1
|
Čelešnik H, Gorenjak M, Krušič M, Crnobrnja B, Sobočan M, Takač I, Arko D, Potočnik U. Isoform-Level Transcriptome Analysis of Peripheral Blood Mononuclear Cells from Breast Cancer Patients Identifies a Disease-Associated RASGEF1A Isoform. Cancers (Basel) 2024; 16:3171. [PMID: 39335143 PMCID: PMC11429621 DOI: 10.3390/cancers16183171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Breast cancer (BC) comprises multiple subtypes with distinct molecular features, which differ in their interplay with host immunity, prognosis, and treatment. Non-invasive blood analyses can provide valuable insights into systemic immunity during cancer. The aim of this study was to analyze the expression of transcriptional isoforms in peripheral blood mononuclear cells (PBMCs) from BC patients and healthy women to identify potential BC immune biomarkers. Methods: RNA sequencing and isoform-level bioinformatics were performed on PBMCs from 12 triple-negative and 13 luminal A patients. Isoform expression validation by qRT-PCR and clinicopathological correlations were performed in a larger cohort (156 BC patients and 32 healthy women). Results: Transcriptional analyses showed a significant (p < 0.001) decrease in the ENST00000374459 RASGEF1A isoform in PBMCs of BC compared to healthy subjects, indicating disease-related expression changes. The decrease was associated with higher ctDNA and Ki-67 values. Conclusions: The levels of the RASGEF1A transcriptional isoform ENST00000374459 may have the potential to distinguish between BC and healthy subjects. The downregulation of ENST00000374459 in breast cancer is associated with higher proliferation and ctDNA shedding. Specialized bioinformatics analyses such as isoform analyses hold significant promise in the detection of biomarkers, since standard RNA sequencing analyses may overlook specific transcriptional changes that may be disease-associated and biologically important.
Collapse
Grants
- P3-0427, P3-0067, J3-4523, J3-3069, I0-0029, J3-9272 and P3-0321 Slovenian Research and Innovation Agency
- IRP-2019/01-05, IRP-2019/02-15, IRP-2021/01-02 Internal University Medical Centre Maribor research funding,
- RIUM Republic of Slovenia, the Ministry of Higher Education, Science and Innovation and the European Union from the European Regional Development Fund
Collapse
Affiliation(s)
- Helena Čelešnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
| | - Mario Gorenjak
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
| | - Martina Krušič
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
| | - Bojana Crnobrnja
- Division of Gynecology and Perinatology, University Medical Center Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Monika Sobočan
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
- Division of Gynecology and Perinatology, University Medical Center Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Iztok Takač
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
- Division of Gynecology and Perinatology, University Medical Center Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Darja Arko
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
- Division of Gynecology and Perinatology, University Medical Center Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Uroš Potočnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.G.); (M.K.); (M.S.); (I.T.); (D.A.)
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
2
|
Althobaiti F, Sahyon HA, Shanab MMAH, Aldhahrani A, Helal MA, Khireldin A, Shoair AGF, Almalki ASA, Fathy AM. A comparative study of novel ruthenium(III) and iron(III) complexes containing uracil; docking and biological studies. J Inorg Biochem 2023; 247:112308. [PMID: 37441923 DOI: 10.1016/j.jinorgbio.2023.112308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
Structural and biological studies were conducted on the novel complexes [Fe(U)2(H2O)2]Cl3 (FeU) and [Ru(U)2(H2O)2]Cl3 (RuU) (U = 5,6-Diamino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione) to develop an anticancer drug candidate. The two complexes have been synthesized and characterized. Based on our findings, these complexes have octahedral geometry. The DNA-binding study proved that both complexes coordinated with CT-DNA. The docking study confirmed the potency of both complexes in downregulating the topoisomerase I protein through their high binding affinity. Biological studies have established that both complexes can act as potent anticancer agents against three cancer cell lines. RuU or FeU complexes induce apoptosis in breast cancer cells by increasing caspase9 protein and inhibiting proliferating cell nuclear antigen (PCNA) activity. In addition, both complexes down-regulate topoisomerase I expression in breast cancer cells. Therefore, the RuU and FeU complexes' anticancer activities were mediated via both apoptosis induction and topoisomerase I down-regulation. In conclusion, both complexes have dual anticancer activity pathways that may be responsible for the selective cytotoxicity of the complexes. This makes them more suitable for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Fayez Althobaiti
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Heba A Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt.
| | - Mai M A H Shanab
- Department of Chemistry, College of Sciences and Humanities Studies (Girls section), Hawtat Bani Tamim 11149, Prince Sattam Bin Abdulaziz University, P.O. Box:13, Saudi Arabia.
| | - Adil Aldhahrani
- Clinical Laboratory Science Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia.
| | - Marihan A Helal
- Chemistry Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Awad Khireldin
- Air transport management, Singapore Institute of Technology (SIT), Singapore.
| | - Abdel Ghany F Shoair
- Department of Science and Technology, University College-Ranyah, postcode 21975, Taif University, Saudi Arabia; High Altitude Research Center, Taif University, 21944, Saudi Arabia.
| | | | - Ahmed M Fathy
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Dardare J, Witz A, Betz M, Francois A, Meras M, Lamy L, Lambert A, Grandemange S, Husson M, Rouyer M, Demange J, Merlin JL, Harlé A, Gilson P. DDB2 represses epithelial-to-mesenchymal transition and sensitizes pancreatic ductal adenocarcinoma cells to chemotherapy. Front Oncol 2022; 12:1052163. [PMID: 36568213 PMCID: PMC9773984 DOI: 10.3389/fonc.2022.1052163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Damage specific DNA binding protein 2 (DDB2) is an UV-indiced DNA damage recognition factor and regulator of cancer development and progression. DDB2 has dual roles in several cancers, either as an oncogene or as a tumor suppressor gene, depending on cancer localization. Here, we investigated the unresolved role of DDB2 in pancreatic ductal adenocarcinoma (PDAC). Methods The expression level of DDB2 in pancreatic cancer tissues and its correlation with patient survival were evaluated using publicly available data. Two PDAC cell models with CRISPR-modified DDB2 expression were developed: DDB2 was repressed in DDB2-high T3M4 cells (T3M4 DDB2-low) while DDB2 was overexpressed in DDB2-low Capan-2 cells (Capan-2 DDB2-high). Immunofluorescence and qPCR assays were used to investigate epithelial-to-mesenchymal transition (EMT) in these models. Migration and invasion properties of the cells were also determined using wound healing and transwell assays. Sensitivity to 5-fluorouracil (5-FU), oxaliplatin, irinotecan and gemcitabine were finally investigated by crystal violet assays. Results DDB2 expression level was reduced in PDAC tissues compared to normal ones and DDB2-low levels were correlated to shorter disease-free survival in PDAC patients. DDB2 overexpression increased expression of E-cadherin epithelial marker, and decreased levels of N-cadherin mesenchymal marker. Conversely, we observed opposite effects in DDB2 repression and enhanced transcription of SNAIL, ZEB1, and TWIST EMT transcription factors (EMT-TFs). Study of migration and invasion revealed that these properties were negatively correlated with DDB2 expression in both cell models. DDB2 overexpression sensitized cells to 5-fluorouracil, oxaliplatin and gemcitabine. Conclusion Our study highlights the potential tumor suppressive effects of DDB2 on PDAC progression. DDB2 could thus represent a promising therapeutic target or biomarker for defining prognosis and predicting chemotherapy response in patients with PDAC.
