1
|
Separability of Human Motor Memories during reaching adaptation with force cues. PLoS Comput Biol 2022; 18:e1009966. [DOI: 10.1371/journal.pcbi.1009966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 11/09/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Judging by the breadth of our motor repertoire during daily activities, it is clear that learning different tasks is a hallmark of the human motor system. However, for reaching adaptation to different force fields, the conditions under which this is possible in laboratory settings have remained a challenging question. Previous work has shown that independent movement representations or goals enabled dual adaptation. Considering the importance of force feedback during limb control, here we hypothesised that independent cues delivered by means of background loads could support simultaneous adaptation to various velocity-dependent force fields, for identical kinematic plan and movement goal. We demonstrate in a series of experiments that indeed healthy adults can adapt to opposite force fields, independently of the direction of the background force cue. However, when the cue and force field were in the same direction but differed by heir magnitude, the formation of different motor representations was still observed but the associated mechanism was subject to increased interference. Finally, we highlight that this paradigm allows dissociating trial-by-trial adaptation from online feedback adaptation, as these two mechanisms are associated with different time scales that can be identified reliably and reproduced in a computational model.
Collapse
|
2
|
Matsuda E, Misawa D, Yano S, Kondo T. Olfactory Cues to Reduce Retrograde Interference During the Simultaneous Learning of Conflicting Motor Tasks. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated the ability of humans to adapt to a novel environment by kinematic transformation. This adaptation was studied via behavioural experiments using a robotic manipulandum – a system designed to arbitrarily generate virtual force fields against a human hand and subsequently record the hand’s trajectory. By repeating motor tasks, this study’s participants gradually learned to move correctly under a newly experienced force field, such as rotating in a clockwise direction. However, each participant’s motor memory was destroyed if he/she experienced an opposing force field (e.g., in a counterclockwise direction) immediately after learning the initial movement, which is known as retrograde interference. In some previous studies, it has been considered that by presenting sensory cues to highlight the difference in two opposing force fields, participants can learn both force fields independently without interference. In this study, we investigated the functionality of olfactory cues – specifically lemon and lavender odors – in reducing retrograde interference. Forty-five university students participated in an experiment using a robotic manipulandum. Our results have shown that the presence of lemon odor reduces the destruction of motor memory, while that of lavender did not, suggesting that odors can enhance simultaneous motor learning but the effect depends on the type of odor used.
Collapse
|
3
|
Boulanger N, Buisseret F, Dehouck V, Dierick F, White O. Motor strategies and adiabatic invariants: The case of rhythmic motion in parabolic flights. Phys Rev E 2021; 104:024403. [PMID: 34525553 DOI: 10.1103/physreve.104.024403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/19/2021] [Indexed: 11/07/2022]
Abstract
The role of gravity in human motor control is at the same time obvious and difficult to isolate. It can be assessed by performing experiments in variable gravity. We propose that adiabatic invariant theory may be used to reveal nearly conserved quantities in human voluntary rhythmic motion, an individual being seen as a complex time-dependent dynamical system with bounded motion in phase space. We study an explicit realization of our proposal: An experiment in which we asked participants to perform ∞- shaped motion of their right arm during a parabolic flight, either at self-selected pace or at a metronome's given pace. Gravity varied between 0 and 1.8 g during a parabola. We compute the adiabatic invariants in the participant's frontal plane assuming a separable dynamics. It appears that the adiabatic invariant in vertical direction increases linearly with g, in agreement with our model. Differences between the free and metronome-driven conditions show that participants' adaptation to variable gravity is maximal without constraint. Furthermore, motion in the participant's transverse plane induces trajectories that may be linked to higher-derivative dynamics. Our results show that adiabatic invariants are relevant quantities to show the changes in motor strategy in time-dependent environments.
