramide. In summary, our results showed that the recombinant hTFF2 was expressed in E. coli and successfully purified after cleavage with the fusion partner with high yield while maintaining its biological activities. Recombinant hTFF2 might be useful for investigating the molecular mechanism of hTFF2 and development of hTFF2-related drugs.
Collapse
|
38
|
Chen Z, Yang X, Liu Z, Zeng L, Lee W, Zhang Y. Two novel families of antimicrobial peptides from skin secretions of the Chinese torrent frog, Amolops jingdongensis. Biochimie 2012; 94:328-34. [DOI: 10.1016/j.biochi.2011.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/13/2011] [Indexed: 12/20/2022]
|
39
|
The frog trefoil factor Bm-TFF2 activates human platelets via Gq and G12/13 signaling pathway. Toxicon 2011; 59:104-9. [PMID: 22100826 DOI: 10.1016/j.toxicon.2011.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/26/2011] [Accepted: 10/27/2011] [Indexed: 11/23/2022]
Abstract
Bm-TFF2 is an amphibian trefoil factor purified from the Bombina maxima skin secretion that is highly toxic to mammals. We previously reported that Bm-TFF2 activates human platelets via protease-activated receptor 1. In this study, for a better understanding of platelet activation induced by Bm-TFF2, we used affinity chromatography and pharmacological inhibitors to investigate the downstream signaling pathway. Using Bm-TFF2-affinity chromatography, Gq was specifically eluted from the Bm-TFF2-coulped column. Pharmacological inhibitors such as U73122, Xestospongin C, BAPTA-AM and Gö6976 can significantly inhibit Bm-TFF2-induced platelet aggregation. These results suggested that Gq activation and the downstream PLCβ-IP3 receptor-cytoplasmic Ca(2+)-PKC signaling pathway is crucial for Bm-TFF2 to stimulate platelet aggregation. Furthermore, Bm-TFF2 induced strong platelet shape change at the concentrations of 5nM, in which the Ca(2+) mobilization of the platelets stimulated was not detectable. The p160(ROCK) inhibitorY27632 totally inhibited the shape change, indicating that Bm-TFF2 may activate the G12/13 pathway which leads to the activation of RhoA-p160(ROCK). In conclusion, Bm-TFF2 induced platelet activation mainly via the Gq and G12/13 signaling pathway. This study on the signaling pathway of Bm-TFF2 stimulation may help us understand the toxicity of B. maxima skin secretion to the human platelets.
Collapse
|
40
|
Zhang Y, Yu G, Wang Y, Xiang Y, Gao Q, Jiang P, Zhang J, Lee W, Zhang Y. Activation of protease-activated receptor (PAR) 1 by frog trefoil factor (TFF) 2 and PAR4 by human TFF2. Cell Mol Life Sci 2011; 68:3771-80. [PMID: 21461878 PMCID: PMC11115081 DOI: 10.1007/s00018-011-0678-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 02/15/2011] [Accepted: 03/22/2011] [Indexed: 12/29/2022]
Abstract
Trefoil factors (TFFs) promote epithelial cell migration to reseal superficial wounds after mucosal injury, but their receptors and the molecular mechanisms underlying this process are poorly understood. In this study, we showed that frog TFF2 activates protease-activated receptor (PAR) 1 to induce human platelet aggregation. Based on this result, we further tested the involvement of PARs in human TFF2 (hTFF2)-promoted mucosal healing. hTFF2-stimulated migration of epithelial HT-29 cells was largely inhibited by PAR4 depletion with small interfering RNAs but not by PAR1 or PAR2 depletion. The PAR4-negative epithelial cell lines AGS and LoVo were highly responsive to hTFF2 as assessed by phosphorylation of ERK1/2 and cell migration upon PAR4 expression. Our findings suggest that hTFF2 promotes cell migration via PAR4. These findings will be helpful in further investigations into the functions and molecular mechanisms of TFFs and PARs in physiology and disease.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Guoyu Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Yanjie Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Yang Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Qian Gao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Ping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Jie Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Wenhui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223 China
