1
|
A Novel, Fully Spliced, Accessory Gene in Equine Lentivirus with Distinct Rev-Responsive Element. J Virol 2022; 96:e0098622. [PMID: 36069548 PMCID: PMC9517694 DOI: 10.1128/jvi.00986-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All lentiviruses encode the accessory protein Rev, whose main biological function is to mediate the nuclear export of unspliced and incompletely spliced viral transcripts by binding to a viral cis-acting element (termed the Rev-responsive element, RRE) within the env-encoding region. Equine infectious anemia virus (EIAV) is a member of the lentivirus genus in the Retroviridae family and is considered an important model for the study of lentivirus pathogenesis. Here, we identified a novel transcript from the EIAV genome that encoded a viral protein, named Mat, with an unknown function. The transcript mat was fully spliced and comprised parts of the coding regions of MA and TM. Interestingly, the expression of Mat depended on Rev and the chromosome region maintenance 1 (CRM1) pathway. Rev could specifically bind to Mat mRNA to promote its nuclear export. We further identified that the first exon of Mat mRNA, which was located within the Gag-encoding region, acted as an unreported RRE. Altogether, we identified a novel fully spliced transcript mat with an unusual RRE, which interacted with Rev for nuclear export through the CRM1 pathway. These findings updated the EIAV genome structure, highlighted the diversification of posttranscriptional regulation patterns in EIAV, and may help to expand the understanding of gene transcription and expression of lentivirus. IMPORTANCE In lentiviruses, the nuclear export of viral transcripts is an important step in controlling viral gene expression. Generally, the unspliced and incompletely spliced transcripts are exported via the CRM1-dependent export pathway in a process mediated by the viral Rev protein by binding to the Rev-responsive element (RRE) located within the Env-coding region. However, the completely spliced transcripts are exported via an endogenous cellular pathway, which was Rev independent. Here, we identified a novel fully spliced transcript from EIAV and demonstrated that it encoded a viral protein, termed Mat. Interestingly, we determined that the expression of Mat depended on Rev and identified that the first exon of Mat mRNA could specifically bind to Rev and be exported to the cytoplasm, which suggested that the first exon of Mat mRNA was a second RRE of EIAV. These findings provided important insights into the Rev-dependent nuclear export of completely spliced transcripts in lentiviruses.
Collapse
|
2
|
Jackson PEH, Dzhivhuho G, Rekosh D, Hammarskjold ML. Sequence and Functional Variation in the HIV-1 Rev Regulatory Axis. Curr HIV Res 2021; 18:85-98. [PMID: 31906839 DOI: 10.2174/1570162x18666200106112842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND To complete its replication cycle, HIV-1 requires the nucleocytoplasmic export of intron-containing viral mRNAs. This process is ordinarily restricted by the cell, but HIV overcomes the block by means of a viral protein, Rev, and an RNA secondary structure found in all unspliced and incompletely spliced viral mRNAs called the Rev Response Element (RRE). In vivo activity of the Rev-RRE axis requires Rev binding to the RRE, oligomerization of Rev to form a competent ribonucleoprotein complex, and recruitment of cellular factors including Crm1 and RanGTP in order to export the targeted transcript. Sequence variability is observed among primary isolates in both Rev and the RRE, and the activity of both can be modulated through relatively small sequence changes. Primary isolates show differences in Rev-RRE activity and a few studies have found a correlation between lower Rev-RRE activity and slower progression of clinical disease. Lower Rev-RRE activity has also been associated with the evasion of cytotoxic T lymphocyte mediated killing. CONCLUSION The HIV-1 Rev-RRE regulatory axis is an understudied mechanism by which viral adaptation to diverse immune milieus may take place. There is evidence that this adaptation plays a role in HIV pathogenesis, particularly in immune evasion and latency, but further studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Patrick E H Jackson
- Division of Infectious Diseases and International Health, School of Medicine, University of Virginia, Charlottesville, Virginia United States.,Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States
| | - Godfrey Dzhivhuho
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States.,Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - David Rekosh
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States.,Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for HIV and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, United States.,Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, United States
