1
|
Ali AY, Zahran SA, Eissa M, Kashef MT, Ali AE. Gut microbiota dysbiosis and associated immune response in systemic lupus erythematosus: impact of disease and treatment. Gut Pathog 2025; 17:10. [PMID: 39966979 DOI: 10.1186/s13099-025-00683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Gut microbial dysbiosis and leaky gut play a role in systemic lupus erythematosus (SLE). Geographical location and dietary habits affect the microbiome composition in diverse populations. This study explored the gut microbiome dysbiosis, leaky gut, and systemic immune response to gut bacterial consortium in patients with SLE exhibiting mild/moderate and severe disease activity. METHODS Fecal and blood samples were collected from patients with SLE and healthy volunteers. Genomic DNA was extracted from the stool samples and subjected to 16S rRNA amplicon sequencing and microbiome profiling. Additionally, enzyme-linked immunosorbent assays were employed to determine the serum lipopolysaccharide level, as an assessment of gut permeability, and the systemic immune response against gut bacteria. RESULTS Patients with SLE showed significantly lower gut bacterial richness and diversity, indicated by observed OTUs (56.6 vs. 74.44; p = 0.0289), Shannon (3.05 vs. 3.45; p = 0.017) and Simpson indices (0.91 vs. 0.94; p = 0.033). A lower Firmicutes-to-Bacteroidetes ratio (1.07 vs. 1.69; p = 0.01) was observed, with reduced genera such as Ruminococcus 2 (0.003 vs. 0.026; p = 0.0009) and Agathobacter (0.003 vs. 0.012; p < 0.0001) and elevated Escherichia-Shigella (0.04 vs. 0.006; p < 0.0001) and Bacteroides (0.206 vs. 0.094; p = 0.033). Disease severity was associated with a higher relative abundance of Prevotella (0.001 vs. 0.0001; p = 0.04). Medication effects included lower Romboutsia (0.0009 vs. 0.011; p = 0.005) with azathioprine and higher Prevotella (0.003 vs. 0.0002; p = 0.038) with cyclophosphamide. Furthermore, categorization by prednisolone dosage revealed significantly higher relative abundances of Slackia (0.0007 vs. 0.00002; p = 0.0088), Romboutsia (0.009 vs. 0.002; p = 0.0366), and Comamonas (0.002 vs. 0.00007; p = 0.0249) in patients receiving high-dose prednisolone (> 10 mg/day). No differences in serum lipopolysaccharide levels were found, but SLE patients exhibited elevated serum gut bacterial antibody levels, suggesting a systemic immune response. CONCLUSION This study confirms the gut microbiome dysbiosis in patients with SLE, influenced by disease severity and specific medication usage.
Collapse
Affiliation(s)
- Aya Y Ali
- Microbiology & Immunology Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 12311, Egypt
| | - Sara A Zahran
- Microbiology & Immunology Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 12311, Egypt.
| | - Mervat Eissa
- Rheumatology & Rehabilitation Department, Faculty of Medicine, Cairo University, Cairo, 11562, Egypt
| | - Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amal Emad Ali
- Microbiology & Immunology Department, Faculty of Pharmacy, Future University in Egypt, Cairo, 12311, Egypt
| |
Collapse
|
2
|
Delplanque M, Benech N, Rolhion N, Oeuvray C, Straube M, Galbert C, Brot L, Henry T, Jamilloux Y, Savey L, Grateau G, Sokol H, Georgin-Lavialle S. Gut microbiota alterations are associated with phenotype and genotype in familial Mediterranean fever. Rheumatology (Oxford) 2024; 63:1039-1048. [PMID: 37402619 DOI: 10.1093/rheumatology/kead322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE FMF is the most common monogenic autoinflammatory disease associated with MEFV mutations. Disease phenotype and response to treatment vary from one patient to another, despite similar genotype, suggesting the role of environmental factors. The objective of this study was to analyse the gut microbiota of a large cohort of FMF patients in relation to disease characteristics. METHODS The gut microbiotas of 119 FMF patients and 61 healthy controls were analysed using 16 s rRNA gene sequencing. Associations between bacterial taxa, clinical characteristics, and genotypes were evaluated using multivariable association with linear models (MaAslin2), adjusting on age, sex, genotype, presence of AA amyloidosis (n = 17), hepatopathy (n = 5), colchicine intake, colchicine resistance (n = 27), use of biotherapy (n = 10), CRP levels, and number of daily faeces. Bacterial network structures were also analysed. RESULTS The gut microbiotas of FMF patients differ from those of controls in having increased pro-inflammatory bacteria, such as the Enterobacter, Klebsiella and Ruminococcus gnavus group. Disease characteristics and resistance to colchicine correlated with homozygous mutations and were associated with specific microbiota alteration. Colchicine treatment was associated with the expansion of anti-inflammatory taxa such as Faecalibacterium and Roseburia, while FMF severity was associated with expansion of the Ruminococcus gnavus group and Paracoccus. Colchicine-resistant patients exhibited an alteration of the bacterial network structure, with decreased intertaxa connectivity. CONCLUSION The gut microbiota of FMF patients correlates with disease characteristics and severity, with an increase in pro-inflammatory taxa in the most severe patients. This suggests a specific role for the gut microbiota in shaping FMF outcomes and response to treatment.