| |
Collapse
|
41
|
Establishment, characterization and immortalization of a fibroblast cell line from the Chinese red belly toad Bombina maxima skin. Cytotechnology 2011; 64:95-105. [PMID: 21948116 DOI: 10.1007/s10616-011-9399-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 09/15/2011] [Indexed: 12/19/2022] Open
Abstract
The skin of the amphibian Bombina maxima is rich in biologically active proteins and peptides, most of which have mammalian analogues. The physiological functions of most of the mammalian analogues are still unknown. Thus, Bombina maxima skin may be a promising model to reveal the physiological role of these proteins and peptides because of their large capacity for secretion. To investigate the physiological role of these proteins and peptides in vitro, a fibroblast cell line was successfully established from Bombina maxima tadpole skin. The cell line grew to form a monolayer with cells of a uniform shape and abundant rough endoplasmic reticulum, which are typical characteristics of fibroblasts. Further identification at a molecular level revealed that they strongly expressed the fibroblast marker protein vimentin. The chromosome number of these cells is 2n = 28, and most of them were diploid. Growth property analysis showed that they grew well for 14 passages. However, cells showed decreased proliferative ability after passage 15. Thus, we tried to immortalize the cells through the overexpression of SV40 T antigen. After selecting by G418, cells stably expressed SV40 large T antigen and showed enhanced proliferative ability and increased telomerase activity. Signal transduction analysis revealed functional p42 mitogen-activated protein (MAP) kinase in immortalized Bombina maxima dermal fibroblasts. Primary fibroblast cells and the immortalized fibroblast cells from Bombina maxima cultured in the present study can be used to investigate the physiological role of Bombina maxima skin-secreted proteins and peptides. In addition, the methods for primary cell culturing and cell immortalization will be useful for culturing and immortalizing cells from other types of amphibians.
Collapse
|
42
|
Zhao H, Brown PH, Magone MT, Schuck P. The molecular refractive function of lens γ-Crystallins. J Mol Biol 2011; 411:680-99. [PMID: 21684289 PMCID: PMC3146585 DOI: 10.1016/j.jmb.2011.06.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
γ-Crystallins constitute the major protein component in the nucleus of the vertebrate eye lens. Present at very high concentrations, they exhibit extreme solubility and thermodynamic stability to prevent scattering of light and formation of cataracts. However, functions beyond this structural role have remained mostly unclear. Here, we calculate molecular refractive index increments of crystallins. We show that all lens γ-crystallins have evolved a significantly elevated molecular refractive index increment, which is far above those of most proteins, including nonlens members of the βγ-crystallin family from different species. The same trait has evolved in parallel in crystallins of different phyla, including S-crystallins of cephalopods. A high refractive index increment can lower the crystallin concentration required to achieve a suitable refractive power of the lens and thereby reduce their propensity to aggregate and form cataracts. To produce a significant increase in the refractive index increment, a substantial global shift in amino acid composition is required, which can naturally explain the highly unusual amino acid composition of γ-crystallins and their functional homologues. This function provides a new perspective for interpreting their molecular structure.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, U.S.A
| | - Patrick H. Brown
- Biomedical Engineering and Physical Sciences Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, U.S.A
| | - M. Teresa Magone
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, U.S.A
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, U.S.A
| |
Collapse
|
43
|