| |
Collapse
|
3
|
Umunnakwe CN, Loyd H, Cornick K, Chavez JR, Dobbs D, Carpenter S. Computational modeling suggests dimerization of equine infectious anemia virus Rev is required for RNA binding. Retrovirology 2014; 11:115. [PMID: 25533001 PMCID: PMC4299382 DOI: 10.1186/s12977-014-0115-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/27/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The lentiviral Rev protein mediates nuclear export of intron-containing viral RNAs that encode structural proteins or serve as the viral genome. Following translation, HIV-1 Rev localizes to the nucleus and binds its cognate sequence, termed the Rev-responsive element (RRE), in incompletely spliced viral RNA. Rev subsequently multimerizes along the viral RNA and associates with the cellular Crm1 export machinery to translocate the RNA-protein complex to the cytoplasm. Equine infectious anemia virus (EIAV) Rev is functionally homologous to HIV-1 Rev, but shares very little sequence similarity and differs in domain organization. EIAV Rev also contains a bipartite RNA binding domain comprising two short arginine-rich motifs (designated ARM-1 and ARM-2) spaced 79 residues apart in the amino acid sequence. To gain insight into the topology of the bipartite RNA binding domain, a computational approach was used to model the tertiary structure of EIAV Rev. RESULTS The tertiary structure of EIAV Rev was modeled using several protein structure prediction and model quality assessment servers. Two types of structures were predicted: an elongated structure with an extended central alpha helix, and a globular structure with a central bundle of helices. Assessment of models on the basis of biophysical properties indicated they were of average quality. In almost all models, ARM-1 and ARM-2 were spatially separated by >15 Å, suggesting that they do not form a single RNA binding interface on the monomer. A highly conserved canonical coiled-coil motif was identified in the central region of EIAV Rev, suggesting that an RNA binding interface could be formed through dimerization of Rev and juxtaposition of ARM-1 and ARM-2. In support of this, purified Rev protein migrated as a dimer in Blue native gels, and mutation of a residue predicted to form a key coiled-coil contact disrupted dimerization and abrogated RNA binding. In contrast, mutation of residues outside the predicted coiled-coil interface had no effect on dimerization or RNA binding. CONCLUSIONS Our results suggest that EIAV Rev binding to the RRE requires dimerization via a coiled-coil motif to juxtapose two RNA binding motifs, ARM-1 and ARM-2.
Collapse
Affiliation(s)
- Chijioke N Umunnakwe
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA. .,Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Hyelee Loyd
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| | - Kinsey Cornick
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Jerald R Chavez
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| | - Drena Dobbs
- Department of Genetics, Developmental and Cell Biology, Iowa State University, Ames, IA, 50011, USA. .,Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Susan Carpenter
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
4
|
Na H, Huisman W, Ellestad KK, Phillips TR, Power C. Domain- and nucleotide-specific Rev response element regulation of feline immunodeficiency virus production. Virology 2010; 404:246-60. [PMID: 20570310 DOI: 10.1016/j.virol.2010.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/23/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
Computational analysis of feline immunodeficiency virus (FIV) RNA sequences indicated that common FIV strains contain a rev response element (RRE) defined by a long unbranched hairpin with 6 stem-loop sub-domains, termed stem-loop A (SLA). To examine the role of the RNA secondary structure of the RRE, mutational analyses were performed in both an infectious FIV molecular clone and a FIV CAT-RRE reporter system. These studies disclosed that the stems within SLA (SA1, 2, 3, 4, and 5) of the RRE were critical but SA6 was not essential for FIV replication and CAT expression. These studies also revealed that the secondary structure rather than an antisense protein (ASP) mediates virus expression and replication in vitro. In addition, a single synonymous mutation within the FIV-RRE, SA3/45, reduced viral reverse transcriptase activity and p24 expression after transfection but in addition also showed a marked reduction in viral expression and production following infection.
Collapse
Affiliation(s)
- Hong Na
- Department of Medicine, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | | | | | |
Collapse
|