Collapse
Affiliation(s)
- Marion Delplanque
- Sorbonne Université, Service Médecine Interne, Centre de Référence des Maladies Autoinflammatoires et des Amyloses (CEREMAIA), APHP, Hôpital Tenon, Paris, France
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Nicolas Benech
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Nathalie Rolhion
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Cyriane Oeuvray
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Marjolène Straube
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Chloé Galbert
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Loic Brot
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, Lyon, Rhônes, France
| | - Yvan Jamilloux
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, Lyon, Rhônes, France
| | - Léa Savey
- Sorbonne Université, Service Médecine Interne, Centre de Référence des Maladies Autoinflammatoires et des Amyloses (CEREMAIA), APHP, Hôpital Tenon, Paris, France
| | - Gilles Grateau
- Sorbonne Université, Service Médecine Interne, Centre de Référence des Maladies Autoinflammatoires et des Amyloses (CEREMAIA), APHP, Hôpital Tenon, Paris, France
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
- INRAE, UMR1319 Micalis & AgroParisTech, Jouy en Josas, Yvelines, France
| | - Sophie Georgin-Lavialle
- Sorbonne Université, Service Médecine Interne, Centre de Référence des Maladies Autoinflammatoires et des Amyloses (CEREMAIA), APHP, Hôpital Tenon, Paris, France
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, French Group of Faecal Microbiota Transplantation (GFTF), Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| |
Collapse
|
3
|
Bank NC, Singh V, Rodriguez-Palacios A. Classification of Parabacteroides distasonis and other Bacteroidetes using O- antigen virulence gene: RfbA-Typing and hypothesis for pathogenic vs. probiotic strain differentiation. Gut Microbes 2022; 14:1997293. [PMID: 35090379 PMCID: PMC8803095 DOI: 10.1080/19490976.2021.1997293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Parabacteroides distasonis (Pdis) is the type species for the new Parabacteroides genus, and a gut commensal of the Bacteroidetes phylum. Emerging reports (primarily based on reference strain/ATCC-8503) concerningly propose that long-known opportunistic pathogen Pdis is a probiotic. We posit there is an urgent need to characterize the pathogenicity of Pdis strain-strain variability. Unfortunately, no methods/insights exist to classify Bacteroidetes for this purpose. Herein, we developed a virulence gene-based classification system for Pdis and Bacteroidetes to facilitate pathogenic-vs-probiotic characterization. We used DNA in silico methods to develop a system based on the virulence (lipopolysaccharide/bacterial wall) 'rfbA O-antigen-synthesis gene'. We then performed phylogenetic analysis of rfbA from fourteen Pdis complete genomes (21 genes), other Parabacteroides, Bacteroidetes, and Enterobacteriaceae; and proposed a PCR-based Restriction-Fragment Length Polymorphism method. Cluster analysis revealed that Pdis can be classified into four lineages (based on gene gaps/insertions) which we designated rfbA-Types I, II, III, and IV. In context, we found 14 additional rfbA-types (I-XVIII) interspersed with numerous Bacteroidetes and pathogenic Enterobacteriaceae forming three major "rfbA-superclusters." For laboratory rfbA-Typing implementation, we developed a PCR-primer strategy to amplify Pdis rfbA genes (100%-specificity) to conduct MboII-RFLP and sub-classify Pdis. In-silico primers for other Bacteroidetes are proposed/discussed. Comparative analysis of lipopolysaccharide/lipid-A gene lpxK confirmed rfbA as highly discriminant. In conclusion, rfbA-Typing classifies Bacteroidetes/Pdis into unique clusters/superclusters given rfbA copy/sequence variability. Analysis revealed that most pathogenic Pdis strains are single-copy rfbA-Type I . The relevance of the rfbA strain variability in disease might depend on their hypothetical modulatory interactions with other O-antigens/lipopolysaccharides and TLR4 lipopolysaccharide-receptors in human/animal cells.
Collapse
Affiliation(s)
- Nicholas C. Bank
- Division of Gastroenterology and Liver Disease, School of Medicine, Case Western Reserve University , Cleveland, United States
| | - Vaidhvi Singh
- Division of Gastroenterology and Liver Disease, School of Medicine, Case Western Reserve University , Cleveland, United States
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, School of Medicine, Case Western Reserve University , Cleveland, United States,School of Medicine, Digestive Health Research Institute, Case Western Reserve University, Cleveland, United States,University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, United States,CONTACT Alex Rodriguez-Palacios Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, United States; School of Medicine, Digestive Health Research Institute, Case Western Reserve University, Cleveland, United States; University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, United States
| |
Collapse
|
4
|
Ezeji JC, Sarikonda DK, Hopperton A, Erkkila HL, Cohen DE, Martinez SP, Cominelli F, Kuwahara T, Dichosa AEK, Good CE, Jacobs MR, Khoretonenko M, Veloo A, Rodriguez-Palacios A. Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. Gut Microbes 2022; 13:1922241. [PMID: 34196581 PMCID: PMC8253142 DOI: 10.1080/19490976.2021.1922241] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Parabacteroides distasonis is the type strain for the genus Parabacteroides, a group of gram-negative anaerobic bacteria that commonly colonize the gastrointestinal tract of numerous species. First isolated in the 1930s from a clinical specimen as Bacteroides distasonis, the strain was re-classified to form the new genus Parabacteroides in 2006. Currently, the genus consists of 15 species, 10 of which are listed as 'validly named' (P. acidifaciens, P. chartae, P. chinchillae, P. chongii, P. distasonis, P. faecis, P. goldsteinii, P. gordonii, P. johnsonii, and P. merdae) and 5 'not validly named' (P. bouchesdurhonensis, P. massiliensis, P. pacaensis, P. provencensis, and P. timonensis) by the List of Prokaryotic names with Standing in Nomenclature. The Parabacteroides genus has been associated with reports of both beneficial and pathogenic effects in human health. Herein, we review the literature on the history, ecology, diseases, antimicrobial resistance, and genetics of this bacterium, illustrating the effects of P. distasonis on human and animal health.
