1
|
Bressy C, Zemani A, Goyal S, Jishkariani D, Lee CN, Chen YH. Inhibition of c-Rel expression in myeloid and lymphoid cells with distearoyl -phosphatidylserine (DSPS) liposomal nanoparticles encapsulating therapeutic siRNA. PLoS One 2022; 17:e0276905. [PMID: 36520934 PMCID: PMC9754606 DOI: 10.1371/journal.pone.0276905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 10/14/2022] [Indexed: 12/23/2022] Open
Abstract
c-Rel, a member of the nuclear factor kappa B (NF-κB) family, is preferentially expressed by immune cells and is known to regulate inflammation, autoimmune diseases and cancer. However, there is a lack of therapeutic intervention to specifically inhibit c-Rel in immune cells. Recent success with Pfizer and Moderna mRNA lipid-encapsulated vaccines as well as FDA approved medicines based on siRNA prompted us to test a lipid nanoparticle-based strategy to silence c-Rel in immune cells. Specifically, we encapsulated c-Rel-targeting siRNA into distearoyl-phosphatidylserine (DSPS)-containing nanoparticles. DSPS is a saturated phospholipid that serves as the "eat-me" signal for professional phagocytes such as macrophages and neutrophils of the immune system. We demonstrated here that incorporation of DSPS in liposome nanoparticles (LNP) improved their uptake by immune cells. LNP containing high concentrations of DSPS were highly effective to transfect not only macrophages and neutrophils, but also lymphocytes, with limited toxicity to cells. However, LNP containing low concentrations of DSPS were more effective to transfect myeloid cells than lymphoid cells. Importantly, DSPS-LNP loaded with a c-Rel siRNA were highly effective to inhibit c-Rel expression in several professional phagocytes tested, which lasted for several days. Taken together, our results suggest that DSPS-LNP armed with c-Rel siRNA could be exploited to target immune cells to limit the development of inflammatory diseases or cancer caused by c-Rel upregulation. In addition, this newly developed DSPS-LNP system may be further tested to encapsulate and deliver other small molecule drugs to immune cells, especially macrophages, neutrophils, and lymphocytes for the treatment of diseases.
Collapse
Affiliation(s)
- Christian Bressy
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ali Zemani
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Shreya Goyal
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, United States of America
| | - Davit Jishkariani
- Chemical and Nanoparticle Synthesis Core (CNSC), The University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Chin Nien Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Youhai H. Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Faculty of Pharmaceutical Sciences, CAS Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
2
|
Faumont N, Taoui O, Collares D, Jais JP, Leroy K, Prévaud L, Jardin F, Molina TJ, Copie-Bergman C, Petit B, Gourin MP, Bordessoule D, Troutaud D, Baud V, Feuillard J. c-Rel Is the Pivotal NF-κB Subunit in Germinal Center Diffuse Large B-Cell Lymphoma: A LYSA Study. Front Oncol 2021; 11:638897. [PMID: 33959502 PMCID: PMC8095348 DOI: 10.3389/fonc.2021.638897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Relationships between c-Rel and GCB-DLBCLs remain unclear. We found that strong c-Rel DNA-binding activity was mostly found in GCBs on two independent series of 48 DLBCLs and 66 DLBCLs, the latter issued from the GHEDI series. c-Rel DNA-binding activity was associated with increased REL mRNA expression. Extending the study to the whole GHEDI and Lenz DLBCL published series of 202 and 233 cases, it was found that the c-Rel gene expression profile (GEP) overlapped partially (12%) but only with the GCB GEP and not with the GEP of ABC-DLBCLs. Cases with both overexpression of REL mRNA and c-Rel GEP were defined as those having a c-Rel signature. These cases were GCBs in 88 and 83% of the GHEDI or Lenz's DLBCL series respectively. The c-Rel signature was also associated with various recurrent GCB-DLBCL genetic events, including REL gains, BCL2 translocation, MEF2B, EZH2, CREBBP, and TNFRSF14 mutations and with the EZB GCB genetic subtype. By CGH array, the c-Rel signature was specifically correlated with 2p15-16.1 amplification that includes XPO1, BCL11A, and USP34 and with the 22q11.22 deletion that covers IGLL5 and PRAME. The total number of gene copy number aberrations, so-called genomic imbalance complexity, was decreased in cases with the c-Rel signature. These cases exhibited a better overall survival. Functionally, overexpression of c-Rel induced its constitutive nuclear localization and protected cells against apoptosis while its repression tended to increase cell death. These results show that, clinically and biologically, c-Rel is the pivotal NF-κB subunit in the GCB-DLBCL subgroup. Functionally, c-Rel overexpression could directly promote DLBCL tumorigenesis without need for further activation signals.