Collapse
Affiliation(s)
- Julie Dardare
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France,Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France,*Correspondence: Julie Dardare,
| | - Andréa Witz
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France,Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Margaux Betz
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France,Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Aurélie Francois
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France,Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Morgane Meras
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Laureline Lamy
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France,Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Aurélien Lambert
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Stéphanie Grandemange
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France
| | - Marie Husson
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Marie Rouyer
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Jessica Demange
- Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Jean-Louis Merlin
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France,Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Alexandre Harlé
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France,Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| | - Pauline Gilson
- Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7039 Centre de Recherche en Automatique de Nancy (CRAN), Nancy, France,Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandoeuvre-les-Nancy, France
| |
Collapse
|
4
|
Sihombing UHM, Andrijono, Purwoto G, Gandamihardja S, Harahap AR, Rustamadji P, Kekalih A, Widyawati R, Fuady DR. Expression of CD44+/CD24-, RAD6 and DDB2 on chemotherapy response in ovarian Cancer: A prospective flow cytometry study. Gynecol Oncol Rep 2022; 42:101005. [PMID: 35707599 PMCID: PMC9189034 DOI: 10.1016/j.gore.2022.101005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
Dear editor of Gynecologic Oncology Reports, these are the research highlights: CD44+/CD24- overexpression in blood circulation is associated with ovarian cancer chemoresistance. RAD6 overexpression in blood circulation is associated with ovarian cancer chemoresistance. CD44+/CD24- expression in blood circulation is a good predictor of ovarian cancer chemoresistance.
Backgrounds Ovarian cancer is the 8th deadliest common cancer in women around the world. Almost all ovarian cancer patients would experience chemoresistance, recurrence, and poor prognosis after cytoreductive surgery and platinum-based chemotherapy. Chemoresistant cancer cells have characteristic expressions of cancer stem cell proteins (CSCs) CD44+/CD24-, RAD6 and DDB2. The increased expression of CD44+/CD24-, RAD6, and decreased DDB2 are believed to be associated with chemoresistance, recurrence, and poor prognosis of the disease. Thus, this study’s objective is to analyze the correlation between the expression of CD44+/CD24-, RAD6 and DDB2 with ovarian cancer chemoresistance. Materials and methods This study was conducted with a prospective cohort of 64 patients who is divided into two groups (32 patients in each group) at the Obstetrics-gynecology and pathology department of Cipto Mangunkusumo, Tarakan, Dharmais, and Fatmawati Hospital. All suspected ovarian cancer patients underwent cytoreductive debulking and histopathological examination. Chemotherapy was given for six series followed by six months of observation. After the observation, we determined the therapy’s response with the RECIST Criteria (Response Criteria in Solid Tumors) and then classified the results into chemoresistant or chemosensitive groups. Flow cytometry blood tests were then performed to examine the expression of CD44+/CD24-, RAD6 and DDB2. Results There was a significant relationship between increased levels of CD44+/CD24-, and RAD6 (p < 0.05) levels with the chemoresistance of ovarian cancer. The logistic regression test showed that the CD44+/CD24– was better marker. Conclusions These results indicate that CD44+/CD24 and RAD6 expressions are significantly associated with ovarian cancer chemoresistance, and CD44+/CD24- is the better marker to predict ovarian cancer chemoresistance.
Collapse
|
5
|
A protein with broad functions: damage-specific DNA-binding protein 2. Mol Biol Rep 2022; 49:12181-12192. [PMID: 36190612 PMCID: PMC9712371 DOI: 10.1007/s11033-022-07963-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/17/2022] [Indexed: 02/01/2023]
Abstract
Damage-specific DNA-binding protein 2 (DDB2) was initially identified as a component of the damage-specific DNA-binding heterodimeric complex, which cooperates with other proteins to repair UV-induced DNA damage. DDB2 is involved in the occurrence and development of cancer by affecting nucleotide excision repair (NER), cell apoptosis, and premature senescence. DDB2 also affects the sensitivity of cancer cells to radiotherapy and chemotherapy. In addition, a recent study found that DDB2 is a pathogenic gene for hepatitis and encephalitis. In recent years, there have been few relevant literature reports on DDB2, so there is still room for further research about it. In this paper, the molecular mechanisms of different biological processes involving DDB2 are reviewed in detail to provide theoretical support for research on drugs that can target DDB2.
Collapse
|
6
|
Emerging role of ferroptosis in breast cancer: New dawn for overcoming tumor progression. Pharmacol Ther 2021; 232:107992. [PMID: 34606782 DOI: 10.1016/j.pharmthera.2021.107992] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer has become a serious threat to women's health. Cancer progression is mainly derived from resistance to apoptosis induced by procedures or therapies. Therefore, new drugs or models that can overcome apoptosis resistance should be identified. Ferroptosis is a recently identified mode of cell death characterized by excess reactive oxygen species-induced lipid peroxidation. Since ferroptosis is distinct from apoptosis, necrosis and autophagy, its induction successfully eliminates cancer cells that are resistant to other modes of cell death. Therefore, ferroptosis may become a new direction around which to design breast cancer treatment. Unfortunately, the complete appearance of ferroptosis in breast cancer has not yet been fully elucidated. Furthermore, whether ferroptosis inducers can be used in combination with traditional anti- breast cancer drugs is still unknown. Moreover, a summary of ferroptosis in breast cancer progression and therapy is currently not available. In this review, we discuss the roles of ferroptosis-associated modulators glutathione, glutathione peroxidase 4, iron, nuclear factor erythroid-2 related factor-2, superoxide dismutases, lipoxygenase and coenzyme Q in breast cancer. Furthermore, we provide evidence that traditional drugs against breast cancer induce ferroptosis, and that ferroptosis inducers eliminate breast cancer cells. Finally, we put forward prospect of using ferroptosis inducers in breast cancer therapy, and predict possible obstacles and corresponding solutions. This review will deepen our understanding of the relationship between ferroptosis and breast cancer, and provide new insights into breast cancer-related therapeutic strategies.
Collapse
|
7
|
He YH, Yeh MH, Chen HF, Wang TS, Wong RH, Wei YL, Huynh TK, Hu DW, Cheng FJ, Chen JY, Hu SW, Huang CC, Chen Y, Yu J, Cheng WC, Shen PC, Liu LC, Huang CH, Chang YJ, Huang WC. ERα determines the chemo-resistant function of mutant p53 involving the switch between lincRNA-p21 and DDB2 expressions. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:536-553. [PMID: 34589276 PMCID: PMC8463322 DOI: 10.1016/j.omtn.2021.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Mutant p53 (mutp53) commonly loses its DNA binding affinity to p53 response elements (p53REs) and fails to induce apoptosis fully. However, the p53 mutation does not predict chemoresistance in all subtypes of breast cancers, and the critical determinants remain to be identified. In this study, mutp53 was found to mediate chemotherapy-induced long intergenic noncoding RNA-p21 (lincRNA-p21) expression by targeting the G-quadruplex structure rather than the p53RE on its promoter to promote chemosensitivity. However, estrogen receptor alpha (ERα) suppressed mutp53-mediated lincRNA-p21 expression by hijacking mutp53 to upregulate damaged DNA binding protein 2 (DDB2) transcription for subsequent DNA repair and chemoresistance. Levels of lincRNA-p21 positively correlated with the clinical responses of breast cancer patients to neoadjuvant chemotherapy and had an inverse correlation with the ER status and DDB2 level. In contrast, the carboplatin-induced DDB2 expression was higher in ER-positive breast tumor tissues. These results demonstrated that ER status determines the oncogenic function of mutp53 in chemoresistance by switching its target gene preference from lincRNA-p21 to DDB2 and suggest that induction of lincRNA-p21 and targeting DDB2 would be effective strategies to increase the chemosensitivity of mutp53 breast cancer patients.