Collapse
Affiliation(s)
- N Boulanger
- Service de Physique de l'Univers, Champs et Gravitation, Université de Mons, UMONS Research Institute for Complex Systems, Place du Parc 20, 7000 Mons, Belgium
| | - F Buisseret
- CeREF, Chaussée de Binche 159, 7000 Mons, Belgium.,Service de Physique Nucléaire et Subnucléaire, Université de Mons, UMONS Research Institute for Complex Systems, 20 Place du Parc, 7000 Mons, Belgium
| | - V Dehouck
- Service de Physique de l'Univers, Champs et Gravitation, Université de Mons, UMONS Research Institute for Complex Systems, Place du Parc 20, 7000 Mons, Belgium.,Université de Bourgogne INSERM-U1093 Cognition, Action, and Sensorimotor Plasticity, Campus Universitaire, BP 27877, 21078 Dijon, France
| | - F Dierick
- CeREF, Chaussée de Binche 159, 7000 Mons, Belgium.,Faculté des Sciences de la Motricité, Université catholique de Louvain, 1 Place Pierre de Coubertin, 1348 Louvain-la-Neuve, Belgium.,Centre National de Rééducation Fonctionnelle et de Réadaptation-Rehazenter, Laboratoire d'Analyse du Mouvement et de la Posture (LAMP), Luxembourg, Grand-Duché de Luxembourg
| | - O White
- Université de Bourgogne INSERM-U1093 Cognition, Action, and Sensorimotor Plasticity, Campus Universitaire, BP 27877, 21078 Dijon, France
| |
Collapse
|
4
|
Rapid Changes in Movement Representations during Human Reaching Could Be Preserved in Memory for at Least 850 ms. eNeuro 2020; 7:ENEURO.0266-20.2020. [PMID: 32948645 PMCID: PMC7716430 DOI: 10.1523/eneuro.0266-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/19/2020] [Accepted: 09/09/2020] [Indexed: 11/21/2022] Open
Abstract
Humans adapt to mechanical perturbations such as forcefields (FFs) during reaching within tens of trials. However, recent findings suggested that this adaptation may start within one single trial, i.e., online corrective movements can become tuned to the unanticipated perturbations within a trial. This was highlighted in previous works with a reaching experiment in which participants had to stop at a via-point (VP) located between the start and the goal. An FF was applied during the first and second parts of the movement and then occasionally unexpectedly switched off at the VP during catch trials. The results showed an after-effect during the second part of the movement when participants exited the VP. This behavioral result was interpreted as a standard after-effect, but it remained unclear how it was related to conventional trial-by-trial learning. The current study aimed to investigate how long do such changes in movement representations last in memory. For this, we have studied the same reaching task with VP in two situations: one with very short residing time in the VP and the second with an imposed minimum 500 ms dwell time in the VP. In both situations, during the unexpected absence of the FF after VP, after-effects were observed. This suggests that online corrections to the internal representation of reach dynamics can be preserved in memory for around 850 ms of resting time on average. Therefore, rapid changes occurring within movements can thus be preserved in memory long enough to influence trial-by-trial motor adaptation.
Collapse
|
5
|
Vestibular contributions to high-level sensorimotor functions. Neuropsychologia 2017; 105:144-152. [DOI: 10.1016/j.neuropsychologia.2017.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 02/01/2023]
|
6
|
Concurrent adaptation to opposing visuomotor rotations by varying hand and body postures. Exp Brain Res 2015; 233:3433-45. [PMID: 26289481 DOI: 10.1007/s00221-015-4411-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
Abstract
When reaching towards objects, the human central nervous system (CNS) can actively compensate for two different perturbations simultaneously (dual adaptation), though this does not simply occur upon presentation. Dual adaptation is made more difficult when the desired trajectories and targets are identical and hence do not cue the impending perturbation. In cases like these, the CNS requires contextual cues in order to predict the dynamics of the environment. Not all cues are effective at facilitating dual adaptation. In two experiments, we investigated the efficacy of two contextual cues that are intrinsic to the CNS, namely hand as well as body posture in concurrently adapting to two opposing visuomotor rotations. For the hand posture experiment, we also look at the role of extended training. Participants reached manually to visual targets with their unseen hand represented by a cursor that was rotated either 30° clockwise or counterclockwise, determined randomly on each reach. Each rotation was associated with a distinct hand posture (a precision or power grip, respectively) in one experiment and a distinct body rotation (10° leftward or rightward turn of the seat, respectively, while fixating straight) in the second experiment. Critically, the targets (and thus, the required cursor trajectories) were identical in both rotations. We found that how people held the tool or oriented their body while reaching is sufficient for concurrently adapting separate visuomotor mappings such that over time, reach errors significantly decrease. Extended practice did not lead to further benefits though. These findings suggest that when the required cursor movements are identical for different visuomotor mappings, dual adaptation is still possible given sufficient intrinsic contextual cues.