Collapse
Affiliation(s)
- Nathalie Faumont
- CNRS UMR-7276, INSERM U1262, CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Oussama Taoui
- CNRS UMR-7276, INSERM U1262, CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Davi Collares
- Université de Paris, NF-κappaB, Differentiation and Cancer, Paris, France
| | | | - Karen Leroy
- UMRS1138, Centre de Recherche des Cordeliers, Paris Descartes University, CARPEM, Department of Genetics and Molecular Biology, Cochin Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Léa Prévaud
- CNRS UMR-7276, INSERM U1262, CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| | - Fabrice Jardin
- Inserm U1245 and Department of Henri-Becquerel Hematology Center and Normandie Univ UNIROUEN, Rouen, France
| | - Thierry J Molina
- Université de Paris, NF-κappaB, Differentiation and Cancer, Paris, France.,Pathology Department, Necker Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | | | - Barbara Petit
- Pathology Department, CHU of Limoges, Limoges, France
| | - Marie-Pierre Gourin
- Regional Reference Structure of Limousin Lymphomas, Clinical Hematology Department, CHU of Limoges, Limoges, France
| | - Dominique Bordessoule
- CNRS UMR-7276, INSERM U1262, CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France.,Regional Reference Structure of Limousin Lymphomas, Clinical Hematology Department, CHU of Limoges, Limoges, France
| | | | - Véronique Baud
- Université de Paris, NF-κappaB, Differentiation and Cancer, Paris, France
| | - Jean Feuillard
- CNRS UMR-7276, INSERM U1262, CRIBL, University of Limoges, and Hematology Laboratory of Dupuytren Hospital University Center (CHU) of Limoges, Limoges, France
| |
Collapse
|
3
|
Regulation of B-cell function by NF-kappaB c-Rel in health and disease. Cell Mol Life Sci 2020; 77:3325-3340. [PMID: 32130429 DOI: 10.1007/s00018-020-03488-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
B cells mediate humoral immune response and contribute to the regulation of cellular immune response. Members of the Nuclear Factor kappaB (NF-κB) family of transcription factors play a major role in regulating B-cell functions. NF-κB subunit c-Rel is predominantly expressed in lymphocytes, and in B cells, it is required for survival, proliferation, and antibody production. Dysregulation of c-Rel expression and activation alters B-cell homeostasis and is associated with B-cell lymphomas and autoimmune pathologies. Based on its essential roles, c-Rel may serve as a potential prognostic and therapeutic target. This review summarizes the current understanding of the multifaceted role of c-Rel in B cells and B-cell diseases.
Collapse
|
4
|
The Unsolved Puzzle of c-Rel in B Cell Lymphoma. Cancers (Basel) 2019; 11:cancers11070941. [PMID: 31277480 PMCID: PMC6678315 DOI: 10.3390/cancers11070941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 01/04/2023] Open
Abstract
Aberrant constitutive activation of Rel/NF-κB transcription factors is a hallmark of numerous cancers. Of the five Rel family members, c-Rel has the strongest direct links to tumorigenesis. c-Rel is the only member that can malignantly transform lymphoid cells in vitro. Furthermore, c-Rel is implicated in human B cell lymphoma through the frequent occurrence of REL gene locus gains and amplifications. In normal physiology, high c-Rel expression predominates in the hematopoietic lineage and a diverse range of stimuli can trigger enhanced expression and activation of c-Rel. Both expression and activation of c-Rel are tightly regulated on multiple levels, indicating the necessity to keep its functions under control. In this review we meta-analyze and integrate studies reporting gene locus aberrations to provide an overview on the frequency of REL gains in human B cell lymphoma subtypes, namely follicular lymphoma, diffuse large B cell lymphoma, primary mediastinal B cell lymphoma, and classical Hodgkin lymphoma. We also summarize current knowledge on c-Rel expression and protein localization in these human B cell lymphomas and discuss the co-amplification of BCL11A with REL. In addition, we highlight and illustrate key pathways of c-Rel activation and regulation with a specific focus on B cell biology.
Collapse
|
5
|
Priebe MK, Dewert N, Amschler K, Erpenbeck L, Heinzerling L, Schön MP, Seitz CS, Lorenz VN. c-Rel is a cell cycle modulator in human melanoma cells. Exp Dermatol 2018; 28:121-128. [PMID: 30466153 DOI: 10.1111/exd.13848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Melanoma progression and resistance to therapy are associated with faulty regulation of signalling molecules including the central transcription factor NF-κB. Increased expression of the c-Rel subunit of NF-κB has been described in progressing melanoma, though mechanistic implications of this upregulation remain unclear. To elucidate the functional role of c-Rel in melanoma biology, we have assessed its expression in human melanoma as well as in melanoma cell lines. Suppression of c-Rel expression in four melanoma cell lines resulted in reduced growth and altered cell cycle regulation, namely G2/M and polyploid phase induction. Moreover, mitotic spindle morphology was profoundly altered in three of the cell lines with a predominance of monopolar structures. These findings suggest that c-Rel is involved in G2/M phase regulation, prevention of polyploidy and, consequently, chromosomal stability. Our results highlight a novel tumor-promoting function of c-Rel in human melanoma cells through governing cell cycle regulation.