Gao Q, Xiang Y, Zeng L, Ma XT, Lee WH, Zhang Y. Characterization of the βγ-crystallin domains of βγ-CAT, a non-lens βγ-crystallin and trefoil factor complex, from the skin of the toad Bombina maxima. Biochimie 2011; 93:1865-72. [PMID: 21784123 DOI: 10.1016/j.biochi.2011.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Accepted: 07/06/2011] [Indexed: 12/15/2022]
Abstract
βγ-CAT is a naturally existing 72-kDa complex of a non-lens βγ-crystallin (α-subunit, CAT-α) and a trefoil factor (β-subunit, CAT-β) that contains a non-covalently linked form of αβ(2) and was isolated from the skin secretions of the toad Bombina maxima. The N-terminal region of CAT-α (CAT-αN, residues 1-170) contains two βγ-crystallin domains while the C-terminal region (CAT-αC) has sequence homology to the membrane insertion domain of the Clostridium perfringens epsilon toxin. To examine the biochemical characteristics of the βγ-crystallin domains of βγ-CAT, CAT-αN, CAT-αC and CAT-β were expressed in Escherichia coli. Co-immunoprecipitation of the naturally assembled βγ-CAT confirmed that the CAT-α and CAT-β complex always exists. Furthermore, recombinant CAT-β bound recombinant CAT-αN. Ca(2+)-binding motifs were identified in CAT-αN, and recombinant CAT-αN was able to bind the calcium probe terbium. However, the conformation of CAT-αN was not significantly altered upon Ca(2+) binding. βγ-CAT possesses strong hemolytic activity toward human erythrocytes, and treatment of erythrocytes with βγ-CAT resulted in a rapid Ca(2+) influx, eventually leading to hemolysis. However, in the absence of extracellular Ca(2+), no significant hemolysis was detected, even though the binding and oligomerization of βγ-CAT in the erythrocyte membrane was observed. Our data demonstrate the binding of CAT-β (a trefoil factor) to CAT-αN (βγ-crystallin domains) and provide a basis for the formation of a βγ-crystallin and trefoil factor complex in vivo. Furthermore, the βγ-crystallin domains of βγ-CAT are able to bind Ca(2+), and βγ-CAT-induced hemolysis is Ca(2+) dependent.
Collapse
Affiliation(s)
- Qian Gao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, The Chinese Academy of Sciences, 32 East Jiao Chang Road, Kunming 650223, China
| | | | | | | | | | | |
Collapse
|
44
|
Zhang Y, Yu G, Jiang P, Xiang Y, Li W, Lee W, Zhang Y. Decreased expression of protease-activated receptor 4 in human gastric cancer. Int J Biochem Cell Biol 2011; 43:1277-83. [PMID: 21635966 DOI: 10.1016/j.biocel.2011.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/03/2011] [Accepted: 05/16/2011] [Indexed: 02/06/2023]
Abstract
Protease-activated receptors (PARs) are a unique family of G-protein coupled receptors. PAR4, the most recently identified PAR member, was reported to be overexpressed during the progression of colon and prostate cancers. Though PAR4 mRNA was detected in normal stomach, the role of PAR4 in gastric cancer has not been investigated. In this study, differential expression of PAR4 was measured by real-time PCR (n=28) and tissue microarrays (n=74). We showed that PAR4 was located from basal to middle portions of normal gastric mucosa. PAR4 expression was remarkably decreased in gastric cancer tissues as compared with matched noncancerous tissues, especially in positive lymph node or low differentiation cancers. Furthermore, methylation of the PAR4 promoter in cell lines was assessed by treatment with 5-aza-2'-deoxycytidine and genomic bisulfite sequencing. AGS and N87 human gastric cancer cell lines did not express PAR4, as compared to HT-29 human colon cancer cell line with significant PAR4 expression. Treatment with 5-aza-2'-deoxycytidine restored PAR4 expression in AGS and N87 cells, which exhibited significantly more 5-methylcytosines in the PAR4 promoter compared with HT-29 cells. Our results revealed that down-regulation of PAR4 expression occurs frequently in gastric cancers and exhibits association with more aggressive gastric cancer. Interestingly, the loss of PAR4 expression in gastric cancers may result from hypermethylation of the PAR4 promoter.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiao Chang Road, Kunming, Yunnan 650223, China.