Collapse
Affiliation(s)
- Yu-Hao He
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Ming-Hsin Yeh
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Hsiao-Fan Chen
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
| | - Tsu-Shing Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Ruey-Hong Wong
- Department of Public Health, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Ya-Ling Wei
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Thanh Kieu Huynh
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Dai-Wei Hu
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Fang-Ju Cheng
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Basic Medical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Jhen-Yu Chen
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Shu-Wei Hu
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chia-Chen Huang
- Department of Public Health, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Yeh Chen
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Jiaxin Yu
- AI Innovation Center, China Medical University Hospital, Taiwan 40402, Taiwan
| | - Wei-Chung Cheng
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Pei-Chun Shen
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Liang-Chih Liu
- Division of Breast Surgery, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chih-Hao Huang
- Division of Breast Surgery, China Medical University Hospital, Taichung 40402, Taiwan
| | - Ya-Jen Chang
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Chien Huang
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
- Drug Development Center, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 40402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
8
|
Zhang D, Yang S, Li Y, Yao J, Ruan J, Zheng Y, Deng Y, Li N, Wei B, Wu Y, Zhai Z, Lyu J, Dai Z. Prediction of Overall Survival Among Female Patients With Breast Cancer Using a Prognostic Signature Based on 8 DNA Repair-Related Genes. JAMA Netw Open 2020; 3:e2014622. [PMID: 33017027 PMCID: PMC7536586 DOI: 10.1001/jamanetworkopen.2020.14622] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IMPORTANCE Breast cancer (BC), a common malignant tumor, ranks first among cancers in terms of morbidity and mortality among female patients. Currently, identifying effective prognostic models has a significant association with the prediction of the overall survival of patients with BC and guidance of clinicians in early diagnosis and treatment. OBJECTIVES To identify a potential DNA repair-related prognostic signature through a comprehensive evaluation and to further improve the accuracy of prediction of the overall survival of patients with BC. DESIGN, SETTING, AND PARTICIPANTS In this prognostic study, conducted from October 9, 2019, to February 3, 2020, the gene expression profiles and clinical data of patients with BC were collected from The Cancer Genome Atlas database. This study consisted of a training set from The Cancer Genome Atlas database and 2 validation cohorts from the Gene Expression Omnibus, which included 1096 patients with BC. A prognostic signature based on 8 DNA repair-related genes (DRGs) was developed to predict overall survival among female patients with BC. MAIN OUTCOMES AND MEASURES Primary screening prognostic biomarkers were analyzed using univariate Cox proportional hazards regression analysis and the least absolute shrinkage and selection operator Cox proportional hazards regression. A risk model was completely established through multivariate Cox proportional hazards regression analysis. Finally, a prognostic nomogram, combining the DRG signature and clinical characteristics of patients, was constructed. To examine the potential mechanisms of the DRGs, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed. RESULTS In this prognostic study based on samples from 1096 women with BC (mean [SD] age, 59.6 [13.1] years), 8 DRGs (MDC1, RPA3, MED17, DDB2, SFPQ, XRCC4, CYP19A1, and PARP3) were identified as prognostic biomarkers. The time-dependent receiver operating characteristic curve analysis suggested that the 8-gene signature had a good predictive accuracy. In the training cohort, the areas under the curve were 0.708 for 3-year survival and 0.704 for 5-year survival. In the validation cohort, the areas under the curve were 0.717 for 3-year survival and 0.772 for 5-year survival in the GSE9893 data set and 0.691 for 3-year survival and 0.718 for 5-year survival in the GSE42568 data set. This DRG signature mainly involved some regulation pathways of vascular endothelial cell proliferation. CONCLUSIONS AND RELEVANCE In this study, a prognostic signature using 8 DRGs was developed that successfully predicted overall survival among female patients with BC. This risk model provides new clinical evidence for the diagnostic accuracy and targeted treatment of BC.
Collapse
Affiliation(s)
- Dai Zhang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Si Yang
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yiche Li
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Jia Yao
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Zheng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yujiao Deng
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Na Li
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Bajin Wei
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Wu
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhen Zhai
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Li J, Zakariah M, Malik A, Ola MS, Syed R, Chaudhary AA, Khan S. Analysis of Salmonella typhimurium Protein-Targeting in the Nucleus of Host Cells and the Implications in Colon Cancer: An in-silico Approach. Infect Drug Resist 2020; 13:2433-2442. [PMID: 32765017 PMCID: PMC7381790 DOI: 10.2147/idr.s258037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022] Open
Abstract
Background Infections of Salmonella typhimurium (S. typhimurium) are major threats to health, threats include diarrhoea, fever, acute intestinal inflammation, and cancer. Nevertheless, little information is available about the involvement of S. typhimurium in colon cancer etiology. Methods The present study was designed to predict nuclear targeting of S. typhimurium proteins in the host cell through computational tools, including nuclear localization signal (NLS) mapper, Balanced Subcellular Localization predictor (BaCeILo), and Hum-mPLoc using next-generation sequencing data. Results Several gene expression-associated proteins of S. typhimurium have been predicted to target the host nucleus during intracellular infections. Nuclear targeting of S. typhimurium proteins can lead to competitive interactions between the host and pathogen proteins with similar cellular substrates, and it may have a possible involvement in colon cancer growth. Our results suggested that S. typhimurium releases its proteins within compartments of the host cell, where they act as a component of the host cell proteome. Protein targeting is possibly involved in colon cancer etiology during intracellular bacterial infection. Conclusion The results of current in-silico study showed the potential involvement of S. typhimurium infection with alteration in normal functioning of host cell which act as possible factor to connect with the growth and development of colon cancer.
Collapse
Affiliation(s)
- Jianhua Li
- Department of General Surgery Ⅰ, Xinxiang Central Hospital, Xinxiang City, Henan Province 453000, People's Republic of China
| | - Mohammed Zakariah
- Research Center, College of Computer and Information Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Shahanavaj Khan
- Bioinformatics and Biotechnology Unit, Department of Bioscience, Shri Ram Group of College (SRGC), Muzaffarnagar, UP, India.,Nano-Biotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Beecher M, Kumar N, Jang S, Rapić-Otrin V, Van Houten B. Expanding molecular roles of UV-DDB: Shining light on genome stability and cancer. DNA Repair (Amst) 2020; 94:102860. [PMID: 32739133 DOI: 10.1016/j.dnarep.2020.102860] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/13/2023]
Abstract
UV-damaged DNA binding protein (UV-DDB) is a heterodimeric complex, composed of DDB1 and DDB2, and is involved in global genome nucleotide excision repair. Mutations in DDB2 are associated with xeroderma pigmentosum complementation group E. UV-DDB forms a ubiquitin E3 ligase complex with cullin-4A and RBX that helps to relax chromatin around UV-induced photoproducts through the ubiquitination of histone H2A. After providing a brief historical perspective on UV-DDB, we review our current knowledge of the structure and function of this intriguing repair protein. Finally, this article discusses emerging data suggesting that UV-DDB may have other non-canonical roles in base excision repair and the etiology of cancer.
Collapse
Affiliation(s)
- Maria Beecher
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Namrata Kumar
- Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sunbok Jang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vesna Rapić-Otrin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bennett Van Houten
- Molecular Pharmacology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Molecular Genetics and Developmental Biology Graduate Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
11
|
Lin Y, Ali Abuderman AW, Aldakheel FM, Ahmad M. Bioinformatics approach to understand the mode of microbial pathogenesis of Chlamydia trachomatis and their implications in gynecologic malignancy. J Reprod Immunol 2020; 140:103127. [PMID: 32311665 DOI: 10.1016/j.jri.2020.103127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 11/18/2022]
Abstract
Chlamydia trachomatis has a say on the target gene i.e., modulating the expression of target gene in the host so that it is given protection from the immune cells and so its survival and replication are not arrested by the host. The current study reports a wide range of C. trachomatis proteins that target the cellular as well as sub-cellular components of the host in gynecologic malignancy. Various bioinformatics tools was used to conduct an in-depth analysis on nuclear and eukaryotic sub cellular localization signal to find the sequences of the predicted proteins of C. trachomatis strain G. A total of 411 proteins was identified with 79.54% maximum expected accuracy and 51.02% least expected accuracy. There were uneven prediction of proteins along with redundancies between BaCeILo and HSLpred in the determination of sub-cellular localization of the CT proteins. The highest molecular weight proteins (>80 kDa) were observed to be the targeted proteins to nucleus of host cell. There was no constant patterns observed in the values of isoelectric point (pI) in case of mitochondrial targeting. The expression of eight proteins were significant with different fold changes. The in-silico study provided much detailed insights for further research in gynecological cancer. However, further experiments should be conducted to validate the specificity and confirmatory roles played by these predicted proteins in carcinogenesis.