Collapse
Affiliation(s)
- Marie K Priebe
- Department of Dermatology, Venereology and Allergology, Georg-August-University, University Medical Center Göttingen, Göttingen, Germany
| | - Nadin Dewert
- Department of Dermatology, Venereology and Allergology, Georg-August-University, University Medical Center Göttingen, Göttingen, Germany
| | - Katharina Amschler
- Department of Dermatology, Venereology and Allergology, Georg-August-University, University Medical Center Göttingen, Göttingen, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, Georg-August-University, University Medical Center Göttingen, Göttingen, Germany
| | - Lucie Heinzerling
- Department of Dermatology, Friedrich Alexander University, Erlangen, Germany
| | - Michael P Schön
- Department of Dermatology, Venereology and Allergology, Georg-August-University, University Medical Center Göttingen, Göttingen, Germany
| | - Cornelia S Seitz
- Department of Dermatology, Venereology and Allergology, Georg-August-University, University Medical Center Göttingen, Göttingen, Germany
| | - Verena N Lorenz
- Department of Dermatology, Venereology and Allergology, Georg-August-University, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Mohammadi SM, Mohammadnejad D, Hosseinpour Feizi AA, Movassaghpour AA, Montazersaheb S, Nozad Charoudeh H. Inhibition of c-REL using siRNA increased apoptosis and decreased proliferation in pre-B ALL blasts: Therapeutic implications. Leuk Res 2017; 61:53-61. [PMID: 28892661 DOI: 10.1016/j.leukres.2017.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/03/2023]
Abstract
The c-Rel transcription factor is a unique member of the NF-kB family that has a role in apoptosis, proliferation and cell survival. Overexpression of c-Rel is detected in many human B cell tumors, including B-cell leukemia and several cancers. The study aimed to investigate the effects of c-Rel siRNA on the proliferation and apoptosis of relapsed pre-B acute leukemia cells. The c-Rel siRNA was transfected into Leukemia cells using an Amaxa cell line Nucleofector kit L (Lonza). Quantitative real-time RT-PCR (qRT-PCR) and western blot were done to measure the expression levels of mRNA and protein, respectively. The flow cytometry was used to analyze the effect of c-Rel siRNA on the apoptosis and proliferation of Leukemia cells. Observed c-Rel expression in the 5 pre-B Acute lymphoblastic leukemia (ALL) patients were higher than the normal cells. The c-Rel siRNA transfection significantly blocked the expression of c-Rel mRNA in a time-dependent manner, leading to a strong growth inhibition and enhanced apoptosis (P<0.05). Our results demonstrated that c-Rel plays a fundamental role in the survival. Therefore, c-Rel can be considered as an attractive target for gene therapy in ALL patients. Also siRNA-mediated silencing of this gene may be a novel strategy in ALL treatment.
Collapse
Affiliation(s)
| | - Daryosh Mohammadnejad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Anatomical Sciences Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | |
Collapse
|
7
|
Slotta C, Schlüter T, Ruiz-Perera LM, Kadhim HM, Tertel T, Henkel E, Hübner W, Greiner JFW, Huser T, Kaltschmidt B, Kaltschmidt C. CRISPR/Cas9-mediated knockout of c-REL in HeLa cells results in profound defects of the cell cycle. PLoS One 2017; 12:e0182373. [PMID: 28767691 PMCID: PMC5540532 DOI: 10.1371/journal.pone.0182373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
Cervical cancer is the fourth common cancer in women resulting worldwide in 266,000 deaths per year. Belonging to the carcinomas, new insights into cervical cancer biology may also have great implications for finding new treatment strategies for other kinds of epithelial cancers. Although the transcription factor NF-κB is known as a key player in tumor formation, the relevance of its particular subunits is still underestimated. Here, we applied CRISPR/Cas9n-mediated genome editing to successfully knockout the NF-κB subunit c-REL in HeLa Kyoto cells as a model system for cervical cancers. We successfully generated a homozygous deletion in the c-REL gene, which we validated using sequencing, qPCR, immunocytochemistry, western blot analysis, EMSA and analysis of off-target effects. On the functional level, we observed the deletion of c-REL to result in a significantly decreased cell proliferation in comparison to wildtype (wt) without affecting apoptosis. The impaired proliferative behavior of c-REL-/- cells was accompanied by a strongly decreased amount of the H2B protein as well as a significant delay in the prometaphase of mitosis compared to c-REL+/+ HeLa Kyoto cells. c-REL-/- cells further showed significantly decreased expression levels of c-REL target genes in comparison to wt. In accordance to our proliferation data, we observed the c-REL knockout to result in a significantly increased resistance against the chemotherapeutic agents 5-Fluoro-2'-deoxyuridine (5-FUDR) and cisplatin. In summary, our findings emphasize the importance of c-REL signaling in a cellular model of cervical cancer with direct clinical implications for the development of new treatment strategies.
