1
|
Metz C, Oyanadel C, Jung J, Retamal C, Cancino J, Barra J, Venegas J, Du G, Soza A, González A. Phosphatidic acid-PKA signaling regulates p38 and ERK1/2 functions in ligand-independent EGFR endocytosis. Traffic 2021; 22:345-361. [PMID: 34431177 DOI: 10.1111/tra.12812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022]
Abstract
Ligand-independent epidermal growth factor receptor (EGFR) endocytosis is inducible by a variety of stress conditions converging upon p38 kinase. A less known pathway involves phosphatidic acid (PA) signaling toward the activation of type 4 phosphodiesterases (PDE4) that decrease cAMP levels and protein kinase A (PKA) activity. This PA/PDE4/PKA pathway is triggered with propranolol used to inhibit PA hydrolysis and induces clathrin-dependent and clathrin-independent endocytosis, followed by reversible accumulation of EGFR in recycling endosomes. Here we give further evidence of this signaling pathway using biosensors of PA, cAMP, and PKA in live cells and then show that it activates p38 and ERK1/2 downstream the PKA inhibition. Clathrin-silencing and IN/SUR experiments involved the activity of p38 in the clathrin-dependent route, while ERK1/2 mediates clathrin-independent EGFR endocytosis. The PA/PDE4/PKA pathway selectively increases the EGFR endocytic rate without affecting LDLR and TfR constitute endocytosis. This selectiveness is probably because of EGFR phosphorylation, as detected in Th1046/1047 and Ser669 residues. The EGFR accumulates at perinuclear recycling endosomes colocalizing with TfR, fluorescent transferrin, and Rab11, while a small proportion distributes to Alix-endosomes. A non-selective recycling arrest includes LDLR and TfR in a reversible manner. The PA/PDE4/PKA pathway involving both p38 and ERK1/2 expands the possibilities of EGFR transmodulation and interference in cancer.
Collapse
Affiliation(s)
- Claudia Metz
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Oyanadel
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Juan Jung
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Retamal
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jorge Cancino
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jonathan Barra
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jaime Venegas
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Andrea Soza
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alfonso González
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Fundación Ciencia y Vida, Santiago, Chile
| |
Collapse
|
2
|
Retraction: HPV16 E7-Dependent Transformation Activates NHE1 through a PKA-RhoA-Iinduced Inhibition of p38alpha. PLoS One 2019; 14:e0218402. [PMID: 31181118 PMCID: PMC6557508 DOI: 10.1371/journal.pone.0218402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
3
|
ZHANG SHIMENG, LIU FEI, MAO XINRU, HUANG JINLAN, YANG JUNYAO, YIN XIAOMAO, WU LIJUAN, ZHENG LEI, WANG QIAN. Elevation of miR-27b by HPV16 E7 inhibits PPARγ expression and promotes proliferation and invasion in cervical carcinoma cells. Int J Oncol 2015; 47:1759-66. [DOI: 10.3892/ijo.2015.3162] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/06/2015] [Indexed: 11/06/2022] Open
|
4
|
Bocanegra V, Gil Lorenzo AF, Cacciamani V, Benardón ME, Costantino VV, Vallés PG. RhoA and MAPK signal transduction pathways regulate NHE1-dependent proximal tubule cell apoptosis after mechanical stretch. Am J Physiol Renal Physiol 2014; 307:F881-9. [PMID: 25080524 DOI: 10.1152/ajprenal.00232.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mechanical deformation after congenital ureteral obstruction is traduced into biochemical signals leading to tubular atrophy due to epithelial cell apoptosis. We investigated whether Na(+)/H(+) exchanger 1 (NHE1) could be responsible for HK-2 cell apoptosis induction in response to mechanical stretch through its ability to function as a control point of RhoA and MAPK signaling pathways. When mechanical stretch was applied to HK-2 cells, cell apoptosis was associated with diminished NHE1 expression and RhoA activation. The RhoA signaling pathway was confirmed to be upstream from the MAPK cascade when HK-2 cells were transfected with the active RhoA-V14 mutant, showing higher ERK1/2 expression and decreased p38 activation associated with NHE1 downregulation. NHE1 participation in apoptosis induction was confirmed by specific small interfering RNA NHE1 showing caspase-3 activation and decreased Bcl-2 expression. The decreased NHE1 expression was correlated with abnormal NHE1 activity addressed by intracellular pH measurements. These results demonstrate that mitochondrial proximal tubule cell apoptosis in response to mechanical stretch is orchestrated by signaling pathways initiated by the small GTPase RhoA and followed by the opposing effects of ERK1/2 and p38 MAPK phosphorylation, regulating NHE1 decreased expression and activity.