Collapse
Affiliation(s)
- Jessica C. Ezeji
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daven K. Sarikonda
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Austin Hopperton
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Hailey L. Erkkila
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daniel E. Cohen
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Fabio Cominelli
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA,Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, United States
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Armand E. K. Dichosa
- B-10 Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Caryn E. Good
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Michael R. Jacobs
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | | | - Alida Veloo
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander Rodriguez-Palacios
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, United States,University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA,CONTACT Alexander Rodriguez-Palacios Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Gong B, Wang C, Meng F, Wang H, Song B, Yang Y, Shan Z. Association Between Gut Microbiota and Autoimmune Thyroid Disease: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2021; 12:774362. [PMID: 34867823 PMCID: PMC8635774 DOI: 10.3389/fendo.2021.774362] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autoimmune thyroid disease (AITD) is characterized by thyroid dysfunction and deficits in the autoimmune system. Growing attention has been paid toward the field of gut microbiota over the last few decades. Several recent studies have found that gut microbiota composition in patients with AITD has altered, but no studies have conducted systematic reviews on the association between gut microbiota and ATID. METHODS We searched PubMed, Web of Science, Embase, and Cochrane databases without language restrictions and conducted a systematic review and meta-analysis of eight studies, including 196 patients with AITD. RESULTS The meta-analysis showed that the alpha diversity and abundance of certain gut microbiota were changed in patients with AITD compared to the controls. Chao1,the index of the microflora richness, was increased in the Hashimoto's thyroiditis group compared to controls (SMD, 0.68, 95%CI: 0.16 to 1.20), while it was decreased in the Graves' disease group (SMD, -0.87, 95%CI: -1.46 to -0.28). In addition, we found that some beneficial bacteria like Bifidobacterium and Lactobacillus were decreased in the AITD group, and harmful microbiota like Bacteroides fragilis was significantly increased compared with the controls. Furthermore, the percentage of relevant abundance of other commensal bacteria such as Bacteroidetes, Bacteroides, and Lachnospiraceae was increased compared with the controls. CONCLUSIONS This meta-analysis indicates an association between AITD and alteration of microbiota composition at the family, genus, and species levels. SYSTEMATIC REVIEW REGISTRATION PROSPERO, identifier CRD42021251557.
Collapse
|
6
|
Di Ciaula A, Stella A, Bonfrate L, Wang DQH, Portincasa P. Gut Microbiota between Environment and Genetic Background in Familial Mediterranean Fever (FMF). Genes (Basel) 2020; 11:E1041. [PMID: 32899315 PMCID: PMC7563178 DOI: 10.3390/genes11091041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract hosts the natural reservoir of microbiota since birth. The microbiota includes various bacteria that establish a progressively mutual relationship with the host. Of note, the composition of gut microbiota is rather individual-specific and, normally, depends on both the host genotype and environmental factors. The study of the bacterial profile in the gut demonstrates that dominant and minor phyla are present in the gastrointestinal tract with bacterial density gradually increasing in oro-aboral direction. The cross-talk between bacteria and host within the gut strongly contributes to the host metabolism, to structural and protective functions. Dysbiosis can develop following aging, diseases, inflammatory status, and antibiotic therapy. Growing evidences show a possible link between the microbiota and Familial Mediterranean Fever (FMF), through a shift of the relative abundance in microbial species. To which extent such perturbations of the microbiota are relevant in driving the phenotypic manifestations of FMF with respect to genetic background, remains to be further investigated.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy; (A.D.C.); (L.B.)
| | - Alessandro Stella
- Section of Medical Genetics, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy;
| | - Leonilde Bonfrate
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy; (A.D.C.); (L.B.)
| | - David Q. H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Piero Portincasa
- Clinica Medica “Augusto Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari BA, Italy; (A.D.C.); (L.B.)
| |
Collapse
|
7
|
Di Simone N, Gratta M, Castellani R, D'Ippolito S, Specchia M, Scambia G, Tersigni C. Celiac disease and reproductive failures: An update on pathogenic mechanisms. Am J Reprod Immunol 2020; 85:e13334. [PMID: 32865829 DOI: 10.1111/aji.13334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/10/2020] [Accepted: 08/22/2020] [Indexed: 12/22/2022] Open
Abstract
Celiac disease (CD) is an autoimmune disorder that occurs in genetically predisposed people in which the ingestion of gluten leads to damage in the small intestine that clinically presents with malabsorption-related symptoms. CD can also be the underlying cause of several non-gastrointestinal symptoms. This review summarizes evidence on the relationship between CD and gynecological/obstetric disorders like reproductive failures. Although much has been reported on such a linkage, the pathogenic mechanisms remain unclear, especially those underlying extra-gastrointestinal clinical manifestations. Studies conducted on celiac subjects presenting gynecological/obstetric disorders have pointed to intestinal malabsorption, coagulation alterations, immune-mediated tissue damage, and endometrial inflammation as the main responsible pathogenic mechanisms. Currently, however, the knowledge of such mechanisms is insufficient, and further studies are needed to gain a more thorough understanding of the matter.
Collapse
Affiliation(s)
- Nicoletta Di Simone
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto di Clinica Ostetrica e Ginecologica Università Cattolica del Sacro Cuore, Rome, Italy
| | - Matteo Gratta
- Istituto di Clinica Ostetrica e Ginecologica Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberta Castellani
- Istituto di Clinica Ostetrica e Ginecologica Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia D'Ippolito
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto di Clinica Ostetrica e Ginecologica Università Cattolica del Sacro Cuore, Rome, Italy
| | - Monia Specchia
- Istituto di Clinica Ostetrica e Ginecologica Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Scambia
- Istituto di Clinica Ostetrica e Ginecologica Università Cattolica del Sacro Cuore, Rome, Italy.,U.O.C. di Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy
| | - Chiara Tersigni
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto di Clinica Ostetrica e Ginecologica Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
8
|
Kappler K, Hennet T. Emergence and significance of carbohydrate-specific antibodies. Genes Immun 2020; 21:224-239. [PMID: 32753697 PMCID: PMC7449879 DOI: 10.1038/s41435-020-0105-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Carbohydrate-specific antibodies are widespread among all classes of immunoglobulins. Despite their broad occurrence, little is known about their formation and biological significance. Carbohydrate-specific antibodies are often classified as natural antibodies under the assumption that they arise without prior exposure to exogenous antigens. On the other hand, various carbohydrate-specific antibodies, including antibodies to ABO blood group antigens, emerge after the contact of immune cells with the intestinal microbiota, which expresses a vast diversity of carbohydrate antigens. Here we explore the development of carbohydrate-specific antibodies in humans, addressing the definition of natural antibodies and the production of carbohydrate-specific antibodies upon antigen stimulation. We focus on the significance of the intestinal microbiota in shaping carbohydrate-specific antibodies not just in the gut, but also in the blood circulation. The structural similarity between bacterial carbohydrate antigens and surface glycoconjugates of protists, fungi and animals leads to the production of carbohydrate-specific antibodies protective against a broad range of pathogens. Mimicry between bacterial and human glycoconjugates, however, can also lead to the generation of carbohydrate-specific antibodies that cross-react with human antigens, thereby contributing to the development of autoimmune disorders.