Collapse
Affiliation(s)
- Carsten Slotta
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Thomas Schlüter
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | | | | | - Tobias Tertel
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Elena Henkel
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Wolfgang Hübner
- Biomolecular Photonics, University of Bielefeld, Bielefeld, Germany
| | | | - Thomas Huser
- Biomolecular Photonics, University of Bielefeld, Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
- AG Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany
| | | |
Collapse
|
8
|
Liao S, Xiao S, Chen H, Zhang M, Chen Z, Long Y, Gao L, Zhu G, He J, Peng S, Xiong W, Zeng Z, Li Z, Zhou M, Li X, Ma J, Wu M, Xiang J, Li G, Zhou Y. CD38 enhances the proliferation and inhibits the apoptosis of cervical cancer cells by affecting the mitochondria functions. Mol Carcinog 2017; 56:2245-2257. [PMID: 28544069 DOI: 10.1002/mc.22677] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/28/2017] [Accepted: 05/20/2017] [Indexed: 01/10/2023]
Abstract
Cervical cancer is one of the most common malignant tumors in women all over the world. The exact mechanism of occurrence and development of cervical cancer has not been fully elucidated. CD38 is a type II transmembrane glycoprotein, which was found to mediate diverse activities, including signal transduction, cell adhesion, and cyclic ADP-ribose synthesis. Here, we reported that CD38 promoted cell proliferation and inhibited cell apoptosis in cervical cancer cells by affecting the mitochondria functions. We established stable cervical cancer cell lines with CD38 over-expressed. CCK8 assay and colony formation assay indicated that CD38 promoted cervical cancer cell proliferation. Nude mouse tumorigenicity assay showed that CD38 significantly promotes tumor growth in vivo. CD38 also induced S phase accumulation in cell cycle analysis and suppressed cell apoptosis in cervical cancer cells. Meanwhile, flow cytometry analysis of mitochondria functions suggested that CD38 decreased intracellular Ca2+ levels in cervical cancer cells and CD38 was involved in down-regulation of ROS levels and prevented mitochondrial apoptosis in cervical cancer cells. The percentage of cells with loss of mitochondrial membrane potential (Δψm) in CD38-overexpressed cervical cancer cells was less than control groups. Furthermore, we found an up-regulation of MDM2, cyclinA1, CDK4, cyclinD1, NF-kB P65, c-rel, and a downregulation of P53, P21, and P38 by Western blot analysis. These results indicated that CD38 enhanced the proliferation and inhibited the apoptosis of cervical cancer cells by affecting the mitochondria functions.
Collapse
Affiliation(s)
- Shan Liao
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxiang Chen
- The Gynecology Department, People's Hospital of Xinjiang, Urumchi, Xinjiang, China
| | - Manying Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhifang Chen
- The Gynecology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Yuehua Long
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Lu Gao
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guangchao Zhu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junyu He
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zheng Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jian Ma
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Juanjuan Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yanhong Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Balakrishna Pillai A, Nagarajan U, Mitra A, Krishnan U, Rajendran S, Hoti SL, Mishra RK. RNA interference in mosquito: understanding immune responses, double-stranded RNA delivery systems and potential applications in vector control. INSECT MOLECULAR BIOLOGY 2017; 26:127-139. [PMID: 27991710 DOI: 10.1111/imb.12282] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RNA interference (RNAi) refers to the process of post-transcriptional silencing of cellular mRNA by the application of double-stranded RNA (dsRNA). RNAi strategies have been widely employed to regulate gene expression in plants and animals including insects. With the availability of the full genome sequences of major vector mosquitoes, RNAi has been increasingly used to conduct genetic studies of human pathogens in mosquito vectors and to study the evolution of insecticide resistance in mosquitoes. This review summarizes the recent progress in our understanding of mosquito-pathogen interactions using RNAi and various methods of dsRNA delivery in mosquitoes at different stages. We also discuss potential applications of this technology to develop novel tools for vector control.