Collapse
Affiliation(s)
- Yanyan Lin
- Faculty of Basic Medicine, Zhangzhou Health Vocational College, Synergistic innovation center of transformation medical testing application technology of Zhangzhou Health Vocational College (TMTSIC), Zhangzhou City, Fujian Province, China.
| | - Abdul Wahab Ali Abuderman
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Mohammad Ahmad
- Medical Surgical Department, College of Nursing, King Saud University, P.O. Box 642, Riyadh, 11421, Saudi Arabia.
| |
Collapse
|
12
|
Verma Y, Yadav A, Katara P. Mining of cancer core-genes and their protein interactome using expression profiling based PPI network approach. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2019.100583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Gilson P, Drouot G, Witz A, Merlin JL, Becuwe P, Harlé A. Emerging Roles of DDB2 in Cancer. Int J Mol Sci 2019; 20:ijms20205168. [PMID: 31635251 PMCID: PMC6834144 DOI: 10.3390/ijms20205168] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 01/10/2023] Open
Abstract
Damage-specific DNA-binding protein 2 (DDB2) was originally identified as a DNA damage recognition factor that facilitates global genomic nucleotide excision repair (GG-NER) in human cells. DDB2 also contributes to other essential biological processes such as chromatin remodeling, gene transcription, cell cycle regulation, and protein decay. Recently, the potential of DDB2 in the development and progression of various cancers has been described. DDB2 activity occurs at several stages of carcinogenesis including cancer cell proliferation, survival, epithelial to mesenchymal transition, migration and invasion, angiogenesis, and cancer stem cell formation. In this review, we focus on the current state of scientific knowledge regarding DDB2 biological effects in tumor development and the underlying molecular mechanisms. We also provide insights into the clinical consequences of DDB2 activity in cancers.
Collapse
Affiliation(s)
- Pauline Gilson
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Guillaume Drouot
- Faculté des Sciences et Technologies, Université de Lorraine, CNRS UMR 7039 CRAN, 54506 Vandœuvre-lès-Nancy CEDEX, France.
| | - Andréa Witz
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Jean-Louis Merlin
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| | - Philippe Becuwe
- Faculté des Sciences et Technologies, Université de Lorraine, CNRS UMR 7039 CRAN, 54506 Vandœuvre-lès-Nancy CEDEX, France.
| | - Alexandre Harlé
- Institut de Cancérologie de Lorraine, Service de Biopathologie, Université de Lorraine, CNRS UMR 7039 CRAN, 54519 Vandœuvre-lès-Nancy CEDEX, France.
| |
Collapse
|
14
|
Zhao L, Si CS, Yu Y, Lu JW, Zhuang Y. Depletion of DNA damage binding protein 2 sensitizes triple-negative breast cancer cells to poly ADP-ribose polymerase inhibition by destabilizing Rad51. Cancer Sci 2019; 110:3543-3552. [PMID: 31541611 PMCID: PMC6825009 DOI: 10.1111/cas.14201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
Poly ADP‐ribose polymerase inhibitors (PARPi) have shown promising therapeutic efficacy in triple‐negative breast cancer (TNBC) patients. However, resistance ultimately develops, preventing a curative effect from being attained. Extensive investigations have indicated the diversity in the mechanisms underlying the PARPi sensitivity of breast cancer. In this study, we found that DNA damage binding protein 2 (DDB2), a DNA damage‐recognition factor, could protect TNBC cells from PARPi by regulating DNA double‐strand break repair through the homologous recombination pathway, whereas the depletion of DDB2 sensitizes TNBC cells to PARPi. Furthermore, we found that DDB2 was able to stabilize Rad51 by physical association and disrupting its ubiquitination pathway‐induced proteasomal degradation. These findings highlight an essential role of DDB2 in modulating homologous recombination pathway activity and suggest a promising therapeutic target for TNBC.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng-Shuai Si
- Department of General Surgery, Jiangsu Institute of Cancer Research, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Wei Lu
- Department of Medical Oncology, Jiangsu Institute of Cancer Research, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Zhuang
- Department of Medical Oncology, Jiangsu Institute of Cancer Research, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
McGivern TJP, Slator C, Kellett A, Marmion CJ. Innovative DNA-Targeted Metallo-prodrug Strategy Combining Histone Deacetylase Inhibition with Oxidative Stress. Mol Pharm 2018; 15:5058-5071. [PMID: 30192548 DOI: 10.1021/acs.molpharmaceut.8b00652] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cancer remains a global health challenge. There is an urgent need to develop innovative therapeutics that can overcome the shortcomings of existing cancer therapies. DNA enzymes involved in nucleic acid compaction and organization are an attractive cancer drug target for therapeutic exploitation. In this work, a family of Cu(II) prodrugs containing suberoylanilide hydroxamic acid (SAHA), a well-established histone deacetylase inhibitor (HDACi) and clinically approved cancer drug, and phenanthrene ligands as DNA intercalative components have been rationally developed. The complexes, of general formula [Cu(SAHA-1H)( N, N'-phenanthrene)]+, exhibit excellent DNA recognition with binding affinity of lead agents in the order of ∼107 M(bp)-1. Biophysical studies involving nucleic acid polymers indicate intercalative binding at both adenine-thymine (A-T) and guanine-cytosine (G-C) rich sequences but thermodynamically stable interactions are favored in G-C tracts. The complexes mediate DNA damage by producing reactive oxygen species (ROS) with spin trapping experiments showing that superoxide, the hydroxyl radical, and hydrogen peroxide play critical roles in strand scission. The agents were found to have promising antiproliferative effects against a panel of epithelial cancers, and in two representative cell lines possessing mutated p53 (SK-OV-3 and DU145), enhanced cytotoxicity was observed. Significantly, mechanistic experiments with the most promising candidates revealed HDAC inhibition activity was achieved over a shorter time frame as compared to clinical standards with DNA damage-response markers identifying upregulation of both DNA synthesis and nucleotide excision repair (NER) pathways. Finally, confocal imaging and gene expression analysis show this metallodrug class exerts cytotoxic activity predominantly through an apoptotic pathway.
Collapse
Affiliation(s)
- Tadhg J P McGivern
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland.,School of Chemical Sciences and National Institute for Cellular Biotechnology , Dublin City University , Glasnevin, Dublin 9 , Ireland
| | - Creina Slator
- School of Chemical Sciences and National Institute for Cellular Biotechnology , Dublin City University , Glasnevin, Dublin 9 , Ireland
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology , Dublin City University , Glasnevin, Dublin 9 , Ireland
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| |
Collapse
|
16
|
Chen HH, Fan P, Chang SW, Tsao YP, Huang HP, Chen SL. NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer. Oncotarget 2017; 8:21501-21515. [PMID: 28212551 PMCID: PMC5400601 DOI: 10.18632/oncotarget.15308] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/27/2017] [Indexed: 12/12/2022] Open
Abstract
Both nuclear receptor interaction protein (NRIP) and DNA damage binding protein 2 (DDB2) belong to the Cullin 4 (CUL4)-DDB1 binding protein family and are androgen receptor (AR)-interacting proteins. Here, we investigated the expression patterns of the NRIP, DDB2 and AR proteins in human prostate cancer tissues and found that the expression levels of NRIP and AR were higher, but the DDB2 level was lower, in prostate cancer tissues than in non-neoplastic controls, suggesting NRIP as a candidate tumor promoter and DDB2 as a tumor suppressor in prostate cancer. Furthermore, both NRIP and DDB2 shared the same AR binding domain; they were competitors for the AR, but not for DDB1 binding, in the AR-DDB2-DDB1-CUL4A complex. Conclusively, NRIP stabilizes the AR protein by displacing DDB2 from the AR-DDB2 complex. Consistent with our hypothesis, a specific expression pattern with high levels of NRIP and AR, together with a low level of DDB2, was found more frequently in the human prostate cancer tissues with a cribriform pattern than in non-cribriform tumors, suggesting that disruption of the balance between NRIP and DDB2 may change AR protein homeostasis and contribute to pathogenesis in certain aggressive types of prostate cancer.
