1
|
Mukherjee S, Verma A, Kong L, Rengan AK, Cahill DM. Advancements in Green Nanoparticle Technology: Focusing on the Treatment of Clinical Phytopathogens. Biomolecules 2024; 14:1082. [PMID: 39334849 PMCID: PMC11430415 DOI: 10.3390/biom14091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Opportunistic pathogenic microbial infections pose a significant danger to human health, which forces people to use riskier, more expensive, and less effective drugs compared to traditional treatments. These may be attributed to several factors, such as overusing antibiotics in medicine and lack of sanitization in hospital settings. In this context, researchers are looking for new options to combat this worrying condition and find a solution. Nanoparticles are currently being utilized in the pharmaceutical sector; however, there is a persistent worry regarding their potential danger to human health due to the usage of toxic chemicals, which makes the utilization of nanoparticles highly hazardous to eukaryotic cells. Multiple nanoparticle-based techniques are now being developed, offering essential understanding regarding the synthesis of components that play a crucial role in producing anti-microbial nanotherapeutic pharmaceuticals. In this regard, green nanoparticles are considered less hazardous than other forms, providing potential options for avoiding the extensive harm to the human microbiome that is prevalent with existing procedures. This review article aims to comprehensively assess the current state of knowledge on green nanoparticles related to antibiotic activity as well as their potential to assist antibiotics in treating opportunistic clinical phytopathogenic illnesses.
Collapse
Affiliation(s)
- Sunny Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Anamika Verma
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - David Miles Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
2
|
Pierrat X, Pham A, Wong JPH, Al-Mayyah Z, Persat A. Engineering Agrobacterium tumefaciens Adhesion to Target Cells. ACS Synth Biol 2022; 11:2662-2671. [PMID: 35881049 DOI: 10.1021/acssynbio.2c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Agrobacterium tumefaciens is a plant pathogen commonly repurposed for genetic modification of crops. Despite its versatility, it remains inefficient at transferring DNA to many hosts, including to animal cells. Like many pathogens, physical contact between A. tumefaciens and host cells promotes infection efficacy. Thus, improving the strength and specificity of A. tumefaciens to target cells has the potential for enhancing DNA transfer for biotechnological and therapeutic purposes. Here, we demonstrate a methodology for engineering genetically encoded exogeneous adhesins at the surface of A. tumefaciens. We identified an autotransporter gene we named Aat that is predicted to show canonical β-barrel and passenger domains. We engineered the β-barrel scaffold and linker (Aatβ) to display synthetic adhesins susceptible to rewire A. tumefaciens to alternative host targets. As a proof of concept, we leveraged the versatility of a VHH domain to rewire A. tumefaciens adhesion to yeast and mammalian hosts displaying a GFP target receptor. Finally, to demonstrate how synthetic A. tumefaciens adhesion can improve transfer to host cells, we showed improved protein translocation into HeLa cells using a sensitive split luciferase reporter system. Engineering A. tumefaciens adhesion has therefore a strong potential in generating complex heterogeneous cellular assemblies and in improving DNA transfer efficiency against non-natural hosts.
Collapse
Affiliation(s)
- Xavier Pierrat
- School of Life Sciences, Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Alix Pham
- School of Life Sciences, Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jeremy P H Wong
- School of Life Sciences, Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Zainebe Al-Mayyah
- School of Life Sciences, Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Alexandre Persat
- School of Life Sciences, Institute of Bioengineering and Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Kim JS, Yoon SJ, Park YJ, Kim SY, Ryu CM. Crossing the kingdom border: Human diseases caused by plant pathogens. Environ Microbiol 2020; 22:2485-2495. [PMID: 32307848 DOI: 10.1111/1462-2920.15028] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Interactions between pathogenic microorganisms and their hosts are varied and complex, encompassing open-field scale interactions to interactions at the molecular level. The capacity of plant pathogenic bacteria and fungi to cause diseases in human and animal systems was, until recently, considered of minor importance. However, recent evidence suggests that animal and human infections caused by plant pathogenic fungi, bacteria and viruses may have critical impacts on human and animal health and safety. This review analyses previous research on plant pathogens as causal factors of animal illness. In addition, a case study involving disruption of type III effector-mediated phagocytosis in a human cell line upon infection with an opportunistic phytopathogen, Pseudomonas syringae pv. tomato, is discussed. Further knowledge regarding the molecular interactions between plant pathogens and human and animal hosts is needed to understand the extent of disease incidence and determine mechanisms for disease prevention.