Collapse
Affiliation(s)
- A Balakrishna Pillai
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth University, Puducherry, India
| | | | - A Mitra
- Department of Microbiology, Adamas University, Kolkata, India
| | | | - S Rajendran
- Jawaharlal Institute for Post Medical Education and Research, Puducherry, India
| | - S L Hoti
- Regional Medical Research Centre, ICMR, Belgaum, India
| | - R K Mishra
- Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
10
|
Fallahi S, Mohammadi SM, Tayefi Nasrabadi H, Alihemmati A, Samadi N, Gholami S, Shanehbandi D, Nozad Charoudeh H. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells. J Immunotoxicol 2017; 14:15-22. [DOI: 10.1080/1547691x.2016.1250849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Shirin Fallahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyede Momeneh Mohammadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Tissue Engineering Research Group, Advanced Research School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Tissue Engineering Research Group, Advanced Research School, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Samadi
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Gholami
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
11
|
Li L, Xu-Monette ZY, Ok CY, Tzankov A, Manyam GC, Sun R, Visco C, Zhang M, Montes-Moreno S, Dybkaer K, Chiu A, Orazi A, Zu Y, Bhagat G, Richards KL, Hsi ED, Choi WWL, van Krieken JH, Huh J, Ponzoni M, Ferreri AJM, Møller MB, Wang J, Parsons BM, Winter JN, Piris MA, Pham LV, Medeiros LJ, Young KH. Prognostic impact of c-Rel nuclear expression and REL amplification and crosstalk between c-Rel and the p53 pathway in diffuse large B-cell lymphoma. Oncotarget 2016; 6:23157-80. [PMID: 26324762 PMCID: PMC4695110 DOI: 10.18632/oncotarget.4319] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
Dysregulated NF-κB signaling is critical for lymphomagenesis. The regulation, function, and clinical relevance of c-Rel/NF-κB activation in diffuse large B-cell lymphoma (DLBCL) have not been well studied. In this study we analyzed the prognostic significance and gene-expression signature of c-Rel nuclear expression as surrogate of c-Rel activation in 460 patients with de novo DLBCL. Nuclear c-Rel expression, observed in 137 (26.3%) DLBCL patients frequently associated with extranoal origin, did not show significantly prognostic impact in the overall- or germinal center B-like-DLBCL cohort, likely due to decreased pAKT and Myc levels, up-regulation of FOXP3, FOXO3, MEG3 and other tumor suppressors coincided with c-Rel nuclear expression, as well as the complicated relationships between NF-κB members and their overlapping function. However, c-Rel nuclear expression correlated with significantly poorer survival in p63+ and BCL-2− activated B-cell-like-DLBCL, and in DLBCL patients with TP53 mutations. Multivariate analysis indicated that after adjusting clinical parameters, c-Rel positivity was a significantly adverse prognostic factor in DLBCL patients with wild type TP53. Gene expression profiling suggested dysregulations of cell cycle, metabolism, adhesion, and migration associated with c-Rel activation. In contrast, REL amplification did not correlate with c-Rel nuclear expression and patient survival, likely due to co-amplification of genes that negatively regulate NF-κB activation. These insights into the expression, prognostic impact, regulation and function of c-Rel as well as its crosstalk with the p53 pathway underscore the importance of c-Rel and have significant therapeutic implications.
Collapse
Affiliation(s)
- Ling Li
- Zhengzhou University, The First Affiliated University Hospital, Zhengzhou, China.,Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zijun Y Xu-Monette
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruifang Sun
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Mingzhi Zhang
- Zhengzhou University, The First Affiliated University Hospital, Zhengzhou, China
| | | | | | - April Chiu
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Attilio Orazi
- Weill Medical College of Cornell University, New York, NY, USA
| | - Youli Zu
- The Methodist Hospital, Houston, TX, USA
| | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Kristy L Richards
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - William W L Choi
- University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong, China
| | | | - Jooryung Huh
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | | | | | | | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Miguel A Piris
- Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - Lan V Pham
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas School of Medicine, Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
12
|
Inhibition of Oncogenic Transcription Factor REL by the Natural Product Derivative Calafianin Monomer 101 Induces Proliferation Arrest and Apoptosis in Human B-Lymphoma Cell Lines. Molecules 2015; 20:7474-94. [PMID: 25915462 PMCID: PMC4863944 DOI: 10.3390/molecules20057474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/12/2015] [Accepted: 04/20/2015] [Indexed: 12/25/2022] Open
Abstract
Increased activity of transcription factor NF-κB has been implicated in many B-cell lymphomas. We investigated effects of synthetic compound calafianin monomer (CM101) on biochemical and biological properties of NF-κB. In human 293 cells, CM101 selectively inhibited DNA binding by overexpressed NF-κB subunits REL (human c-Rel) and p65 as compared to NF-κB p50, and inhibition of REL and p65 DNA binding by CM101 required a conserved cysteine residue. CM101 also inhibited DNA binding by REL in human B-lymphoma cell lines, and the sensitivity of several B-lymphoma cell lines to CM101-induced proliferation arrest and apoptosis correlated with levels of cellular and nuclear REL. CM101 treatment induced both phosphorylation and decreased expression of anti-apoptotic protein Bcl-XL, a REL target gene product, in sensitive B-lymphoma cell lines. Ectopic expression of Bcl-XL protected SUDHL-2 B-lymphoma cells against CM101-induced apoptosis, and overexpression of a transforming mutant of REL decreased the sensitivity of BJAB B-lymphoma cells to CM101-induced apoptosis. Lipopolysaccharide-induced activation of NF-κB signaling upstream components occurred in RAW264.7 macrophages at CM101 concentrations that blocked NF-κB DNA binding. Direct inhibitors of REL may be useful for treating B-cell lymphomas in which REL is active, and may inhibit B-lymphoma cell growth at doses that do not affect some immune-related responses in normal cells.