Collapse
Affiliation(s)
- Hsin-Hsiung Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ping Fan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Szu-Wei Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genetics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
17
|
Azad AKM, Lawen A, Keith JM. Bayesian model of signal rewiring reveals mechanisms of gene dysregulation in acquired drug resistance in breast cancer. PLoS One 2017; 12:e0173331. [PMID: 28288164 PMCID: PMC5348014 DOI: 10.1371/journal.pone.0173331] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/20/2017] [Indexed: 11/24/2022] Open
Abstract
Small molecule inhibitors, such as lapatinib, are effective against breast cancer in clinical trials, but tumor cells ultimately acquire resistance to the drug. Maintaining sensitization to drug action is essential for durable growth inhibition. Recently, adaptive reprogramming of signaling circuitry has been identified as a major cause of acquired resistance. We developed a computational framework using a Bayesian statistical approach to model signal rewiring in acquired resistance. We used the p1-model to infer potential aberrant gene-pairs with differential posterior probabilities of appearing in resistant-vs-parental networks. Results were obtained using matched gene expression profiles under resistant and parental conditions. Using two lapatinib-treated ErbB2-positive breast cancer cell-lines: SKBR3 and BT474, our method identified similar dysregulated signaling pathways including EGFR-related pathways as well as other receptor-related pathways, many of which were reported previously as compensatory pathways of EGFR-inhibition via signaling cross-talk. A manual literature survey provided strong evidence that aberrant signaling activities in dysregulated pathways are closely related to acquired resistance in EGFR tyrosine kinase inhibitors. Our approach predicted literature-supported dysregulated pathways complementary to both node-centric (SPIA, DAVID, and GATHER) and edge-centric (ESEA and PAGI) methods. Moreover, by proposing a novel pattern of aberrant signaling called V-structures, we observed that genes were dysregulated in resistant-vs-sensitive conditions when they were involved in the switch of dependencies from targeted to bypass signaling events. A literature survey of some important V-structures suggested they play a role in breast cancer metastasis and/or acquired resistance to EGFR-TKIs, where the mRNA changes of TGFBR2, LEF1 and TP53 in resistant-vs-sensitive conditions were related to the dependency switch from targeted to bypass signaling links. Our results suggest many signaling pathway structures are compromised in acquired resistance, and V-structures of aberrant signaling within/among those pathways may provide further insights into the bypass mechanism of targeted inhibition.
Collapse
Affiliation(s)
- A. K. M. Azad
- School of Mathematical Sciences, Monash University, Clayton, VIC, Australia
- * E-mail:
| | - Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, Australia
| | - Jonathan M. Keith
- School of Mathematical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
18
|
Perucca P, Sommatis S, Mocchi R, Prosperi E, Stivala LA, Cazzalini O. A DDB2 mutant protein unable to interact with PCNA promotes cell cycle progression of human transformed embryonic kidney cells. Cell Cycle 2016; 14:3920-8. [PMID: 26697842 DOI: 10.1080/15384101.2015.1120921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DNA damage binding protein 2 (DDB2) is a protein involved in the early step of DNA damage recognition of the nucleotide excision repair (NER) process. Recently, it has been suggested that DDB2 may play a role in DNA replication, based on its ability to promote cell proliferation. We have previously shown that DDB2 binds PCNA during NER, but also in the absence of DNA damage; however, whether and how this interaction influences cell proliferation is not known. In this study, we have addressed this question by using HEK293 cell clones stably expressing DDB2(Wt) protein, or a mutant form (DDB2(Mut)) unable to interact with PCNA. We report that overexpression of the DDB2(Mut) protein provides a proliferative advantage over the wild type form, by influencing cell cycle progression. In particular, an increase in the number of S-phase cells, together with a reduction in p21(CDKN1A) protein level, and a shorter cell cycle length, has been observed in the DDB2(Mut) cells. These results suggest that DDB2 influences cell cycle progression thanks to its interaction with PCNA.
Collapse
Affiliation(s)
- Paola Perucca
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| | - Sabrina Sommatis
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| | - Roberto Mocchi
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| | - Ennio Prosperi
- b Istituto di Genetica Molecolare (IGM) del CNR ; Pavia , Italy
| | - Lucia Anna Stivala
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| | - Ornella Cazzalini
- a Dipartimento di Medicina Molecolare ; Unità di Immunologia e Patologia generale; Università di Pavia ; Pavia , Italy
| |
Collapse
|
19
|
Loss of the N-terminal methyltransferase NRMT1 increases sensitivity to DNA damage and promotes mammary oncogenesis. Oncotarget 2016; 6:12248-63. [PMID: 25909287 PMCID: PMC4494936 DOI: 10.18632/oncotarget.3653] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/27/2015] [Indexed: 12/31/2022] Open
Abstract
Though discovered over four decades ago, the function of N-terminal methylation has mostly remained a mystery. Our discovery of the first mammalian N-terminal methyltransferase, NRMT1, has led to the discovery of many new functions for N-terminal methylation, including regulation of DNA/protein interactions, accurate mitotic division, and nucleotide excision repair (NER). Here we test whether NRMT1 is also important for DNA double-strand break (DSB) repair, and given its previously known roles in cell cycle regulation and the DNA damage response, assay if NRMT1 is acting as a tumor suppressor. We find that NRMT1 knockdown significantly enhances the sensitivity of breast cancer cell lines to both etoposide treatment and γ-irradiation, as well as, increases proliferation rate, invasive potential, anchorage-independent growth, xenograft tumor size, and tamoxifen sensitivity. Interestingly, this positions NRMT1 as a tumor suppressor protein involved in multiple DNA repair pathways, and indicates, similar to BRCA1 and BRCA2, its loss may result in tumors with enhanced sensitivity to diverse DNA damaging chemotherapeutics.
Collapse
|
20
|
Barbieux C, Bacharouche J, Soussen C, Hupont S, Razafitianamaharavo A, Klotz R, Pannequin R, Brie D, Bécuwe P, Francius G, Grandemange S. DDB2 (damaged-DNA binding 2) protein: a new modulator of nanomechanical properties and cell adhesion of breast cancer cells. NANOSCALE 2016; 8:5268-79. [PMID: 26879405 DOI: 10.1039/c5nr09126h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
DDB2, known for its role in DNA repair, was recently shown to reduce mammary tumor invasiveness by inducing the transcription of IκBα, an inhibitor of NF-κB activity. Since cellular adhesion is a key event during the epithelial to mesenchymal transition (EMT) leading to the invasive capacities of breast tumor cells, the aim of this study was to investigate the role of DDB2 in this process. Thus, using low and high DDB2-expressing MDA-MB231 and MCF7 cells, respectively, in which DDB2 expression was modulated experimentally, we showed that DDB2 overexpression was associated with a decrease of adhesion abilities on glass and plastic areas of breast cancer cells. Then, we investigated cell nanomechanical properties by atomic force microscopy (AFM). Our results revealed significant changes in the Young's Modulus value and the adhesion force in MDA-MB231 and MCF7 cells, whether DDB2 was expressed or not. The cell stiffness decrease observed in MDA-MB231 and MCF7 expressing DDB2 was correlated with a loss of the cortical actin-cytoskeleton staining. To understand how DDB2 regulates these processes, an adhesion-related gene PCR-Array was performed. Several adhesion-related genes were differentially expressed according to DDB2 expression, indicating that important changes are occurring at the molecular level. Thus, this work demonstrates that AFM technology is an important tool to follow cellular changes during tumorigenesis. Moreover, our data revealed that DDB2 is involved in early events occurring during metastatic progression of breast cancer cells and will contribute to define this protein as a new marker of metastatic progression in this type of cancer.