Collapse
Affiliation(s)
| | - Thierry Hennet
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Immunization with the basic membrane protein (BMP) family ABC transporter elicits protection against Enterococcus faecium in a murine infection model. Microbes Infect 2020; 22:127-136. [PMID: 31585177 DOI: 10.1016/j.micinf.2019.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022]
|
10
|
Cantó E, Zamora C, Garcia-Planella E, Gordillo J, Ortiz MA, Perea L, Vidal S. Bacteria-related Events and the Immunological Response of Onset and Relapse Adult Crohn's Disease Patients. J Crohns Colitis 2019; 13:92-99. [PMID: 30247652 DOI: 10.1093/ecco-jcc/jjy138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIMS Crohn's disease [CD] is a chronic, systemic inflammatory disease characterised by periods of remission and flare-ups. It has been associated with a disturbed gastrointestinal barrier function, an increase in the transport of luminal contents into the tissue, and lower immune tolerance. METHODS Peripheral blood samples were collected from healthy controls and 33 adult active flare-up CD patients. We classified patients as onset or relapse flare-up subjects, according to the days of disease evolution. Plasma levels of lipopolysaccharide-binding protein [LBP], fatty acid-binding proteins [FABP], and antibodies against bacterial lysates, interferons [IFN] and interleukin-6 [IL6] were measured by enzyme-linked immunosorbent assay [ELISA] in each group of patients. RESULTS Onset CD patients had higher plasma levels of LBP [57.32 ± 38.86 vs 30.22 ± 9.80 µg/ml] and IFNα [1.25 ± 0.23 vs 0.95 ± 0.36 log10pg/ml] and lower levels of immunoglobulins G and A [IgG and IgA] antibodies against bacterial lysates than relapse CD patients. We also observed a subgroup of onset patients with the highest levels of LBP. In this subgroup, LBP correlated negatively with C-reactive protein [CRP]. Onset and relapse CD patients had similar levels of FABP6 and FABP2, though LBP and FABP6 correlated positively only in relapse patients. In relapse patients, anti-E coli IgG antibodies correlated positively with systemic IL6 and IFNα levels. CONCLUSIONS Our findings suggest that onset and relapse flare-ups in adult CD patients are related to different systemic immune-related bacterial events. Characterising these differences may provide insights into the aetiology of Crohn's disease, and would help in the selection of appropriate therapies.
Collapse
Affiliation(s)
- Elisabet Cantó
- Department of Immunology, Biomedical Research Institute Sant Pau [IIB Sant Pau], Barcelona, Spain
| | - Carlos Zamora
- Department of Immunology, Biomedical Research Institute Sant Pau [IIB Sant Pau], Barcelona, Spain
| | - Esther Garcia-Planella
- Department of Digestive Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jordi Gordillo
- Department of Digestive Pathology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - M Angels Ortiz
- Department of Immunology, Biomedical Research Institute Sant Pau [IIB Sant Pau], Barcelona, Spain
| | - Lidia Perea
- Department of Immunology, Biomedical Research Institute Sant Pau [IIB Sant Pau], Barcelona, Spain
| | - Silvia Vidal
- Department of Immunology, Biomedical Research Institute Sant Pau [IIB Sant Pau], Barcelona, Spain
| |
Collapse
|
11
|
Pepoyan A, Balayan M, Manvelyan A, Galstyan L, Pepoyan S, Petrosyan S, Tsaturyan V, Kamiya S, Torok T, Chikindas M. Probiotic Lactobacillus acidophilus Strain INMIA 9602 Er 317/402 Administration Reduces the Numbers of Candida albicans and Abundance of Enterobacteria in the Gut Microbiota of Familial Mediterranean Fever Patients. Front Immunol 2018; 9:1426. [PMID: 29997616 PMCID: PMC6028570 DOI: 10.3389/fimmu.2018.01426] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/08/2018] [Indexed: 12/11/2022] Open
Abstract
Intestinal microorganisms play a crucial role in health and disease. The disruption of host–microbiota homeostasis has been reported to occur not only during disease development but also as a result of medication. Familial Mediterranean fever (FMF) is an inflammatory genetic disease characterized by elevated systemic reactivity against the commensal gut microbiota and high levels of Candida albicans in the gut. This study’s major objective was to investigate the effects of commercial probiotic Narine on the relative abundance of gut bacteria (specifically, enterobacteria, lactobacilli, Staphylococcus aureus, and enterococci) of C. albicans carrier and non-carrier FMF patients in remission. Our main finding indicates that the probiotic reduces numbers of C. albicans and abundance of enterobacteria in male and female patients of C. albicans carriers and non-carriers. It has pivotal effect on Enterococcus faecalis: increase in male non-carriers and decrease in female ones regardless of C. albicans status. No effect was seen for Lactobacillus and S. aureus. Our data suggest that M694V/V726A pyrin inflammasome mutations leading to FMF disease may contribute to gender-specific differences in microbial community structure in FMF patients. The study’s secondary objective was to elucidate the gender-specific differences in the gut’s microbial community of FMF patients. The tendency was detected for higher counts of enterobacteria in female FMF subjects. However, the small number of patients of these groups preclude from conclusive statements, pointing at the need for additional investigations with appropriate for statistical analysis groups of subjects involved in the study.