Collapse
|
13
|
Mollaie HR, Monavari SHR, Arabzadeh SAM, Shamsi-Shahrabadi M, Fazlalipour M, Afshar RM. RNAi and miRNA in viral infections and cancers. Asian Pac J Cancer Prev 2015; 14:7045-56. [PMID: 24460249 DOI: 10.7314/apjcp.2013.14.12.7045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Since the first report of RNA interference (RNAi) less than a decade ago, this type of molecular intervention has been introduced to repress gene expression in vitro and also for in vivo studies in mammals. Understanding the mechanisms of action of synthetic small interfering RNAs (siRNAs) underlies use as therapeutic agents in the areas of cancer and viral infection. Recent studies have also promoted different theories about cell-specific targeting of siRNAs. Design and delivery strategies for successful treatment of human diseases are becomingmore established and relationships between miRNA and RNAi pathways have been revealed as virus-host cell interactions. Although both are well conserved in plants, invertebrates and mammals, there is also variabilityand a more complete understanding of differences will be needed for optimal application. RNA interference (RNAi) is rapid, cheap and selective in complex biological systems and has created new insight sin fields of cancer research, genetic disorders, virology and drug design. Our knowledge about the role of miRNAs and siRNAs pathways in virus-host cell interactions in virus infected cells is incomplete. There are different viral diseases but few antiviral drugs are available. For example, acyclovir for herpes viruses, alpha-interferon for hepatitis C and B viruses and anti-retroviral for HIV are accessible. Also cancer is obviously an important target for siRNA-based therapies, but the main problem in cancer therapy is targeting metastatic cells which spread from the original tumor. There are also other possible reservations and problems that might delay or even hinder siRNA-based therapies for the treatment of certain conditions; however, this remains the most promising approach for a wide range of diseases. Clearly, more studies must be done to allow efficient delivery and better understanding of unwanted side effects of siRNA-based therapies. In this review miRNA and RNAi biology, experimental design, anti-viral and anti-cancer effects are discussed.
Collapse
Affiliation(s)
- Hamid Reza Mollaie
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran E-mail :
| | | | | | | | | | | |
Collapse
|
14
|
Zheng M, Jiang J, Tang YL, Liang XH. Oncogene and non-oncogene addiction in inflammation-associated cancers. Future Oncol 2013; 9:561-73. [PMID: 23560378 DOI: 10.2217/fon.12.202] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Many cancers originate in tissues that are chronically inflamed, and the inflammatory microenvironment is considered to promote the progression of malignancy, including initiation, growth, angiogenesis, invasion and metastasis. The molecular mechanism of inflammation-induced progression of cancers has been widely discussed. Oncogene and non-oncogene addiction have been proposed as two distinct but complementary theories to explain the initiation and development of cancers. Furthermore, they also play a role in cancer-associated inflammation. A solid understanding of oncogene and non-oncogene addiction in cancer-associated inflammatory microenvironments will help to exploit cancer drug targets for cancer prevention and clinical treatment.
Collapse
Affiliation(s)
- Min Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu Sichuan 610041, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Yu Q, Zhou C, Wang J, Chen L, Zheng S, Zhang J. A functional insertion/deletion polymorphism in the promoter of PDCD6IP is associated with the susceptibility of hepatocellular carcinoma in a Chinese population. DNA Cell Biol 2013; 32:451-7. [PMID: 23777424 DOI: 10.1089/dna.2013.2061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Apart from environmental factors such as hepatitis B virus (HBV) or hepatitis C virus, alcohol abuse, and exposure to dietary aflatoxin, genetic factors are also involved in the pathogenesis of HCC. By analyzing 390 HCC cases and 431 healthy controls in a Chinese population, we used a candidate gene approach to evaluate the association between a 15-bp insertion/deletion (indel) polymorphism (rs28381975) in the promoter region of the programmed cell death 6 interacting protein (PDCD6IP) gene and HCC susceptibility. Logistic regression analysis demonstrated that subjects carrying ins/del or ins/ins genotypes had significantly increased risk for HCC than individuals carrying del/del genotypes (adjusted odds ratio=1.39, 95% confidence interval=1.01-1.91, p=0.033]. Carrying the 15-bp insertion allele was associated with a 1.26-fold risk for HCC (95% CI=1.04-1.54, p=0.018). Moreover, significant differences were observed within HCC patients concerning genotypic frequencies of rs28381975 after stratifying by tumor stages and HBV infection. Computational modeling suggests that rs28381975 could disrupt the binding patterns of c-rel, a key subunit of nuclear factor-kappaB transcription factor. Further luciferase-based transient transfection assays revealed that rs28381975 can affect the promoter activity of PDCD6IP, indicating its possible functional significance. Taken together, our data suggest that common genetic variations in PDCD6IP may influence HCC risk, possibly through promoter activity-mediated regulation. Replication of our studies in other populations and further functional analysis will strengthen our understanding of this association.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Gastroenterology, Suzhou Municipal Hospital, Affiliated to Nanjing Medical University, Suzhou, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