Collapse
|
7
|
Turner DL, Ramos-Murguialday A, Birbaumer N, Hoffmann U, Luft A. Neurophysiology of robot-mediated training and therapy: a perspective for future use in clinical populations. Front Neurol 2013; 4:184. [PMID: 24312073 PMCID: PMC3826107 DOI: 10.3389/fneur.2013.00184] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/27/2013] [Indexed: 12/28/2022] Open
Abstract
The recovery of functional movements following injury to the central nervous system (CNS) is multifaceted and is accompanied by processes occurring in the injured and non-injured hemispheres of the brain or above/below a spinal cord lesion. The changes in the CNS are the consequence of functional and structural processes collectively termed neuroplasticity and these may occur spontaneously and/or be induced by movement practice. The neurophysiological mechanisms underlying such brain plasticity may take different forms in different types of injury, for example stroke vs. spinal cord injury (SCI). Recovery of movement can be enhanced by intensive, repetitive, variable, and rewarding motor practice. To this end, robots that enable or facilitate repetitive movements have been developed to assist recovery and rehabilitation. Here, we suggest that some elements of robot-mediated training such as assistance and perturbation may have the potential to enhance neuroplasticity. Together the elemental components for developing integrated robot-mediated training protocols may form part of a neurorehabilitation framework alongside those methods already employed by therapists. Robots could thus open up a wider choice of options for delivering movement rehabilitation grounded on the principles underpinning neuroplasticity in the human CNS.
Collapse
Affiliation(s)
- Duncan L Turner
- Neurorehabilitation Unit, University of East London , London , UK ; Lewin Stroke Rehabilitation Unit, Department of Clinical Neurosciences, Cambridge University NHS Foundation Trust , Cambridge , UK
| | | | | | | | | |
Collapse
|
8
|
Sarwary AME, Selen LPJ, Medendorp WP. Vestibular benefits to task savings in motor adaptation. J Neurophysiol 2013; 110:1269-77. [PMID: 23785131 DOI: 10.1152/jn.00914.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In everyday life, we seamlessly adapt our movements and consolidate them to multiple behavioral contexts. This natural flexibility seems to be contingent on the presence of movement-related sensorimotor cues and cannot be reproduced when static visual or haptic cues are given to signify different behavioral contexts. So far, only sensorimotor cues that dissociate the sensorimotor plans prior to force field exposure have been successful in learning two opposing perturbations. Here we show that vestibular cues, which are only available during the perturbation, improve the formation and recall of multiple control strategies. We exposed subjects to inertial forces by accelerating them laterally on a vestibular platform. The coupling between reaching movement (forward-backward) and acceleration direction (leftward-rightward) switched every 160 trials, resulting in two opposite force environments. When exposed for a second time to the same environment, with the opposite environment in between, subjects showed retention resulting in an ∼3 times faster adaptation rate compared with the first exposure. Our results suggest that vestibular cues provide contextual information throughout the reach, which is used to facilitate independent learning and recall of multiple motor memories. Vestibular cues provide feedback about the underlying cause of reach errors, thereby disambiguating the various task environments and reducing interference of motor memories.
Collapse
Affiliation(s)
- A M E Sarwary
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | | | | |
Collapse
|
9
|
de Xivry J-J O. Trial-to-trial reoptimization of motor behavior due to changes in task demands is limited. PLoS One 2013; 8:e66013. [PMID: 23776593 PMCID: PMC3679014 DOI: 10.1371/journal.pone.0066013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
Each task requires a specific motor behavior that is tuned to task demands. For instance, writing requires a lot of accuracy while clapping does not. It is known that the brain adjusts the motor behavior to different task demands as predicted by optimal control theory. In this study, the mechanism of this reoptimization process is investigated by varying the accuracy demands of a reaching task. In this task, the width of the reaching target (0.5 or 8 cm) was varied either on a trial-to-trial basis (random schedule) or in blocks (blocked schedule). On some trials, the hand of the subjects was clamped to a rectilinear trajectory that ended 2 cm on the left or right of the target center. The rejection of this perturbation largely varied with target width in the blocked schedule but not in the random schedule. That is, subjects exhibited different motor behavior in the different schedules despite identical accuracy demands. Therefore, while reoptimization has been considered immediate and automatic, the differences in motor behavior observed across schedules suggest that the reoptimization of the motor behavior is neither happening on a trial-by-trial basis nor obligatory. The absence of trial-to-trial mechanisms, the inability of the brain to adapt to two conflicting task demands and the existence of a switching cost are discussed as possible sources of the non-optimality of motor behavior during the random schedule.