Collapse
Affiliation(s)
- Victoria Bocanegra
- Instituto de Medicina y Biología Experimental de Cuyo-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and
| | - Andrea Fernanda Gil Lorenzo
- Instituto de Medicina y Biología Experimental de Cuyo-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and
| | - Valeria Cacciamani
- Área de Fisiología Patológica, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Eugenia Benardón
- Área de Fisiología Patológica, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Valeria Victoria Costantino
- Instituto de Medicina y Biología Experimental de Cuyo-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and
| | - Patricia G Vallés
- Instituto de Medicina y Biología Experimental de Cuyo-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; and Área de Fisiología Patológica, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
5
|
Reshkin SJ, Greco MR, Cardone RA. Role of pHi, and proton transporters in oncogene-driven neoplastic transformation. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130100. [PMID: 24493748 DOI: 10.1098/rstb.2013.0100] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The change of a normal, healthy cell to a transformed cell is the first step in the evolutionary arc of a cancer. While the role of oncogenes in this 'passage' is well known, the role of ion transporters in this critical step is less known and is fundamental to our understanding the early physiological processes of carcinogenesis. Cancer cells and tissues have an aberrant regulation of hydrogen ion dynamics leading to a reversal of the normal tissue intracellular to extracellular pH gradient (ΔpHi to ΔpHe). When this perturbation in pH dynamics occurs during carcinogenesis is less clear. Very early studies using the introduction of different oncogene proteins into cells observed a concordance between neoplastic transformation and a cytoplasmic alkalinization occurring concomitantly with a shift towards glycolysis in the presence of oxygen, i.e. 'Warburg metabolism'. These processes may instigate a vicious cycle that drives later progression towards fully developed cancer where the reversed pH gradient becomes ever more pronounced. This review presents our understanding of the role of pH and the NHE1 in driving transformation, in determining the first appearance of the cancer 'hallmark' characteristics and how the use of pharmacological approaches targeting pH/NHE1 may open up new avenues for efficient treatments even during the first steps of cancer development.
Collapse
Affiliation(s)
- Stephan Joel Reshkin
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, , Bari 70126, Italy
| | | | | |
Collapse
|
6
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
7
|
Haedicke J, Iftner T. Human papillomaviruses and cancer. Radiother Oncol 2013; 108:397-402. [PMID: 23830197 DOI: 10.1016/j.radonc.2013.06.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/05/2013] [Indexed: 11/28/2022]
Abstract
Human papillomaviruses (HPV) are small oncogenic DNA viruses of which more than 200 types have been identified to date. A small subset of these is etiologically linked to the development of anogenital malignancies such as cervical cancer. In addition, recent studies established a causative relationship between these high-risk HPV types and tonsillar and oropharyngeal cancer. Clinical management of cervical cancer and head and neck squamous cell carcinomas (HNSCCs) is largely standardized and involves surgical removal of the tumor tissue as well as adjuvant chemoradiation therapy. Notably, the response to therapeutic intervention of HPV-positive HNSCCs has been found to be better as compared to HPV-negative tumors. Although the existing HPV vaccine is solely licensed for the prevention of cervical cancer, it might also have prophylactic potential for the development of high-risk HPV-associated HNSCCs. Another group of viruses, which belongs to the beta-HPV subgroup, has been implicated in nonmelanoma skin cancer, however, the etiology remains to be established. Treatment of HPV-induced nonmelanoma skin cancer is based on local excision. However, topically applied immune-modulating substances represent non-surgical alternatives for the management of smaller cutaneous tumors. In this review we present the current knowledge of the role of HPV in cancer development and discuss clinical management options as well as targets for the development of future intervention therapies.