16
|
Fullard N, Moles A, O'Reilly S, van Laar JM, Faini D, Diboll J, Reynolds NJ, Mann DA, Reichelt J, Oakley F. The c-Rel subunit of NF-κB regulates epidermal homeostasis and promotes skin fibrosis in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2109-20. [PMID: 23562440 DOI: 10.1016/j.ajpath.2013.02.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
The five subunits of transcription factor NF-κB have distinct biological functions. NF-κB signaling is important for skin homeostasis and aging, but the contribution of individual subunits to normal skin biology and disease is unclear. Immunohistochemical analysis of the p50 and c-Rel subunits within lesional psoriatic and systemic sclerosis skin revealed abnormal epidermal expression patterns, compared with healthy skin, but RelA distribution was unaltered. The skin of Nfkb1(-/-) and c-Rel(-/-) mice is structurally normal, but epidermal thickness and proliferation are significantly reduced, compared with wild-type mice. We show that the primary defect in both Nfkb1(-/-) and c-Rel(-/-) mice is within keratinocytes that display reduced proliferation both in vitro and in vivo. However, both genotypes can respond to proliferative stress, with 12-O-tetradecanoylphorbol-13-acetate-induced epidermal hyperproliferation and closure rates of full-thickness skin wounds being equivalent to those of wild-type controls. In a model of bleomycin-induced skin fibrosis, Nfkb1(-/-) and c-Rel(-/-) mice displayed opposite phenotypes, with c-Rel(-/-) mice being protected and Nfkb1(-/-) developing more fibrosis than wild-type mice. Taken together, our data reveal a role for p50 and c-Rel in regulating epidermal proliferation and homeostasis and a profibrogenic role for c-Rel in the skin, and identify a link between epidermal c-Rel expression and systemic sclerosis. Modulating the actions of these subunits could be beneficial for treating hyperproliferative or fibrogenic diseases of the skin.
Collapse
Affiliation(s)
- Nicola Fullard
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yang X, Jing H, Zhao K, Sun R, Liu Z, Ying Y, Ci L, Kuang Y, Huang F, Wang Z, Fei J. Functional imaging of Rel expression in inflammatory processes using bioluminescence imaging system in transgenic mice. PLoS One 2013; 8:e57632. [PMID: 23469037 PMCID: PMC3585201 DOI: 10.1371/journal.pone.0057632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/22/2013] [Indexed: 12/11/2022] Open
Abstract
c-Rel plays important roles in many inflammatory diseases. Revealing the dynamic expression of c-Rel in disease processes in vivo is critical for understanding c-Rel functions and for developing anti-inflammatory drugs. In this paper, a transgenic mouse line, B6-Tg(c-Rel-luc)(Mlit), which incorporated the transgene firefly luciferase driven by a 14.5-kb fragment containing mouse c-Rel gene Rel promoter, was generated to monitor Rel expression in vivo. Luciferase expression could be tracked in living mice by the method of bioluminescence imaging in a variety of inflammatory processes, including LPS induced sepsis and EAE disease model. The luciferase expression in transgenic mice was comparable to the endogenous Rel expression and could be suppressed by administration of anti-inflammatory drug dexamethasone or aspirin. These results indicate that the B6-Tg(c-Rel-luc)(Mlit) mouse is a valuable animal model to study Rel expression in physiological and pathological processes, and the effects of various drug treatments in vivo.
Collapse
Affiliation(s)
- Xingyu Yang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Hua Jing
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Kai Zhao
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ruilin Sun
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Zhenze Liu
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yue Ying
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lei Ci
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ying Kuang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Fang Huang
- National Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhugang Wang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Research Center for Model Organisms, Shanghai, China
| |
Collapse
|
18
|
Ali FR, Barton A, Smith RLI, Bowes J, Flynn E, Mangino M, Bataille V, Foerster JP, Worthington J, Griffiths CEM, Warren RB. An investigation of rheumatoid arthritis loci in patients with early-onset psoriasis validates association of the REL gene. Br J Dermatol 2013; 168:864-6. [PMID: 23106574 DOI: 10.1111/bjd.12106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Phenotypically diverse autoimmune conditions share common genetic susceptibility loci and underlying molecular pathways. OBJECTIVES By systematically searching for single nucleotide polymorphisms (SNPs) associated with another autoimmune disease, rheumatoid arthritis (RA), we aimed to elucidate novel genetic markers of psoriasis. METHODS We investigated 18 SNPs, previously confirmed as being associated with RA, in a U.K. cohort of 623 patients with early-onset psoriasis (presenting before age 40 years), comparing them with 2662 control subjects. RESULTS Our findings confirm the association of early-onset psoriasis with REL (rs13031237, P=0·0027). The minor allele of REL had opposing effects upon susceptibility to disease in patients with psoriasis and RA. CONCLUSION Similar exploration of additional autoimmune loci and fine mapping of such regions may provide further insight into the genetics and molecular pathophysiology of psoriasis.