| | | | | | | | | | | | | |
Collapse
|
45
|
Parthasarathy G, Ma B, Zhang C, Gongora C, Samuel Zigler J, Duncan MK, Sinha D. Expression of βA3/A1-crystallin in the developing and adult rat eye. J Mol Histol 2011; 42:59-69. [PMID: 21203897 DOI: 10.1007/s10735-010-9307-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/21/2010] [Indexed: 11/27/2022]
Abstract
Crystallins are very abundant structural proteins of the lens and are also expressed in other tissues. We have previously reported a spontaneous mutation in the rat βA3/A1-crystallin gene, termed Nuc1, which has a novel, complex, ocular phenotype. The current study was undertaken to compare the expression pattern of this gene during eye development in wild type and Nuc1 rats by in situ hybridization (ISH) and immunohistochemistry (IHC). βA3/A1-crystallin expression was first detected in the eyes of both wild type and Nuc1 rats at embryonic (E) day 12.5 in the posterior portion of the lens vesicle, and remained limited to the lens fibers throughout fetal life. After birth, βA3/A1-crystallin expression was also detected in the neural retina (specifically in the astrocytes and ganglion cells) and in the retinal pigmented epithelium (RPE). This suggested that βA3/A1-crystallin is not only a structural protein of the lens, but has cellular function(s) in other ocular tissues. In summary, expression of βA3/A1-crystallin is controlled differentially in various eye tissues with lens being the site of greatest expression. Similar staining patterns, detected by ISH and IHC, in wild type and Nuc1 animals suggest that functional differences in the protein, rather than changes in mRNA/protein level of expression, likely account for developmental abnormalities in Nuc1.
Collapse
Affiliation(s)
- Geetha Parthasarathy
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, 400 N. Broadway, Smith Research Building, M035, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Yu G, Zhang Y, Xiang Y, Jiang P, Chen Z, Lee W, Zhang Y. Cell migration-promoting and apoptosis-inhibiting activities of Bm-TFF2 require distinct structure basis. Biochem Biophys Res Commun 2010; 400:724-8. [DOI: 10.1016/j.bbrc.2010.08.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 08/29/2010] [Indexed: 11/30/2022]
|
47
|
Explosive expansion of betagamma-crystallin genes in the ancestral vertebrate. J Mol Evol 2010; 71:219-30. [PMID: 20725717 PMCID: PMC2929430 DOI: 10.1007/s00239-010-9379-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 07/29/2010] [Indexed: 11/23/2022]
Abstract
In jawed vertebrates, βγ-crystallins are restricted to the eye lens and thus excellent markers of lens evolution. These βγ-crystallins are four Greek key motifs/two domain proteins, whereas the urochordate βγ-crystallin has a single domain. To trace the origin of the vertebrate βγ-crystallin genes, we searched for homologues in the genomes of a jawless vertebrate (lamprey) and of a cephalochordate (lancelet). The lamprey genome contains orthologs of the gnathostome βB1-, βA2- and γN-crystallin genes and a single domain γN-crystallin-like gene. It contains at least two γ-crystallin genes, but lacks the gnathostome γS-crystallin gene. The genome also encodes a non-lenticular protein containing βγ-crystallin motifs, AIM1, also found in gnathostomes but not detectable in the uro- or cephalochordate genome. The four cephalochordate βγ-crystallin genes found encode two-domain proteins. Unlike the vertebrate βγ-crystallins but like the urochordate βγ-crystallin, three of the predicted proteins contain calcium-binding sites. In the cephalochordate βγ-crystallin genes, the introns are located within motif-encoding region, while in the urochordate and in the vertebrate βγ-crystallin genes the introns are between motif- and/or domain encoding regions. Coincident with the evolution of the vertebrate lens an ancestral urochordate type βγ-crystallin gene rapidly expanded and diverged in the ancestral vertebrate before the cyclostomes/gnathostomes split. The β- and γN-crystallin genes were maintained in subsequent evolution, and, given the selection pressure imposed by accurate vision, must be essential for lens function. The γ-crystallin genes show lineage specific expansion and contraction, presumably in adaptation to the demands on vision resulting from (changes in) lifestyle.