Collapse
Affiliation(s)
- Astghik Pepoyan
- Department of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
| | - Marine Balayan
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
| | - Anahit Manvelyan
- Department of Food Safety and Biotechnology, Armenian National Agrarian University, Yerevan, Armenia
| | | | - Sofi Pepoyan
- International Association for Human and Animals Health Improvement, Yerevan, Armenia
| | | | | | | | - Tamas Torok
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Michael Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, United States
| |
Collapse
|
12
|
Tersigni C, D'Ippolito S, Di Nicuolo F, Marana R, Valenza V, Masciullo V, Scaldaferri F, Malatacca F, de Waure C, Gasbarrini A, Scambia G, Di Simone N. Recurrent pregnancy loss is associated to leaky gut: a novel pathogenic model of endometrium inflammation? J Transl Med 2018; 16:102. [PMID: 29665864 PMCID: PMC5905157 DOI: 10.1186/s12967-018-1482-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/12/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Recurrent pregnancy loss (RPL) occurs in 3-5% in about 30% of cases no cause can be found. Women with RPL show higher prevalence of undiagnosed gut disorders. Furthermore, in endometrial tissues of RPL women, higher expression of pro-inflammatory cytokines and Nalp-3 inflammasome has been observed. Aim of this study was to investigate whether an abnormal gut permeability might occur in RPL women and allow passage into systemic circulation of pro-inflammatory molecules able to induce endometrial inflammation. METHODS 70 women with idiopathic RPL and 30 healthy women were recruited at the Recurrent Pregnancy Loss Outpatient Unit of the Gemelli Hospital of Rome from March 2013 to February 2017. Enrolled women underwent 51Cr-ethylene-diamine-tetraacetic acid absorption test to evaluate intestinal permeability. Sera obtained from enrolled women were analysed for lipopolysaccharide (LPS) by ELISA. Anxiety and depression state were evaluated by administering STAI-Y and Zung-SDS tests, respectively. Of all recruited individuals, 35 women with idiopathic RPL and 20 healthy controls accepted to undergo diagnostic hysteroscopy and endometrial biopsy. Endometrial lysates were investigated for inflammasome Nalp-3 by Western blot analysis, and caspase-1, IL-1β and IL-18 by ELISA, respectively. RESULTS Higher prevalence of abnormal intestinal permeability (P < 0.0001), increased circulating levels of LPS (P < 0.05), anxiety (P < 0.05) and depression (P < 0.05) were observed in RLP women compared to controls. Endometrial expression of Nalp-3, caspase-1 and IL-1β was significantly increased in RPL group (P < 0.0001; P < 0.05 and P < 0.001, respectively). IL-18 endometrial levels were not found to be higher in RPL cases. Statistically significant association between higher intestinal permeability and abnormally increased expression of endometrial Nalp-3, was observed in RPL (P < 0.01). Furthermore, higher LPS serum levels, a bacterial-derived activator of Nalp-3 complex, was shown to be statistically associated to abnormal endometrial expression of Nalp-3 inflammasome (P < 0.01) in RPL women. CONCLUSIONS In women with RLP, leaky gut might occur and allow passage into circulation of immune triggers, potentially able to elicit endometrial innate immune response and, thus, to contribute to miscarriage pathogenesis. Diagnosis and treatment of intestinal disorders underlying leaky gut might improve endometrial environment and pregnancy outcome.
Collapse
Affiliation(s)
- C Tersigni
- Department of Woman and Child Health, A. Gemelli Hospital, Università Cattolica Del Sacro Cuore of Rome, 00168, Rome, Italy
| | - S D'Ippolito
- Department of Woman and Child Health, A. Gemelli Hospital, Università Cattolica Del Sacro Cuore of Rome, 00168, Rome, Italy
| | - F Di Nicuolo
- Department of Woman and Child Health, A. Gemelli Hospital, Università Cattolica Del Sacro Cuore of Rome, 00168, Rome, Italy.,International Scientific Institute Paolo VI, ISI, A. Gemelli Hospital, Università Cattolica Del Sacro Cuore, 00168, Rome, Italy
| | - R Marana
- Department of Woman and Child Health, A. Gemelli Hospital, Università Cattolica Del Sacro Cuore of Rome, 00168, Rome, Italy.,International Scientific Institute Paolo VI, ISI, A. Gemelli Hospital, Università Cattolica Del Sacro Cuore, 00168, Rome, Italy
| | - V Valenza
- Department of Nuclear Medicine, A. Gemelli Hospital, Università Cattolica Del Sacro Cuore, A. Gemelli Hospital, 00168, Rome, Italy
| | - V Masciullo
- Department of Woman and Child Health, A. Gemelli Hospital, Università Cattolica Del Sacro Cuore of Rome, 00168, Rome, Italy
| | - F Scaldaferri
- Department of Internal Medicine, A. Gemelli Hospital, Università Cattolica Del Sacro Cuore, 00168, Rome, Italy
| | - F Malatacca
- Department of Woman and Child Health, A. Gemelli Hospital, Università Cattolica Del Sacro Cuore of Rome, 00168, Rome, Italy
| | - C de Waure
- Institute of Public Health, A. Gemelli Hospital, Università Cattolica Del Sacro Cuore, 00168, Rome, Italy
| | - A Gasbarrini
- Department of Internal Medicine, A. Gemelli Hospital, Università Cattolica Del Sacro Cuore, 00168, Rome, Italy
| | - G Scambia
- Department of Woman and Child Health, A. Gemelli Hospital, Università Cattolica Del Sacro Cuore of Rome, 00168, Rome, Italy
| | - N Di Simone
- Department of Woman and Child Health, A. Gemelli Hospital, Università Cattolica Del Sacro Cuore of Rome, 00168, Rome, Italy.