Collapse
Affiliation(s)
- Claire Barbieux
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Jalal Bacharouche
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France. and CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Charles Soussen
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Sébastien Hupont
- CNRS, FR3209 Biologie Moléculaire Cellulaire et Thérapeutique (BMCT), Plateforme d'Imagerie Cellulaire et Tissulaire PTIBC-IBISA, Biopôle de l'Université de Lorraine, Campus Biologie-Santé, Vandœuvre-lès-Nancy, F-54506, France
| | - Angélina Razafitianamaharavo
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux, LIEC, UMR 7360, Vandœuvre-lès-Nancy, F-54500, France and CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux, LIEC, UMR 7360, Vandœuvre-lès-Nancy, F-54500, France
| | - Rémi Klotz
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Rémi Pannequin
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - David Brie
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Philippe Bécuwe
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Grégory Francius
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France. and CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Stéphanie Grandemange
- Université de Lorraine, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France. and CNRS, Centre de Recherche en Automatique de Nancy, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| |
Collapse
|
21
|
Khan S, Zakariah M, Palaniappan S. Computational prediction of Mycoplasma hominis proteins targeting in nucleus of host cell and their implication in prostate cancer etiology. Tumour Biol 2016; 37:10805-13. [PMID: 26874727 DOI: 10.1007/s13277-016-4970-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/02/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer has long been assumed to be a genetic disease. However, recent evidence supports the enigmatic connection of bacterial infection with the growth and development of various types of cancers. The cause and mechanism of the growth and development of prostate cancer due to Mycoplasma hominis remain unclear. Prostate cancer cells are infected and colonized by enteroinvasive M. hominis, which controls several factors that can affect prostate cancer growth in susceptible persons. We investigated M. hominis proteins targeting the nucleus of host cells and their implications in prostate cancer etiology. Many vital processes are controlled in the nucleus, where the proteins targeting M. hominis may have various potential implications. A total of 29/563 M. hominis proteins were predicted to target the nucleus of host cells. These include numerous proteins with the capability to alter normal growth activities. In conclusion, our results emphasize that various proteins of M. hominis targeted the nucleus of host cells and were involved in prostate cancer etiology through different mechanisms and strategies.
Collapse
Affiliation(s)
- Shahanavaj Khan
- Nanomedicine & Biotechnology Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia.
- Department of Bioscience, Shri Ram Group of College (SRGC), Muzaffarnagar, UP, India.
| | - Mohammed Zakariah
- Research Center, College of Computer and Information Science, King Saud University, Riyadh, Saudi Arabia
| | - Sellappan Palaniappan
- School of Science and Engineering, Malaysia University of Science and Technology, Petaling Jaya, Malaysia
| |
Collapse
|
22
|
Computational prediction of Escherichia coli proteins host subcellular targeting and their implications in colorectal cancer etiology. Cancer Lett 2015; 364:25-32. [DOI: 10.1016/j.canlet.2015.04.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 12/19/2022]
|
23
|
Becuwe P, Ennen M, Klotz R, Barbieux C, Grandemange S. Manganese superoxide dismutase in breast cancer: from molecular mechanisms of gene regulation to biological and clinical significance. Free Radic Biol Med 2014; 77:139-51. [PMID: 25224035 DOI: 10.1016/j.freeradbiomed.2014.08.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/21/2014] [Accepted: 08/21/2014] [Indexed: 01/06/2023]
Abstract
Breast cancer is one of the most common malignancies of all cancers in women worldwide. Many difficulties reside in the prediction of tumor metastatic progression because of the lack of sufficiently reliable predictive biological markers, and this is a permanent preoccupation for clinicians. Manganese superoxide dismutase (MnSOD) may represent a rational candidate as a predictive biomarker of breast tumor metastatic progression, because its gene expression is profoundly altered between early and advanced breast cancer, in contrast to expression in the normal mammary gland. In this review, we report the characterization of some gene polymorphisms and molecular mechanisms of SOD2 gene regulation, which allows a better understanding of how MnSOD is decreased in early breast cancer and increased in advanced breast cancer. Several studies display the biological significance of MnSOD level in proliferation as well as in invasive and angiogenic abilities of breast tumor cells by controlling superoxide anion radical (O2(•-)) and hydrogen peroxide (H2O2). Particularly, they report how these reactive oxygen species may activate some signaling pathways involved in breast tumor growth. Emerging understanding of these findings provides an interesting framework for guiding translational research and suggests a way to define precisely the clinical interest of MnSOD as a prognostic and/or predicting marker in breast cancer, by associating with some regulators involved in SOD2 gene regulation and other well-known biomarkers, in addition to the typical clinical parameters.
Collapse
Affiliation(s)
- Philippe Becuwe
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France.
| | - Marie Ennen
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Rémi Klotz
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Claire Barbieux
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | - Stéphanie Grandemange
- Centre de Recherche en Automatique de Nancy, UMR 7039 CNRS, Faculté des Sciences et Technologies, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
24
|
Ashworth J, Bernard B, Reynolds S, Plaisier CL, Shmulevich I, Baliga NS. Structure-based predictions broadly link transcription factor mutations to gene expression changes in cancers. Nucleic Acids Res 2014; 42:12973-83. [PMID: 25378323 PMCID: PMC4245936 DOI: 10.1093/nar/gku1031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 12/24/2022] Open
Abstract
Thousands of unique mutations in transcription factors (TFs) arise in cancers, and the functional and biological roles of relatively few of these have been characterized. Here, we used structure-based methods developed specifically for DNA-binding proteins to systematically predict the consequences of mutations in several TFs that are frequently mutated in cancers. The explicit consideration of protein-DNA interactions was crucial to explain the roles and prevalence of mutations in TP53 and RUNX1 in cancers, and resulted in a higher specificity of detection for known p53-regulated genes among genetic associations between TP53 genotypes and genome-wide expression in The Cancer Genome Atlas, compared to existing methods of mutation assessment. Biophysical predictions also indicated that the relative prevalence of TP53 missense mutations in cancer is proportional to their thermodynamic impacts on protein stability and DNA binding, which is consistent with the selection for the loss of p53 transcriptional function in cancers. Structure and thermodynamics-based predictions of the impacts of missense mutations that focus on specific molecular functions may be increasingly useful for the precise and large-scale inference of aberrant molecular phenotypes in cancer and other complex diseases.
Collapse
Affiliation(s)
| | - Brady Bernard
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
25
|
Khan AA. In SilicoPrediction ofEscherichia coliProteins Targeting the Host Cell Nucleus, with Special Reference to Their Role in Colon Cancer Etiology. J Comput Biol 2014; 21:466-75. [DOI: 10.1089/cmb.2014.0001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Abdul Arif Khan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Ennen M, Klotz R, Touche N, Pinel S, Barbieux C, Besancenot V, Brunner E, Thiebaut D, Jung AC, Ledrappier S, Domenjoud L, Abecassis J, Plénat F, Grandemange S, Becuwe P. DDB2: A Novel Regulator of NF-κB and Breast Tumor Invasion. Cancer Res 2013; 73:5040-52. [DOI: 10.1158/0008-5472.can-12-3655] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
DDB2 is a novel AR interacting protein and mediates AR ubiquitination/degradation. Int J Biochem Cell Biol 2012; 44:1952-61. [DOI: 10.1016/j.biocel.2012.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/27/2012] [Accepted: 07/23/2012] [Indexed: 11/22/2022]
|
28
|
Ennen M, Minig V, Grandemange S, Touche N, Merlin JL, Besancenot V, Brunner E, Domenjoud L, Becuwe P. Regulation of the high basal expression of the manganese superoxide dismutase gene in aggressive breast cancer cells. Free Radic Biol Med 2011; 50:1771-9. [PMID: 21419216 DOI: 10.1016/j.freeradbiomed.2011.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 03/04/2011] [Accepted: 03/08/2011] [Indexed: 11/15/2022]
Abstract
A high basal expression of manganese superoxide dismutase (MnSOD) has been reported in aggressive breast cancer cells, according to an unknown mechanism, and contributes to their invasive abilities. Here, we report the involvement of Sp1 and nuclear factor-κB (NF-κB) transcription factors in this high basal expression of MnSOD in aggressive breast cancer cells. Suppression or inactivation of Sp1 showed that it plays an essential role in the high MnSOD expression in aggressive breast cancer cells through a unique binding site identified by chromatin immunoprecipitation (ChIP) assay and functional analysis of the MnSOD proximal promoter. Treatment of cells with a specific NF-κB inhibitor peptide decreased significantly high basal MnSOD expression. A ChIP assay showed binding of a constitutive p50/p65 NF-κB complex to the MnSOD intronic enhancer element, associated with hyperacetylation of the H3 histone. Finally, high basal expression of MnSOD resulted in the lack of expression of Damaged DNA binding 2 (DDB2) protein in aggressive breast cancer cells. DDB2 overexpression prevented the binding of Sp1 as well as of NF-κB to their respective elements on the MnSOD gene. These results contribute to a better understanding of MnSOD up-regulation, which may be clinically important in the prediction of breast tumor progression.