Collapse
Affiliation(s)
- Orban de Xivry J-J
- ICTEAM and IoNS, Université catholique de Louvain, Louvain-La-Neuve, Belgium.
| |
Collapse
|
10
|
Dual adaptation to opposing visuomotor rotations with similar hand movement trajectories. Exp Brain Res 2013; 227:231-41. [PMID: 23575955 DOI: 10.1007/s00221-013-3503-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
Abstract
This research explored specific contextual cues that might facilitate human motor learning. Using a dual adaptation task, humans performed manual reaches to visual targets while experiencing a 30° clockwise or counterclockwise rotation, which randomly alternated between trials, of a seen cursor representing their unseen hand. Groups had different cues to distinguish between rotations: 'Cue' (colours and shapes), 'Workspace' (target locations) and 'Workspace with Cue' (combination of cues). Importantly, the workspace groups required similar hand movement trajectories to accurately acquire pairs of targets. Our data show that only the 'Workspace' and 'Workspace with Cue' groups, but not 'Cue' group, adapted to both rotations concurrently (dual adaption). These findings suggest that colour and shape cues, even when integrated with the end-effector and targets, do not facilitate dual adaptation. However, target separation is sufficient to facilitate dual adaptation, even when hand movement trajectories are similar. Interestingly, adaptation was less complete when required hand trajectories were completely overlapping for pairs of targets (versus being similar), suggesting an important role for the motor system as well. Nonetheless, the location of targets and consequent differences in motor planning may play a larger role in facilitating adaptation than previously thought.
Collapse
|
11
|
White O, Diedrichsen J. Flexible switching of feedback control mechanisms allows for learning of different task dynamics. PLoS One 2013; 8:e54771. [PMID: 23405093 PMCID: PMC3566087 DOI: 10.1371/journal.pone.0054771] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 12/14/2012] [Indexed: 11/18/2022] Open
Abstract
To produce skilled movements, the brain flexibly adapts to different task requirements and movement contexts. Two core abilities underlie this flexibility. First, depending on the task, the motor system must rapidly switch the way it produces motor commands and how it corrects movements online, i.e. it switches between different (feedback) control policies. Second, it must also adapt to environmental changes for different tasks separately. Here we show these two abilities are related. In a bimanual movement task, we show that participants can switch on a movement-by-movement basis between two feedback control policies, depending only on a static visual cue. When this cue indicates that the hands control separate objects, reactions to force field perturbations of each arm are purely unilateral. In contrast, when the visual cue indicates a commonly controlled object, reactions are shared across hands. Participants are also able to learn different force fields associated with a visual cue. This is however only the case when the visual cue is associated with different feedback control policies. These results indicate that when the motor system can flexibly switch between different control policies, it is also able to adapt separately to the dynamics of different environmental contexts. In contrast, visual cues that are not associated with different control policies are not effective for learning different task dynamics.
Collapse
Affiliation(s)
- Olivier White
- Institut National de la Santé et de la Recherche Médicale, Unit 1093, Cognition, Action and Sensorimotor Plasticity, Dijon, France.
| | | |
Collapse
|
12
|
Motor Memory: When Plans Speak Louder Than Actions. Curr Biol 2012; 22:R155-7. [DOI: 10.1016/j.cub.2012.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Kodl J, Ganesh G, Burdet E. The CNS stochastically selects motor plan utilizing extrinsic and intrinsic representations. PLoS One 2011; 6:e24229. [PMID: 21912679 PMCID: PMC3166292 DOI: 10.1371/journal.pone.0024229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 08/08/2011] [Indexed: 12/31/2022] Open
Abstract
Traditionally motor studies have assumed that motor tasks are executed according to a single plan characterized by regular patterns, which corresponds to the minimum of a cost function in extrinsic or intrinsic coordinates. However, the novel via-point task examined in this paper shows distinct planning and execution stages in motion production and demonstrates that subjects randomly select from several available motor plans to perform a task. Examination of the effect of pre-training and via-point orientation on subject behavior reveals that the selection of a plan depends on previous movements and is affected by constraints both intrinsic and extrinsic of the body. These results provide new insights into the hierarchical structure of motion planning in humans, which can only be explained if the current models of motor control integrate an explicit plan selection stage.