Collapse
|
48
|
Zhang Y, Yu G, Xiang Y, Wu J, Jiang P, Lee W, Zhang Y. Bm-TFF2, a toad trefoil factor, promotes cell migration, survival and wound healing. Biochem Biophys Res Commun 2010; 398:559-64. [PMID: 20599756 DOI: 10.1016/j.bbrc.2010.06.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 06/27/2010] [Indexed: 02/03/2023]
Abstract
Toad skin is naked and continually confronted by various injurious factors. Constant skin renewal and repairs occur frequently. However, the mechanisms of the renewal and repair have not clearly elucidated. In our previous work, a trefoil factor (TFF), Bm-TFF2, has been purified from the Bombina maxima skin and characterized as a platelet agonist. The mRNA of TFFs in toad skin was up-regulated greatly during the metamorphosis, indicating a pivotal role of TFFs in amphibian skin. Here, we presented the effects of Bm-TFF2 on the cell migration, apoptosis and proliferation. Bm-TFF2 bound to epithelial cells and showed strong cell motility activity. At the concentrations of 1-100nM, Bm-TFF2-induced migration of human epithelial AGS and HT-29 cells, and rat intestinal epithelial IEC-6 cell lines. The in vitro wound healing assay also verified the activity of Bm-TFF2. Bm-TFF2 could also inhibit cell apoptosis induced by ceramide and sodium butyrate. The cell migration-promoting activity was abolished by MEK1 inhibitors, U0126 and PD98059, suggesting that ERK1/2 activation is crucial for Bm-TFF2 to stimulate cell migration. Taken together, Bm-TFF2 promoted wound healing by stimulating cell migration via MAPK pathway and preventing cell apoptosis. The potent biological activity of Bm-TFF2 makes it a useful molecular tool for further studies of structure-function relationship of the related human TFFs.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Lu QM, Lai R, Zhang Y. [Animal toxins and human disease: from single component to venomics, from biochemical characterization to disease mechanisms, from crude venom utilization to rational drug design]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2010; 31:2-16. [PMID: 20446448 DOI: 10.3724/sp.j.1141.2010.01002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Many animals produced a diversity of venoms and secretions to adapt the changes of environments through the long history of evolution. The components including a large quantity of specific and highly active peptides and proteins have become good research models for protein structure-function and also served as tools and novel clues for illustration of human disease mechanisms. At the same time, they are rich natural resources for new drug development. Through the valuable venomous animal resources of China, researchers at the Kunming Institute of Zoology, CAS have carried out animal toxin research over 30 years. This paper reviews the main work conducted on snake venoms, amphibian and insect secretions, and the development from single component to venomics, from biochemical characterization to human disease mechanisms, from crude venom to rational drug design along with a short perspective on future studies.
Collapse
Affiliation(s)
- Qiu-Min Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming 650223, China
| | | | | |
Collapse
|
50
|
[Trefoil factor: from laboratory to clinic]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2010; 31:17-26. [PMID: 20446449 DOI: 10.3724/sp.j.1141.2010.01017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Trefoil factor (TFF) family is a group of peptides with one or several trefoil factor domains in their structure, which are highly conserved in evolution, and are characterized by heat and enzymatic digestion resistance. The mammalian TFFs have three members (TFF1-3), and the gastrointestinal tract and the airway system are major organs of their expression and secretion. At certain physiological conditions, with a tissue-specific distribution, TFF plays an important role in mucosal protection and wound healing. But in the malignant tissues, TFF is widely expressed, correlated strongly with the genesis, metastasis and invasion of tumor cells. These phenomena indicated that TFF may be a possible common mediator of oncogenic responses to different stimuli. The biological functions of TFF involve complex regulatory processes. Single chain TFF may activate cell membrane receptors and induce specific signaling transduction. On the other hand, TFF can form a complex with other proteins to exert its biological effects. In clinical medicine, TFF is primarily applied as drugs in the mucosal protection, in the prevention and the treatment of mucosal damage-related diseases and as pathological biomarkers of tumors. At present the first hand actions and the molecular mechanisms related to TFFs are still the major challenges in TFF research. Furthermore, the discovery of the naturally occurring complex of TFF and crystallins is highly valuable to the understanding of the biological functions and action mechanisms of TFF.
Collapse
|