Collapse
Affiliation(s)
- Marie Ennen
- EA 4421 Signalisation, Génomique et Recherche Translationnelle en Oncologie, Faculté des Sciences, Université Henri Poincaré, Nancy-Université, 54506 Vandoeuvre-lès-Nancy Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Castells E, Molinier J, Benvenuto G, Bourbousse C, Zabulon G, Zalc A, Cazzaniga S, Genschik P, Barneche F, Bowler C. The conserved factor DE-ETIOLATED 1 cooperates with CUL4-DDB1DDB2 to maintain genome integrity upon UV stress. EMBO J 2011; 30:1162-72. [PMID: 21304489 DOI: 10.1038/emboj.2011.20] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 01/10/2011] [Indexed: 11/09/2022] Open
Abstract
Plants and many other eukaryotes can make use of two major pathways to cope with mutagenic effects of light, photoreactivation and nucleotide excision repair (NER). While photoreactivation allows direct repair by photolyase enzymes using light energy, NER requires a stepwise mechanism with several protein complexes acting at the levels of lesion detection, DNA incision and resynthesis. Here we investigated the involvement in NER of DE-ETIOLATED 1 (DET1), an evolutionarily conserved factor that associates with components of the ubiquitylation machinery in plants and mammals and acts as a negative repressor of light-driven photomorphogenic development in Arabidopsis. Evidence is provided that plant DET1 acts with CULLIN4-based ubiquitin E3 ligase, and that appropriate dosage of DET1 protein is necessary for efficient removal of UV photoproducts through the NER pathway. Moreover, DET1 is required for CULLIN4-dependent targeted degradation of the UV-lesion recognition factor DDB2. Finally, DET1 protein is degraded concomitantly with DDB2 upon UV irradiation in a CUL4-dependent mechanism. Altogether, these data suggest that DET1 and DDB2 cooperate during the excision repair process.
Collapse
Affiliation(s)
- Enric Castells
- Institut de Biologie de l'Ecole Normale Supérieure, Section de Génomique Environnementale et Evolutive, CNRS UMR 8197 INSERM U1021, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jones KL, Zhang L, Seldeen KL, Gong F. Detection of bulky DNA lesions: DDB2 at the interface of chromatin and DNA repair in eukaryotes. IUBMB Life 2010; 62:803-11. [DOI: 10.1002/iub.391] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Sun NK, Sun CL, Lin CH, Pai LM, Chao CCK. Damaged DNA-binding protein 2 (DDB2) protects against UV irradiation in human cells and Drosophila. J Biomed Sci 2010; 17:27. [PMID: 20398405 PMCID: PMC2864207 DOI: 10.1186/1423-0127-17-27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/17/2010] [Indexed: 11/23/2022] Open
Abstract
Background We observed previously that cisplatin-resistant HeLa cells were cross-resistant to UV light due to accumulation of DDB2, a protein implicated in DNA repair. More recently, we found that cFLIP, which represents an anti-apoptotic protein whose level is induced by DDB2, was implicated in preventing apoptosis induced by death-receptor signaling. In the present study, we investigated whether DDB2 has a protective role against UV irradiation and whether cFLIP is also involved in this process. Methods We explored the role of DDB2 in mediating UV resistance in both human cells and Drosophila. To do so, DDB2 was overexpressed by using a full-length open reading frame cDNA. Conversely, DDB2 and cFLIP were suppressed by using antisense oligonucleotides. Cell survival was measured using a colony forming assay. Apoptosis was monitored by examination of nuclear morphology, as well as by flow cytometry and Western blot analyses. A transcription reporter assay was also used to assess transcription of cFLIP. Results We first observed that the cFLIP protein was upregulated in UV-resistant HeLa cells. In addition, the cFLIP protein could be induced by stable expression of DDB2 in these cells. Notably, the anti-apoptotic effect of DDB2 against UV irradiation was largely attenuated by knockdown of cFLIP with antisense oligonucleotides in HeLa cells. Moreover, overexpression of DDB2 did not protect against UV in VA13 and XP-A cell lines which both lack cFLIP. Interestingly, ectopic expression of human DDB2 in Drosophila dramatically inhibited UV-induced fly death compared to control GFP expression. On the other hand, expression of DDB2 failed to rescue a different type of apoptosis induced by the genes Reaper or eiger. Conclusion Our results show that DDB2 protects against UV stress in a cFLIP-dependent manner. In addition, the protective role of DDB2 against UV irradiation was found to be conserved in divergent living organisms such as human and Drosophila. In addition, UV irradiation may activate a cFLIP-regulated apoptotic pathway in certain cells.
Collapse
Affiliation(s)
- Nian-Kang Sun
- Department of Biochemistry and Molecular Biology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan
| | | | | | | | | |
Collapse
|
32
|
Lv XB, Xie F, Hu K, Wu Y, Cao LL, Han X, Sang Y, Zeng YX, Kang T. Damaged DNA-binding protein 1 (DDB1) interacts with Cdh1 and modulates the function of APC/CCdh1. J Biol Chem 2010; 285:18234-40. [PMID: 20395298 PMCID: PMC2881748 DOI: 10.1074/jbc.m109.094144] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
APC/CCdh1 plays a key role in mitotic exit and has essential targets in the G1 phase; however, these mechanisms are poorly understood. In this report, we provide evidence that damaged DNA-binding protein 1 (DDB1) is capable of binding the WD40 domains of Cdh1, but not of Cdc20, through its BPA and BPC domains. Moreover, cells lacking DDB1 exhibit markedly elevated levels of the protein substrates of APC/CCdh1. Depletion of DDB1 in mitotic cells significantly delays mitotic exit, which demonstrates that the interaction between DDB1 and Cdh1 plays a critical role in regulating APC/CCdh1 activity. However, cells depleted of Cdh1 demonstrated no change in the UV-induced degradation of Cdt1, the main function of DDB1 as an E3 ligase. Strikingly, the APC/CCdh1 substrate levels are normal in cell knockdowns of Cul4A and Cul4B, which, along with DDB1, form an E3 ligase complex. This finding indicates that DDB1 modulates the function of APC/CCdh1 in a manner independent on the Cul4-DDB1 complex. Our results suggest that DDB1 may functionally regulate mitotic exit by modulating APC/CCdh1 activity. This study reveals that there may be cross-talk among DDB1, Cdh1, and Skp2 in the control of cell cycle division.
Collapse
Affiliation(s)
- Xiao-Bin Lv
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Sun Yat-Sen University Cancer Center, 510060 Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Thomas N, Pernot M, Vanderesse R, Becuwe P, Kamarulzaman E, Da Silva D, François A, Frochot C, Guillemin F, Barberi-Heyob M. Photodynamic therapy targeting neuropilin-1: Interest of pseudopeptides with improved stability properties. Biochem Pharmacol 2010; 80:226-35. [PMID: 20380812 DOI: 10.1016/j.bcp.2010.03.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 03/29/2010] [Accepted: 03/31/2010] [Indexed: 12/24/2022]
Abstract
The general strategy developed aims to favor the vascular effect of photodynamic therapy by targeting tumor vasculature. Since angiogenic endothelial cells represent an interesting target to potentiate this vascular effect, we previously described the conjugation of a photosensitizer to a peptide targeting neuropilins (NRPs) over-expressed specially in tumor angiogenic vessels and we recently characterized the mechanism of photosensitization-induced thrombogenic events. Nevertheless, in glioma-bearing nude mice, we demonstrated that the peptide moiety was degraded to various rates according to time after intravenous administration. In this study, new peptidases-resistant pseudopeptides were tested, demonstrating a molecular affinity for NRP-1 and NRP-2 recombinant chimeric proteins and devoid of affinity for VEGF receptor type 1 (Flt-1). To argue the involvement of NRP-1, MDA-MB-231 breast cancer cells were used, strongly over-expressing NRP-1 receptor. We evidenced a statistically significant decrease of the different peptides-conjugated photosensitizers uptake after RNA interference-mediated silencing of NRP-1. Peptides-conjugated photosensitizers allowed a selective accumulation into cells. In mice, no degradation was observed in plasma in vivo 4h after intravenous injection by MALDI-TOF mass spectrometry. This study draws attention to this potential problem with peptides, especially in the case of targeting strategies, and provides useful information for the future design of more stable molecules.