Collapse
Affiliation(s)
- Jindrich Kodl
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, South Kensington Campus, London, United Kingdom
| | - Gowrishankar Ganesh
- Advanced Information and Communications Technology Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
- Computational Neuroscience Laboratories, ATR International, Kyoto, Japan
| | - Etienne Burdet
- Department of Bioengineering, Imperial College of Science, Technology and Medicine, South Kensington Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Addou T, Krouchev N, Kalaska JF. Colored context cues can facilitate the ability to learn and to switch between multiple dynamical force fields. J Neurophysiol 2011; 106:163-83. [PMID: 21490278 DOI: 10.1152/jn.00869.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We tested the efficacy of color context cues during adaptation to dynamic force fields. Four groups of human subjects performed elbow flexion/extension movements to move a cursor between targets on a monitor while encountering a resistive (Vr) or assistive (Va) viscous force field. They performed two training sets of 256 trials daily, for 10 days. The monitor background color changed (red, green) every four successful trials but provided different degrees of force field context information to each group. For the irrelevant-cue groups, the color changed every four trials, but one group encountered only the Va field and the other only the Vr field. For the reliable-cue group, the force field alternated between Va and Vr each time the monitor changed color (Vr, red; Va, green). For the unreliable-cue group, the force field changed between Va and Vr pseudorandomly at each color change. All subjects made increasingly stereotyped movements over 10 training days. Reliable-cue subjects typically learned the association between color cues and fields and began to make predictive changes in motor output at each color change during the first day. Their performance continued to improve over the remaining days. Unreliable-cue subjects also improved their performance across training days but developed a strategy of probing the nature of the field at each color change by emitting a default motor response and then adjusting their motor output in subsequent trials. These findings show that subjects can extract explicit and implicit information from color context cues during force field adaptation.
Collapse
Affiliation(s)
- Touria Addou
- Groupe de Recherche sur le Système Nerveux Central, Département de Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | | | |
Collapse
|
15
|
Howard IS, Ingram JN, Wolpert DM. Context-dependent partitioning of motor learning in bimanual movements. J Neurophysiol 2010; 104:2082-91. [PMID: 20685927 DOI: 10.1152/jn.00299.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human subjects easily adapt to single dynamic or visuomotor perturbations. In contrast, when two opposing dynamic or visuomotor perturbations are presented sequentially, interference is often observed. We examined the effect of bimanual movement context on interference between opposing perturbations using pairs of contexts, in which the relative direction of movement between the two arms was different across the pair. When each perturbation direction was associated with a different bimanual context, such as movement of the arms in the same direction versus movement in the opposite direction, interference was dramatically reduced. This occurred over a short period of training and was seen for both dynamic and visuomotor perturbations, suggesting a partitioning of motor learning for the different bimanual contexts. Further support for this was found in a series of transfer experiments. Having learned a single dynamic or visuomotor perturbation in one bimanual context, subjects showed incomplete transfer of this learning when the context changed, even though the perturbation remained the same. In addition, we examined a bimanual context in which one arm was moved passively and show that the reduction in interference requires active movement. The sensory consequences of movement are thus insufficient to allow opposing perturbations to be co-represented. Our results suggest different bimanual movement contexts engage at least partially separate representations of dynamics and kinematics in the motor system.
Collapse
Affiliation(s)
- Ian S Howard
- Computational and Biological Learning Lab., Department of Engineering, University of Cambridge, Trumpington St., Cambridge CB2 1PZ, UK.
| | | | | |
Collapse
|
16
|
Cothros N, Wong J, Gribble PL. Visual Cues Signaling Object Grasp Reduce Interference in Motor Learning. J Neurophysiol 2009; 102:2112-20. [DOI: 10.1152/jn.00493.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent motor learning studies show that human subjects and nonhuman primates form neural representations of novel mechanical environments and associated forces. Whereas proficient adaptation is seen for a single force field, when faced with multiple novel force environments, movement performance and in particular the ability to switch between different force environments declines. It is difficult to reconcile these findings with the notion that primates can proficiently switch between multiple motor skills. Conceivably, particular kinds of sensory, cognitive, or perceptual contextual cues are required. This study examined the effect of visual feedback on motor learning, in particular, cues that simulated interaction with a virtual object. A robot arm was used to deliver novel patterns of forces (force fields) to the limb during reaching movements. We tested the possibility that subjects transition more easily between novel forces and their sudden absence when they are accompanied by visual cues that relate to object grasp. We used a virtual display system to present subjects with different kinds of visual feedback during reaching, including illusory feedback, indicating grasp of a virtual object during reaching in the force field, and object release in the absence of forces. Throughout the experiment, subjects in fact maintained grasp of the robot. We found that, indeed, the most effective visual cues were those associating the force field with grasp of the virtual object and the absence of the force field with release of the object. Our findings show more broadly that specific visual cues can protect motor skills from interference.
Collapse
Affiliation(s)
| | - Jeremy Wong
- Department of Psychology,
- Graduate Program in Neuroscience, and
| | - Paul L. Gribble
- Department of Psychology,
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|