Collapse
Affiliation(s)
- Juliane Haedicke
- Medical Virology, Division of Experimental Virology, University Hospital Tübingen, Germany
| | | |
Collapse
|
8
|
Schwab A, Fabian A, Hanley PJ, Stock C. Role of ion channels and transporters in cell migration. Physiol Rev 2013; 92:1865-913. [PMID: 23073633 DOI: 10.1152/physrev.00018.2011] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell motility is central to tissue homeostasis in health and disease, and there is hardly any cell in the body that is not motile at a given point in its life cycle. Important physiological processes intimately related to the ability of the respective cells to migrate include embryogenesis, immune defense, angiogenesis, and wound healing. On the other side, migration is associated with life-threatening pathologies such as tumor metastases and atherosclerosis. Research from the last ≈ 15 years revealed that ion channels and transporters are indispensable components of the cellular migration apparatus. After presenting general principles by which transport proteins affect cell migration, we will discuss systematically the role of channels and transporters involved in cell migration.
Collapse
|
9
|
Ion channels/transporters as epigenetic regulators? -a microRNA perspective. SCIENCE CHINA-LIFE SCIENCES 2012; 55:753-60. [PMID: 23015123 DOI: 10.1007/s11427-012-4369-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 07/30/2012] [Indexed: 10/27/2022]
Abstract
MicroRNA (miRNA) alterations in response to changes in an extracellular microenvironment have been observed and considered as one of the major mechanisms for epigenetic modifications of the cell. While enormous efforts have been made in the understanding of the role of miRNAs in regulating cellular responses to the microenvironment, the mechanistic insight into how extracellular signals can be transduced into miRNA alterations in cells is still lacking. Interestingly, recent studies have shown that ion channels/transporters, which are known to conduct or transport ions across the cell membrane, also exhibit changes in levels of expression and activities in response to changes of extracellular microenvironment. More importantly, alterations in expression and function of ion channels/transporters have been shown to result in changes in miRNAs that are known to change in response to alteration of the microenvironment. In this review, we aim to summarize the recent data demonstrating the ability of ion channels/transporters to transduce extracellular signals into miRNA changes and propose a potential link between cells and their microenvironment through ion channels/transporters. At the same time, we hope to provide new insights into epigenetic regulatory mechanisms underlying a number of physiological and pathological processes, including embryo development and cancer metastasis.
Collapse
|
10
|
Phosphorylation regulates binding of the human papillomavirus type 8 E2 protein to host chromosomes. J Virol 2012; 86:10047-58. [PMID: 22787207 DOI: 10.1128/jvi.01140-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The papillomavirus E2 proteins are indispensable for the viral life cycle, and their functions are subject to tight regulation. The E2 proteins undergo posttranslational modifications that regulate their properties and roles in viral transcription, replication, and genome maintenance. During persistent infection, the E2 proteins from many papillomaviruses act as molecular bridges that tether the viral genomes to host chromosomes to retain them within the host nucleus and to partition them to daughter cells. The betapapillomavirus E2 proteins bind to pericentromeric regions of host mitotic chromosomes, including the ribosomal DNA loci. We recently reported that two residues (arginine 250 and serine 253) within the chromosome binding region of the human papillomavirus type 8 (HPV8) E2 protein are required for this binding. In this study, we show that serine 253 is phosphorylated, most likely by protein kinase A, and this modulates the interaction of the E2 protein with cellular chromatin. Furthermore, we show that this phosphorylation occurs in S phase, increases the half-life of the E2 protein, and promotes chromatin binding from S phase through mitosis.