| |
Collapse
|
13
|
Ktsoyan ZA, Mkrtchyan MS, Zakharyan MK, Mnatsakanyan AA, Arakelova KA, Gevorgyan ZU, Sedrakyan AM, Hovhannisyan AI, Arakelyan AA, Aminov RI. Systemic Concentrations of Short Chain Fatty Acids Are Elevated in Salmonellosis and Exacerbation of Familial Mediterranean Fever. Front Microbiol 2016; 7:776. [PMID: 27252692 PMCID: PMC4877380 DOI: 10.3389/fmicb.2016.00776] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
Gut microbiota-produced short chain fatty acids (SCFAs) play an important role in the normal human metabolism and physiology. Although the gradients of SCFAs from the large intestine, where they are largely produced, to the peripheral blood as well as the main routes of SCFA metabolism by different organs are known well for the healthy state, there is a paucity of information regarding how these are affected in disease. In particular, how the inflammation caused by infection or autoinflammatory disease affect the concentration of SCFAs in the peripheral venous blood. In this work, we revealed that diseases caused either by infectious agents (two Salmonella enterica serovars, S. Enteritidis, and S. Typhimurium) or by the exacerbation of an autoinflammatory disease, familial Mediterranean fever (FMF), both result in a significantly elevated systemic concentration of SCFAs. In the case of salmonellosis the concentration of SCFAs in peripheral blood was significantly and consistently higher, from 5- to 20-fold, compared to control. In the case of FMF, however, a significant increase of SCFAs in the peripheral venous blood was detected only in the acute phase of the disease, with a lesser impact in remission. It seems counterintuitive that the dysbiotic conditions, with a reduced number of gut microorganisms, produce such an effect. This phenomenon, however, must be appraised within the context of how the inflammatory diseases affect the normal physiology. We discuss a number of factors that may contribute to the “leak” and persistence of gut-produced SCFAs into the systemic circulation in infectious and autoinflammatory diseases.
Collapse
Affiliation(s)
- Zhanna A Ktsoyan
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia Yerevan, Armenia
| | - Mkhitar S Mkrtchyan
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia Yerevan, Armenia
| | - Magdalina K Zakharyan
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia Yerevan, Armenia
| | - Armine A Mnatsakanyan
- Clinical Hospital of Infectious Diseases Nork, Ministry of Health of Republic of Armenia Yerevan, Armenia
| | - Karine A Arakelova
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia Yerevan, Armenia
| | - Zaruhi U Gevorgyan
- Clinical Hospital of Infectious Diseases Nork, Ministry of Health of Republic of Armenia Yerevan, Armenia
| | - Anahit M Sedrakyan
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia Yerevan, Armenia
| | - Alvard I Hovhannisyan
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia Yerevan, Armenia
| | - Arsen A Arakelyan
- Institute of Molecular Biology of National Academy of Sciences of Republic of Armenia Yerevan, Armenia
| | - Rustam I Aminov
- School of Medicine and Dentistry, University of Aberdeen Aberdeen, UK
| |
Collapse
|
14
|
The multifaceted role of commensal microbiota in homeostasis and gastrointestinal diseases. J Immunol Res 2015; 2015:321241. [PMID: 25759839 PMCID: PMC4352444 DOI: 10.1155/2015/321241] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/08/2014] [Indexed: 01/09/2023] Open
Abstract
The gastrointestinal tract houses a complex and diverse community of microbes. In recent years, an increased understanding of the importance of intestinal microbiota for human physiology has been gained. In the steady state, commensal microorganisms have a symbiotic relationship with the host and possess critical and distinct functions, including directly influencing immunity. This means that recognition of commensal antigens is necessary for the development of complete immune responses. Therefore, the immune system must face the challenge of maintaining mucosal homeostasis while dealing with undue passage of commensal or pathogenic microbes, as well as the host nutritional status or drug use. Disruption of this fine balance has been associated with the development of several intestinal inflammatory diseases. In this review, we discuss the mechanisms involved in the modulation of host-microbe interactions and how the breakdown of this homeostatic association can lead to intestinal inflammation and pathology.
Collapse
|
15
|
Hevia A, López P, Suárez A, Jacquot C, Urdaci MC, Margolles A, Sánchez B. Association of levels of antibodies from patients with inflammatory bowel disease with extracellular proteins of food and probiotic bacteria. BIOMED RESEARCH INTERNATIONAL 2014; 2014:351204. [PMID: 24991549 PMCID: PMC4065772 DOI: 10.1155/2014/351204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 01/01/2023]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease characterized by a chronic inflammation of the gastrointestinal tract mucosa and is related to an abnormal immune response to commensal bacteria. Our aim of the present work has been to explore the levels of antibodies (IgG and IgA) raised against extracellular proteins produced by LAB and its association with IBD. We analyzed, by Western-blot and ELISA, the presence of serum antibodies (IgA and IgG) developed against extracellular protein fractions produced by different food bacteria from the genera Bifidobacterium and Lactobacillus. We used a sera collection consisting of healthy individuals (HC, n = 50), Crohn's disease patients (CD, n = 37), and ulcerative colitis patients (UC, n = 15). Levels of IgA antibodies developed against a cell-wall hydrolase from Lactobacillus casei subsp. rhamnosus GG (CWH) were significantly higher in the IBD group (P < 0.002; n = 52). The specificity of our measurements was confirmed by measuring IgA antibodies developed against the CWH peptide 365-VNTSNQTAAVSAS-377. IBD patients appeared to have different immune response to food bacteria. This paper sets the basis for developing systems for early detection of IBD, based on the association of high levels of antibodies developed against extracellular proteins from food and probiotic bacteria.