Collapse
Affiliation(s)
- Jun-Seob Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseng-gu, Daejeon, South Korea
| | - Sung-Jin Yoon
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseng-gu, Daejeon, South Korea
| | - Young-Jun Park
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseng-gu, Daejeon, South Korea
| | - Seon-Yeong Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseng-gu, Daejeon, South Korea.,Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, South Korea
| | - Choong-Min Ryu
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseng-gu, Daejeon, South Korea
| |
Collapse
|
4
|
Bonartsev AP, Voinova VV, Bonartseva GA. Poly(3-hydroxybutyrate) and Human Microbiota (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818060066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Elmer JJ, Christensen MD, Rege K. Applying horizontal gene transfer phenomena to enhance non-viral gene therapy. J Control Release 2013; 172:246-257. [PMID: 23994344 PMCID: PMC4258102 DOI: 10.1016/j.jconrel.2013.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/17/2013] [Accepted: 08/20/2013] [Indexed: 12/25/2022]
Abstract
Horizontal gene transfer (HGT) is widespread amongst prokaryotes, but eukaryotes tend to be far less promiscuous with their genetic information. However, several examples of HGT from pathogens into eukaryotic cells have been discovered and mimicked to improve non-viral gene delivery techniques. For example, several viral proteins and DNA sequences have been used to significantly increase cytoplasmic and nuclear gene delivery. Plant genetic engineering is routinely performed with the pathogenic bacterium Agrobacterium tumefaciens and similar pathogens (e.g. Bartonella henselae) may also be able to transform human cells. Intracellular parasites like Trypanosoma cruzi may also provide new insights into overcoming cellular barriers to gene delivery. Finally, intercellular nucleic acid transfer between host cells will also be briefly discussed. This article will review the unique characteristics of several different viruses and microbes and discuss how their traits have been successfully applied to improve non-viral gene delivery techniques. Consequently, pathogenic traits that originally caused diseases may eventually be used to treat many genetic diseases.
Collapse
Affiliation(s)
- Jacob J Elmer
- Department of Chemical Engineering, Villanova University, Villanova 19085, USA.
| | | | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe 85287-6106, USA.
| |
Collapse
|
6
|
Multilocus sequence-based analysis delineates a clonal population of Agrobacterium (Rhizobium) radiobacter (Agrobacterium tumefaciens) of human origin. J Bacteriol 2011; 193:2608-18. [PMID: 21398532 DOI: 10.1128/jb.00107-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The genus Agrobacterium includes plant-associated bacteria and opportunistic human pathogens. Taxonomy and nomenclature within the genus remain controversial. In particular, isolates of human origin were all affiliated with the species Agrobacterium (Rhizobium) radiobacter, while phytopathogenic strains were designated under the synonym denomination Agrobacterium tumefaciens. In order to study the relative distribution of Agrobacterium strains according to their origins, we performed a multilocus sequence-based analysis (MLSA) on a large collection of 89 clinical and environmental strains from various origins. We proposed an MLSA scheme based on the partial sequence of 7 housekeeping genes (atpD, zwf, trpE, groEL, dnaK, glnA, and rpoB) present on the circular chromosome of A. tumefaciens C58. Multilocus phylogeny revealed that 88% of the clinical strains belong to genovar A7, which formed a homogeneous population with linkage disequilibrium, suggesting a low rate of recombination. Comparison of genomic fingerprints obtained by pulsed-field gel electrophoresis (PFGE) showed that the strains of genovar A7 were epidemiologically unrelated. We present genetic evidence that genovar A7 may constitute a human-associated population distinct from the environmental population. Also, phenotypic characteristics, such as culture at 42°C, agree with this statement. This human-associated population might represent a potential novel species in the genus Agrobacterium.
Collapse
|
7
|
Komarova TV, Baschieri S, Donini M, Marusic C, Benvenuto E, Dorokhov YL. Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccines 2010; 9:859-76. [PMID: 20673010 DOI: 10.1586/erv.10.85] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the molecular farming area, transient expression approaches for pharmaceutical proteins production, mainly recombinant monoclonal antibodies and vaccines, were developed almost two decades ago and, to date, these systems basically depend on Agrobacterium-mediated delivery and virus expression machinery. We survey here the current state-of-the-art of this research field. Several vectors have been designed on the basis of DNA- and RNA-based plant virus genomes and viral vectors are used both as single- and multicomponent expression systems in different combinations depending on the protein of interest. The obvious advantages of these systems are ease of manipulation, speed, low cost and high yield of proteins. In addition, Agrobacterium-mediated expression also allows the production in plants of complex proteins assembled from subunits. Currently, the transient expression methods are preferential over any other transgenic system for the exploitation of large and unrestricted numbers of plants in a contained environment. By designing optimal constructs and related means of delivery into plant cells, the overall technology plan considers scenarios that envisage high yield of bioproducts and ease in monitoring the whole spectrum of upstream production, before entering good manufacturing practice facilities. In this way, plant-derived bioproducts show promise of high competitiveness towards classical eukaryotic cell factory systems.
Collapse
Affiliation(s)
- Tatiana V Komarova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Science and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | | | | | | | |
Collapse
|