Collapse
|
11
|
Arcangeli A. Ion channels and transporters in cancer. 3. Ion channels in the tumor cell-microenvironment cross talk. Am J Physiol Cell Physiol 2011; 301:C762-71. [DOI: 10.1152/ajpcell.00113.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The traditional view of cancer as a collection of proliferating cells must be reconsidered, and cancer must be viewed as a “tissue” constituted by both transformed cells and a heterogeneous microenvironment, that tumor cells construct and remodel during multistep tumorigenesis. The “tumor microenvironment” (TM) is formed by mesenchymal, endothelial, and immune cells immersed in a network of extracellular matrix (ECM) proteins and soluble factors. The TM strongly contributes to tumor progression, through long distance, cell-to-cell or cell-to-matrix signals, which influence different aspects of tumor cell behavior. Understanding the relationships among the different components of the cancer tissue is crucial to design and develop new therapeutic strategies. Ion channels are emerging as relevant players in the cross talk between tumor cells and their TM. Ion channels are expressed on tumor cells, as well as in the different cellular components of the TM. In all these cells, ion channels are in a strategic position to sense and transmit extracellular signals into the intracellular machinery. Often, this transmission is mediated by integrin adhesion receptors, which can be functional partners of ion channels since they form molecular complexes with the channel protein in the context of the plasma membrane. The same relevant role is exerted by ion transporters, which also contribute to determine two facets of the cancer tissue: hypoxia and the acidic extracellular pH. On the whole, it is conceivable to prospect the targeting of ion channels for new therapeutic strategies aimed at better controlling the malignant progression of the cancer tissue.
Collapse
Affiliation(s)
- Annarosa Arcangeli
- Department of Experimental Pathology and Oncology, University of Firenze, and Istituto Toscano Tumori, Firenze, Italy
| |
Collapse
|
12
|
Alfarouk KO, Shayoub ME, Muddathir AK, Elhassan GO, Bashir AH. Evolution of Tumor Metabolism might Reflect Carcinogenesis as a Reverse Evolution process (Dismantling of Multicellularity). Cancers (Basel) 2011; 3:3002-17. [PMID: 24310356 PMCID: PMC3759183 DOI: 10.3390/cancers3033002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 01/14/2023] Open
Abstract
Carcinogenesis occurs through a series of steps from normal into benign and finally malignant phenotype. This cancer evolutionary trajectory has been accompanied by similar metabolic transformation from normal metabolism into Pasteur and/or Crabtree-Effects into Warburg-Effect and finally Cannibalism and/or Lactate-Symbiosis. Due to lactate production as an end-product of glycolysis, tumor colonies acquire new phenotypes that rely on lactate as energetic fuel. Presence of Warburg-Effect indicates that some tumor cells undergo partial (if not complete) de-endosymbiosis and so cancer cells have been become unicellular microorganism (anti-Dollo's Law) specially when they evolve to develop cannibalism as way of metabolism while oxidative types of cells that rely on lactate, as their energetic fuel, might represent extra-endosymbiosis. Thus, at the end, the cancer colony could be considered as integrated metabolic ecosystem. Proper understanding of tumor metabolism will contribute to discover potential anticancer agents besides conventional chemotherapy.