Collapse
Affiliation(s)
- Arancha Hevia
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain
| | - Patricia López
- Department of Functional Biology, Immunology Area, University of Oviedo, C/Julián Clavería s/n, Oviedo, 33006 Asturias, Spain
| | - Ana Suárez
- Department of Functional Biology, Immunology Area, University of Oviedo, C/Julián Clavería s/n, Oviedo, 33006 Asturias, Spain
| | - Claudine Jacquot
- UMR 5248 CBMN CNRS-Université Bordeaux 1-ENITAB, Laboratoire de Microbiologie et Biochimie Appliquée, 1 Cours du Général de Gaulle, 33175 Gradignan Cedex, France
| | - María C. Urdaci
- UMR 5248 CBMN CNRS-Université Bordeaux 1-ENITAB, Laboratoire de Microbiologie et Biochimie Appliquée, 1 Cours du Général de Gaulle, 33175 Gradignan Cedex, France
| | - Abelardo Margolles
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain
| | - Borja Sánchez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo, Ourense Campus, 32004 Ourense, Spain
| |
Collapse
|
16
|
Ktsoyan ZA, Beloborodova NV, Sedrakyan AM, Osipov GA, Khachatryan ZA, Manukyan GP, Arakelova KA, Hovhannisyan AI, Arakelyan AA, Ghazaryan KA, Zakaryan MK, Aminov RI. Management of familial Mediterranean fever by colchicine does not normalize the altered profile of microbial long chain fatty acids in the human metabolome. Front Cell Infect Microbiol 2013; 3:2. [PMID: 23373011 PMCID: PMC3556566 DOI: 10.3389/fcimb.2013.00002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/07/2013] [Indexed: 12/21/2022] Open
Abstract
In our previous works we established that in an autoinflammatory condition, familial Mediterranean fever (FMF), the gut microbial diversity is specifically restructured, which also results in the altered profiles of microbial long chain fatty acids (LCFAs) present in the systemic metabolome. The mainstream management of the disease is based on oral administration of colchicine to suppress clinical signs and extend remission periods and our aim was to determine whether this therapy normalizes the microbial LCFA profiles in the metabolome as well. Unexpectedly, the treatment does not normalize these profiles. Moreover, it results in the formation of new distinct microbial LCFA clusters, which are well separated from the corresponding values in healthy controls and FMF patients without the therapy. We hypothesize that the therapy alters the proinflammatory network specific for the disease, with the concomitant changes in gut microbiota and the corresponding microbial LCFAs in the metabolome.
Collapse
Affiliation(s)
- Zhanna A Ktsoyan
- Institute of Molecular Biology, National Academy of Sciences, Yerevan, Republic of Armenia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Maes M, Kubera M, Leunis JC, Berk M. Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. J Affect Disord 2012; 141:55-62. [PMID: 22410503 DOI: 10.1016/j.jad.2012.02.023] [Citation(s) in RCA: 322] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/26/2012] [Accepted: 02/16/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recently, we discovered that depression is accompanied by increased IgM and IgA responses directed against gram negative gut commensals. The aim of this study was to replicate these findings in a larger study group of depressed patients and to examine the associations between the IgA and IgM responses to gut commensals and staging of depression as well as the fatigue and somatic (F&S) symptoms of depression. METHODS We measured serum concentrations of IgM and IgA against the LPS of gram-negative enterobacteria, i.e. Hafnia alvei, Pseudomonas aeruginosa, Morganella morganii, Pseudomonas putida, Citrobacter koseri, and Klebsiella pneumoniae in 112 depressed patients and 28 normal controls. The severity of F&S symptoms was measured using the Fibromyalgia and Chronic Fatigue Syndrome Rating Scale. RESULTS The prevalences and median values of serum IgM and IgA against LPS of these commensals were significantly higher in depressed patients than in controls. The IgM levels directed against the LPS of these commensal bacteria were significantly higher in patients with chronic depression than in those without. The immune responses directed against LPS were not associated with melancholia or recurrent depression. There was a significant correlation between the IgA response directed against LPS and gastro-intestinal symptoms. DISCUSSION The results indicate that increased bacterial translocation with immune responses to the LPS of commensal bacteria may play a role in the pathophysiology of depression, particularly chronic depression. Bacterial translocation may a) occur secondary to systemic inflammation in depression and intensify and perpetuate the primary inflammatory response once the commensals are translocated; or b) be a primary trigger factor associated with the onset of depression in some vulnerable individuals. The findings suggest that "translocated" gut commensal bacteria activate immune cells to elicit IgA and IgM responses and that this phenomenon may play a role in the pathophysiology of (chronic) depression by causing progressive amplifications of immune pathways.
Collapse
|
18
|
Iebba V, Nicoletti M, Schippa S. Gut Microbiota and the Immune System: An Intimate Partnership in Health and Disease. Int J Immunopathol Pharmacol 2012; 25:823-33. [DOI: 10.1177/039463201202500401] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In recent years there have been increased rates of autoimmune diseases, possibly associated to altered intestinal microflora. In this brief review article, after a description of the structure and function of the gut microbiota organ and its cross-talk with the human host, we give a report on findings indicating how the host immune system responds to bacterial colonization of the gastrointestinal tract. The disturbances in the bacterial microbiota will result in the deregulation of adaptive immune cells, which may underlie autoimmune disorders. The mammalian immune system, which seems to be designed to control microorganisms, could be instead influenced by microorganisms, as suggested in recent literature. Alterations in both the structure and function of intestinal microbiota could be one of the ‘common causative triggers’ of autoimmune and/or autoinflammatory disorders.
Collapse
Affiliation(s)
- V. Iebba
- Public Health and Infectious Diseases Department, ‘Sapienza’ University of Rome, Rome, Italy
| | - M. Nicoletti
- Department of Biomedical Sciences, University of Chieti, Chieti, Italy
| | - S. Schippa
- Public Health and Infectious Diseases Department, ‘Sapienza’ University of Rome, Rome, Italy
| |
Collapse
|
19
|
Probiotics, prebiotics, and synbiotics: gut and beyond. Gastroenterol Res Pract 2012; 2012:872716. [PMID: 23049548 PMCID: PMC3459241 DOI: 10.1155/2012/872716] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/20/2012] [Indexed: 12/14/2022] Open
Abstract
The human intestinal tract has been colonized by thousands of species of bacteria during the coevolution of man and microbes. Gut-borne microbes outnumber the total number of body tissue cells by a factor of ten. Recent metagenomic analysis of the human gut microbiota has revealed the presence of some 3.3 million genes, as compared to the mere 23 thousand genes present in the cells of the tissues in the entire human body. Evidence for various beneficial roles of the intestinal microbiota in human health and disease is expanding rapidly. Perturbation of the intestinal microbiota may lead to chronic diseases such as autoimmune diseases, colon cancers, gastric ulcers, cardiovascular disease, functional bowel diseases, and obesity. Restoration of the gut microbiota may be difficult to accomplish, but the use of probiotics has led to promising results in a large number of well-designed (clinical) studies. Microbiomics has spurred a dramatic increase in scientific, industrial, and public interest in probiotics and prebiotics as possible agents for gut microbiota management and control. Genomics and bioinformatics tools may allow us to establish mechanistic relationships among gut microbiota, health status, and the effects of drugs in the individual. This will hopefully provide perspectives for personalized gut microbiota management.
