1
|
Laponogov I, Pan XS, Veselkov DA, Cirz RT, Wagman A, Moser HE, Fisher LM, Sanderson MR. Exploring the active site of the Streptococcus pneumoniae topoisomerase IV-DNA cleavage complex with novel 7,8-bridged fluoroquinolones. Open Biol 2016; 6:rsob.160157. [PMID: 27655731 PMCID: PMC5043579 DOI: 10.1098/rsob.160157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
As part of a programme of synthesizing and investigating the biological properties of new fluoroquinolone antibacterials and their targeting of topoisomerase IV from Streptococcus pneumoniae, we have solved the X-ray structure of the complexes of two new 7,8-bridged fluoroquinolones (with restricted C7 group rotation favouring tight binding) in complex with the topoisomerase IV from S. pneumoniae and an 18-base-pair DNA binding site—the E-site—found by our DNA mapping studies to bind drug strongly in the presence of topoisomerase IV (Leo et al. 2005 J. Biol. Chem.280, 14 252–14 263, doi:10.1074/jbc.M500156200). Although the degree of antibiotic resistance towards fluoroquinolones is much lower than that of β-lactams and a range of ribosome-bound antibiotics, there is a pressing need to increase the diversity of members of this successful clinically used class of drugs. The quinolone moiety of the new 7,8-bridged agents ACHN-245 and ACHN-454 binds similarly to that of clinafloxocin, levofloxacin, moxifloxacin and trovofloxacin but the cyclic scaffold offers the possibility of chemical modification to produce interactions with other topoisomerase residues at the active site.
Collapse
Affiliation(s)
- Ivan Laponogov
- Randall Division of Cell and Molecular Biophysics, King's College, Guy's Campus, London Bridge, London SE1 1UL, UK Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Xiao-Su Pan
- Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Dennis A Veselkov
- Randall Division of Cell and Molecular Biophysics, King's College, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Ryan T Cirz
- Achaogen, 7000 Shoreline Ct. No. 371, San Francisco, CA 94080, USA
| | - Allan Wagman
- Achaogen, 7000 Shoreline Ct. No. 371, San Francisco, CA 94080, USA
| | - Heinz E Moser
- Achaogen, 7000 Shoreline Ct. No. 371, San Francisco, CA 94080, USA
| | - L Mark Fisher
- Molecular and Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Mark R Sanderson
- Randall Division of Cell and Molecular Biophysics, King's College, Guy's Campus, London Bridge, London SE1 1UL, UK
| |
Collapse
|
2
|
Veselkov DA, Laponogov I, Pan XS, Selvarajah J, Skamrova GB, Branstrom A, Narasimhan J, Prasad JVNV, Fisher LM, Sanderson MR. Structure of a quinolone-stabilized cleavage complex of topoisomerase IV from Klebsiella pneumoniae and comparison with a related Streptococcus pneumoniae complex. Acta Crystallogr D Struct Biol 2016; 72:488-96. [PMID: 27050128 PMCID: PMC4822561 DOI: 10.1107/s2059798316001212] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/19/2016] [Indexed: 11/24/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium that is responsible for a range of common infections, including pulmonary pneumonia, bloodstream infections and meningitis. Certain strains of Klebsiella have become highly resistant to antibiotics. Despite the vast amount of research carried out on this class of bacteria, the molecular structure of its topoisomerase IV, a type II topoisomerase essential for catalysing chromosomal segregation, had remained unknown. In this paper, the structure of its DNA-cleavage complex is reported at 3.35 Å resolution. The complex is comprised of ParC breakage-reunion and ParE TOPRIM domains of K. pneumoniae topoisomerase IV with DNA stabilized by levofloxacin, a broad-spectrum fluoroquinolone antimicrobial agent. This complex is compared with a similar complex from Streptococcus pneumoniae, which has recently been solved.
Collapse
Affiliation(s)
- Dennis A. Veselkov
- Randall Division of Cell and Molecular Biophysics, King’s College London, 3rd Floor, New Hunt’s House, Guy’s Campus, London SE1 1UL, England
| | - Ivan Laponogov
- Randall Division of Cell and Molecular Biophysics, King’s College London, 3rd Floor, New Hunt’s House, Guy’s Campus, London SE1 1UL, England
- Cardiovascular and Cell Sciences Research Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, England
| | - Xiao-Su Pan
- Cardiovascular and Cell Sciences Research Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, England
| | - Jogitha Selvarajah
- Cardiovascular and Cell Sciences Research Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, England
| | - Galyna B. Skamrova
- Randall Division of Cell and Molecular Biophysics, King’s College London, 3rd Floor, New Hunt’s House, Guy’s Campus, London SE1 1UL, England
| | - Arthur Branstrom
- PTC Therapeutics Inc., 100 Corporate Court, South Plainfield, NJ 07080, USA
| | - Jana Narasimhan
- PTC Therapeutics Inc., 100 Corporate Court, South Plainfield, NJ 07080, USA
| | | | - L. Mark Fisher
- Cardiovascular and Cell Sciences Research Institute, St George’s, University of London, Cranmer Terrace, London SW17 0RE, England
| | - Mark R. Sanderson
- Randall Division of Cell and Molecular Biophysics, King’s College London, 3rd Floor, New Hunt’s House, Guy’s Campus, London SE1 1UL, England
| |
Collapse
|