Collapse
Affiliation(s)
- Khalid O. Alfarouk
- Department of Evolution of Tumor Metabolism and Pharmacology, Hala Alfarouk Cancer Center, Khartoum 11123, Sudan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +249-120661220
| | - Mohammed E.A. Shayoub
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan; E-Mail:
| | - Abdel Khalig Muddathir
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan; E-Mail:
| | - Gamal O. Elhassan
- General Directorate of Pharmacy, Federal Ministry of Health, Khartoum 11111, Sudan; E-Mail:
| | - Adil H.H. Bashir
- Department of Evolution of Tumor Metabolism and Pharmacology, Hala Alfarouk Cancer Center, Khartoum 11123, Sudan; E-Mail:
- Al Jawda Medical Hospital, Khartoum 11111, Sudan
| |
Collapse
|
13
|
Arcangeli A, Becchetti A. New Trends in Cancer Therapy: Targeting Ion Channels and Transporters. Pharmaceuticals (Basel) 2010; 3:1202-1224. [PMID: 27713296 PMCID: PMC4034029 DOI: 10.3390/ph3041202] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 02/07/2023] Open
Abstract
The expression and activity of different channel types mark and regulate specific stages of cancer establishment and progression. Blocking channel activity impairs the growth of some tumors, both in vitro and in vivo, which opens a new field for pharmaceutical research. However, ion channel blockers may produce serious side effects, such as cardiac arrhythmias. For instance, Kv11.1 (hERG1) channels are aberrantly expressed in several human cancers, in which they control different aspects of the neoplastic cell behaviour. hERG1 blockers tend to inhibit cancer growth. However they also retard the cardiac repolarization, thus lengthening the electrocardiographic QT interval, which can lead to life-threatening ventricular arrhythmias. Several possibilities exist to produce less harmful compounds, such as developing specific drugs that bind hERG1 channels in the open state or disassemble the ion channel/integrin complex which appears to be crucial in certain stages of neoplastic progression. The potential approaches to improve the efficacy and safety of ion channel targeting in oncology include: (1) targeting specific conformational channel states; (2) finding ever more specific inhibitors, including peptide toxins, for channel subtypes mainly expressed in well-identified tumors; (3) using specific ligands to convey traceable or cytotoxic compounds; (4) developing channel blocking antibodies; (5) designing new molecular tools to decrease channel expression in selected cancer types. Similar concepts apply to ion transporters such as the Na⁺/K⁺ pump and the Na⁺/H⁺ exchanger. Pharmacological targeting of these transporters is also currently being considered in anti-neoplastic therapy.
Collapse
Affiliation(s)
- Annarosa Arcangeli
- Department of Experimental Pathology and Oncology, University of Florence, Italy.
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy.
| | - Andrea Becchetti
- Department of Experimental Pathology and Oncology, University of Florence, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| |
Collapse
|
14
|
Chiche J, Brahimi-Horn MC, Pouysségur J. Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer. J Cell Mol Med 2009; 14:771-94. [PMID: 20015196 PMCID: PMC3823111 DOI: 10.1111/j.1582-4934.2009.00994.x] [Citation(s) in RCA: 459] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Maintenance of cellular pH homeostasis is fundamental to life. A number of key intracellular pH (pHi) regulating systems including the Na+/H+ exchangers, the proton pump, the monocarboxylate transporters, the HCO3− transporters and exchangers and the membrane-associated and cytosolic carbonic anhydrases cooperate in maintaining a pHi that is permissive for cell survival. A common feature of tumours is acidosis caused by hypoxia (low oxygen tension). In addition to oncogene activation and transformation, hypoxia is responsible for inducing acidosis through a shift in cellular metabolism that generates a high acid load in the tumour microenvironment. However, hypoxia and oncogene activation also allow cells to adapt to the potentially toxic effects of an excess in acidosis. Hypoxia does so by inducing the activity of a transcription factor the hypoxia-inducible factor (HIF), and particularly HIF-1, that in turn enhances the expression of a number of pHi-regulating systems that cope with acidosis. In this review, we will focus on the characterization and function of some of the hypoxia-inducible pH-regulating systems and their induction by hypoxic stress. It is essential to understand the fundamentals of pH regulation to meet the challenge consisting in targeting tumour metabolism and acidosis as an anti-tumour approach. We will summarize strategies that take advantage of intracellular and extracellular pH regulation to target the primary tumour and metastatic growth, and to turn around resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Johanna Chiche
- Institute of Developmental Biology and Cancer Research, University of Nice, CNRS UMR, Centre A. Lacassagne, Nice, France
| | | | | |
Collapse
|