Collapse
|
20
|
Maes M, Twisk FNM, Kubera M, Ringel K, Leunis JC, Geffard M. Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. J Affect Disord 2012; 136:909-17. [PMID: 21967891 DOI: 10.1016/j.jad.2011.09.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/19/2011] [Accepted: 09/08/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is accompanied by a) systemic IgA/IgM responses against the lipopolysaccharides (LPS) of commensal bacteria; b) inflammation, e.g. increased plasma interleukin-(IL)1 and tumor necrosis factor (TNF)α; and c) activation of cell-mediated immunity (CMI), as demonstrated by increased neopterin. METHODS To study the relationships between the IgA/IgM responses to the LPS of microbiota, inflammation, CMI and the symptoms of ME/CFS we measured the IgA/IgM responses to the LPS of 6 different enterobacteria, serum IL-1, TNFα, neopterin, and elastase in 128 patients with ME/CFS and chronic fatigue (CF). Severity of symptoms was assessed by the Fibromyalgia and Chronic Fatigue Syndrome (FF) Rating Scale. RESULTS Serum IL-1, TNFα, neopterin and elastase are significantly higher in patients with ME/CFS than in CF patients. There are significant and positive associations between the IgA responses to LPS and serum IL-1, TNFα, neopterin and elastase. Patients with an abnormally high IgA response show increased serum IL-1, TNFα and neopterin levels, and higher ratings on irritable bowel syndrome (IBS) than subjects with a normal IgA response. Serum IL-1, TNFα and neopterin are significantly related to fatigue, a flu-like malaise, autonomic symptoms, neurocognitive disorders, sadness and irritability. CONCLUSIONS The findings show that increased IgA responses to commensal bacteria in ME/CFS are associated with inflammation and CMI activation, which are associated with symptom severity. It is concluded that increased translocation of commensal bacteria may be responsible for the disease activity in some ME/CFS patients.
Collapse
|
21
|
Ktsoyan ZA, Beloborodova NV, Sedrakyan AM, Osipov GA, Khachatryan ZA, Kelly D, Manukyan GP, Arakelova KA, Hovhannisyan AI, Olenin AY, Arakelyan AA, Ghazaryan KA, Aminov RI. Profiles of Microbial Fatty Acids in the Human Metabolome are Disease-Specific. Front Microbiol 2011; 1:148. [PMID: 21687748 PMCID: PMC3109323 DOI: 10.3389/fmicb.2010.00148] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 12/27/2010] [Indexed: 12/16/2022] Open
Abstract
The human gastrointestinal tract is inhabited by a diverse and dense symbiotic microbiota, the composition of which is the result of host-microbe co-evolution and co-adaptation. This tight integration creates intense cross-talk and signaling between the host and microbiota at the cellular and metabolic levels. In many genetic or infectious diseases the balance between host and microbiota may be compromised resulting in erroneous communication. Consequently, the composition of the human metabolome, which includes the gut metabolome, may be different in health and disease states in terms of microbial products and metabolites entering systemic circulation. To test this hypothesis, we measured the level of hydroxy, branched, cyclopropyl and unsaturated fatty acids, aldehydes, and phenyl derivatives in blood of patients with a hereditary autoinflammatory disorder, familial Mediterranean fever (FMF), and in patients with peptic ulceration (PU) resulting from Helicobacter pylori infection. Discriminant function analysis of a data matrix consisting of 94 cases as statistical units (37 FMF patients, 14 PU patients, and 43 healthy controls) and the concentration of 35 microbial products in the blood as statistical variables revealed a high accuracy of the proposed model (all cases were correctly classified). This suggests that the profile of microbial products and metabolites in the human metabolome is specific for a given disease and may potentially serve as a biomarker for disease.
Collapse
Affiliation(s)
- Zhanna A Ktsoyan
- Institute of Molecular Biology, National Academy of Sciences of Republic of Armenia Yerevan, Republic of Armenia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Gut microbiota is an assortment of microorganisms inhabiting the length and width of the mammalian gastrointestinal tract. The composition of this microbial community is host specific, evolving throughout an individual's lifetime and susceptible to both exogenous and endogenous modifications. Recent renewed interest in the structure and function of this “organ” has illuminated its central position in health and disease. The microbiota is intimately involved in numerous aspects of normal host physiology, from nutritional status to behavior and stress response. Additionally, they can be a central or a contributing cause of many diseases, affecting both near and far organ systems. The overall balance in the composition of the gut microbial community, as well as the presence or absence of key species capable of effecting specific responses, is important in ensuring homeostasis or lack thereof at the intestinal mucosa and beyond. The mechanisms through which microbiota exerts its beneficial or detrimental influences remain largely undefined, but include elaboration of signaling molecules and recognition of bacterial epitopes by both intestinal epithelial and mucosal immune cells. The advances in modeling and analysis of gut microbiota will further our knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.
Collapse
Affiliation(s)
- Inna Sekirov
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shannon L. Russell
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - L. Caetano M. Antunes
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Comparative analysis of cytokine profiles in autoinflammatory and autoimmune conditions. Cytokine 2010; 50:146-51. [DOI: 10.1016/j.cyto.2010.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/05/2010] [Accepted: 02/22/2010] [Indexed: 12/21/2022]
|
24
|
Prechl J, Papp K, Erdei A. Antigen microarrays: descriptive chemistry or functional immunomics? Trends Immunol 2010; 31:133-7. [DOI: 10.1016/j.it.2010.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/13/2010] [Accepted: 01/14/2010] [Indexed: 01/19/2023]
|
25
|
Peterson DA, Jimenez Cardona RA. Specificity of the Adaptive Immune Response to the Gut Microbiota. Adv Immunol 2010; 107:71-107. [DOI: 10.1016/b978-0-12-381300-8.00003-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Does breast-feeding affect severity of familial Mediterranean fever? Clin Rheumatol 2009; 28:1389-93. [DOI: 10.1007/s10067-009-1254-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
|