Collapse
Affiliation(s)
- Noémie Thomas
- Centre de Recherche en Automatique de Nancy, Nancy-University, CNRS, Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Fong S, King F, Shtivelman E. CC3/TIP30 affects DNA damage repair. BMC Cell Biol 2010; 11:23. [PMID: 20374651 PMCID: PMC2867790 DOI: 10.1186/1471-2121-11-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/07/2010] [Indexed: 12/22/2022] Open
Abstract
Background The pro-apoptotic protein CC3/TIP30 has an unusual cellular function as an inhibitor of nucleocytoplasmic transport. This function is likely to be activated under conditions of stress. A number of studies support the notion that CC3 acts as a tumor and metastasis suppressor in various types of cancer. The yeast homolog of CC3 is likely to be involved in responses to DNA damage. Here we examined the potential role of CC3 in regulation of cellular responses to genotoxic stress. Results We found that forced expression of CC3 in CC3-negative cells strongly delays the repair of UV-induced DNA damage. Exogenously introduced CC3 negatively affects expression levels of DDB2/XPE and p21CIP1, and inhibits induction of c-FOS after UV exposure. In addition, exogenous CC3 prevents the nuclear accumulation of P21CIP in response to UV. These changes in the levels/localization of relevant proteins resulting from the enforced expression of CC3 are likely to contribute to the observed delay in DNA damage repair. Silencing of CC3 in CC3-positive cells has a modest delaying effect on repair of the UV induced damage, but has a much more significant negative affect on the translesion DNA synthesis after UV exposure. This could be related to the higher expression levels and increased nuclear localization of p21CIP1 in cells where expression of CC3 is silenced. Expression of CC3 also inhibits repair of oxidative DNA damage and leads to a decrease in levels of nucleoredoxin, that could contribute to the reduced viability of CC3 expressing cells after oxidative insult. Conclusions Manipulation of the cellular levels of CC3 alters expression levels and/or subcellular localization of proteins that exhibit nucleocytoplasmic shuttling. This results in altered responses to genotoxic stress and adversely affects DNA damage repair by affecting the recruitment of adequate amounts of required proteins to proper cellular compartments. Excess of cellular CC3 has a significant negative effect on DNA repair after UV and oxidant exposure, while silencing of endogenous CC3 slightly delays repair of UV-induced damage.
Collapse
Affiliation(s)
- Sylvia Fong
- BioNovo Inc, 5858 Horton Street, Emeryville 94608, CA, USA
| | | | | |
Collapse
|
35
|
Nevo I, Oberthuer A, Botzer E, Sagi-Assif O, Maman S, Pasmanik-Chor M, Kariv N, Fischer M, Yron I, Witz IP. Gene-expression-based analysis of local and metastatic neuroblastoma variants reveals a set of genes associated with tumor progression in neuroblastoma patients. Int J Cancer 2010; 126:1570-81. [PMID: 19739072 DOI: 10.1002/ijc.24889] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metastasis is the primary cause of mortality in Neuroblastoma (NB) patients, but the metastatic process in NB is poorly understood. Metastsis is a multistep process that requires the coordinated action of many genes. The identification of genes that promote or suppress tumor metastasis can advance our understanding of this process. In the present study, we utilized a human NB xenograft model comprising local and metastatic NB variants, which was recently developed in our laboratory. We set out to identify molecular correlates of NB metastasis and to determine the clinical relevance of these molecules. We first performed genome-wide expression profiles of metastatic and nonmetastatic NB variants that have an identical genetic background. We found that some of the proteins highly expressed in the metastatic NB variants are localized in the cytoplasm and endoplasmic reticulum. Other proteins are linked to metabolic processes and signaling pathways, thereby supporting the invasive and metastatic state of the cells. Subsequently, we intersected the differentially expressed genes in the human xenografted variants with genes differentially expressed in Stage 1 and Stage 4 primary tumors of NB patients. By using the same gene-expression platform, molecular correlates associated with metastatic progression in primary NB tumors were identified. The resulting smaller gene set was clinically relevant as it discriminated between high- and low-risk NB patients.
Collapse
Affiliation(s)
- Ido Nevo
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Science, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Thomas N, Bechet D, Becuwe P, Tirand L, Vanderesse R, Frochot C, Guillemin F, Barberi-Heyob M. Peptide-conjugated chlorin-type photosensitizer binds neuropilin-1 in vitro and in vivo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 96:101-8. [PMID: 19464192 DOI: 10.1016/j.jphotobiol.2009.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/23/2009] [Accepted: 04/23/2009] [Indexed: 02/08/2023]
Abstract
The strategy developed aims to favor the vascular effect of photodynamic therapy (PDT) by targeting tumor vasculature. This approach is considered by coupling a photosensitizer (PS) to an heptapeptide targeting neuropilin-1 (NRP-1). We previously demonstrated that this new conjugated PS, which binds to recombinant NRP-1 protein, was a much more potent PS compared to the non-conjugated PS in human umbilical vein endothelial cells (HUVEC) expressing NRP-1, due to the coupling of the peptide moiety. To argue the involvement of NRP-1 in the conjugated PS cellular uptake, MDA-MB-231 breast cancer cells were used, strongly over-expressing NRP-1 receptor, and we evidenced a significant decrease of the conjugated PS uptake after RNA interference-mediated silencing of NRP-1. In mice xenografted ectopically with U87 human malignant glioma cells, we demonstrated that only the conjugated PS allowed a selective accumulation in endothelial cells lining tumor vessels. Vascular endothelial growth factor (VEGF) plasma and tumor levels could not prevent the recognition of the conjugate by NRP-1. The vascular effect induced by the conjugated PS, was characterized by a reduction in tumor blood flow around 50% during PDT. In vivo, the photodynamic efficiency with the conjugated PS induced a statistically significant tumor growth delay compared to the non-coupled PS. The peptide-conjugated chlorin-type PS uptake involves NRP-1 and this targeting strategy favors the vascular effect of PDT in vivo.
Collapse
Affiliation(s)
- Noémie Thomas
- Centre de Recherche en Automatique de Nancy (CRAN), Nancy-University, CNRS, Centre Alexis Vautrin, Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Minig V, Kattan Z, van Beeumen J, Brunner E, Becuwe P. Identification of DDB2 protein as a transcriptional regulator of constitutive SOD2 gene expression in human breast cancer cells. J Biol Chem 2009; 284:14165-76. [PMID: 19339246 DOI: 10.1074/jbc.m808208200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Manganese superoxide dismutase plays a role in breast tumor cell growth, which depends on its constitutive expression. However, the mechanisms responsible for the regulation of constitutive SOD2 gene expression at different malignant phenotype in breast cancers remain to be determined. The present study reports the identification and characterization of a DNA sequence located in the proximal promoter of the SOD2 gene, which forms a complex with a nuclear protein from breast tumor MCF-7 cells. Purification of this complex showed that it contained DDB2 (damaged DNA binding 2), a well known protein involved in nucleotide excision DNA repair and cell cycle regulation. Functional analysis of the proximal promoter of the SOD2 gene or modulation of DDB2 expression allowed us to demonstrate that DDB2 regulates negatively the constitutive expression of the SOD2 gene in breast cancer cells. We demonstrate that the binding of DDB2 was associated with the loss of acetylated H3 histones and the decrease in the binding of Sp1 but not AP-2alpha transcription factors to the SOD2 proximal promoter. In addition, we show that DDB2 exerts, at least in part, a control of breast cancer cell growth through its negative regulation of constitutive expression of the SOD2 gene. For the first time, these data give supporting evidence that DDB2 is a new transcriptional regulator, and they provide insight into the molecular function of breast cancer cell growth, which will have an important clinical interest.
Collapse
Affiliation(s)
- Vanessa Minig
- Cancer Research Unit (EA SIGRETO), Henri Poincaré University-Nancy I, 54506 Vandoeuvre-lès-Nancy, France
| | | | | | | | | |
Collapse
|