Collapse
Affiliation(s)
- F R Ali
- The Dermatology Centre, Salford Royal NHS Foundation Trust, University of Manchester, Manchester M6 8HD, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Samur MK, Yan Z, Wang X, Cao Q, Munshi NC, Li C, Shah PK. canEvolve: a web portal for integrative oncogenomics. PLoS One 2013; 8:e56228. [PMID: 23418540 PMCID: PMC3572035 DOI: 10.1371/journal.pone.0056228] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 01/07/2013] [Indexed: 12/24/2022] Open
Abstract
Background & Objective Genome-wide profiles of tumors obtained using functional genomics platforms are being deposited to the public repositories at an astronomical scale, as a result of focused efforts by individual laboratories and large projects such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium. Consequently, there is an urgent need for reliable tools that integrate and interpret these data in light of current knowledge and disseminate results to biomedical researchers in a user-friendly manner. We have built the canEvolve web portal to meet this need. Results canEvolve query functionalities are designed to fulfill most frequent analysis needs of cancer researchers with a view to generate novel hypotheses. canEvolve stores gene, microRNA (miRNA) and protein expression profiles, copy number alterations for multiple cancer types, and protein-protein interaction information. canEvolve allows querying of results of primary analysis, integrative analysis and network analysis of oncogenomics data. The querying for primary analysis includes differential gene and miRNA expression as well as changes in gene copy number measured with SNP microarrays. canEvolve provides results of integrative analysis of gene expression profiles with copy number alterations and with miRNA profiles as well as generalized integrative analysis using gene set enrichment analysis. The network analysis capability includes storage and visualization of gene co-expression, inferred gene regulatory networks and protein-protein interaction information. Finally, canEvolve provides correlations between gene expression and clinical outcomes in terms of univariate survival analysis. Conclusion At present canEvolve provides different types of information extracted from 90 cancer genomics studies comprising of more than 10,000 patients. The presence of multiple data types, novel integrative analysis for identifying regulators of oncogenesis, network analysis and ability to query gene lists/pathways are distinctive features of canEvolve. canEvolve will facilitate integrative and meta-analysis of oncogenomics datasets. Availability The canEvolve web portal is available at http://www.canevolve.org/.
Collapse
Affiliation(s)
- Mehmet Kemal Samur
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, United States of America
- Department of Biostatistics and Medical Informatics, Akdeniz University, Antalya, Turkey
| | - Zhenyu Yan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Xujun Wang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Qingyi Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nikhil C. Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, VA Boston Healthcare System, Boston, Massachusetts, United States of America
| | - Cheng Li
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail: (PKS); (CL)
| | - Parantu K. Shah
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail: (PKS); (CL)
| |
Collapse
|
20
|
Gilmore TD, Gerondakis S. The c-Rel Transcription Factor in Development and Disease. Genes Cancer 2012; 2:695-711. [PMID: 22207895 DOI: 10.1177/1947601911421925] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022] Open
Abstract
c-Rel is a member of the nuclear factor κB (NF-κB) transcription factor family. Unlike other NF-κB proteins that are expressed in a variety of cell types, high levels of c-Rel expression are found primarily in B and T cells, with many c-Rel target genes involved in lymphoid cell growth and survival. In addition to c-Rel playing a major role in mammalian B and T cell function, the human c-rel gene (REL) is a susceptibility locus for certain autoimmune diseases such as arthritis, psoriasis, and celiac disease. The REL locus is also frequently altered (amplified, mutated, rearranged), and expression of REL is increased in a variety of B and T cell malignancies and, to a lesser extent, in other cancer types. Thus, agents that modulate REL activity may have therapeutic benefits for certain human cancers and chronic inflammatory diseases.
Collapse
|
21
|
Post-transcriptional gene silencing by RNA interference in non-mammalian vertebrate systems: Where do we stand? MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2011; 728:158-71. [DOI: 10.1016/j.mrrev.2011.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 09/02/2011] [Accepted: 09/06/2011] [Indexed: 12/20/2022]
|
22
|
Colas J, Faure G, Saussereau E, Trudel S, Rabeh WM, Bitam S, Guerrera IC, Fritsch J, Sermet-Gaudelus I, Davezac N, Brouillard F, Lukacs GL, Herrmann H, Ollero M, Edelman A. Disruption of cytokeratin-8 interaction with F508del-CFTR corrects its functional defect. Hum Mol Genet 2011; 21:623-34. [PMID: 22038833 DOI: 10.1093/hmg/ddr496] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously reported an increased expression of cytokeratins 8/18 (K8/K18) in cells expressing the F508del mutation of cystic fibrosis transmembrane conductance regulator (CFTR). This is associated with increased colocalization of CFTR and K18 in the vicinity of the endoplasmic reticulum, although this is reversed by treating cells with curcumin, resulting in the rescue of F508del-CFTR. In the present work, we hypothesized that (i) the K8/K18 network may interact physically with CFTR, and that (ii) this interaction may modify CFTR function. CFTR was immunoprecipitated from HeLa cells transfected with either wild-type (WT) CFTR or F508del-CFTR. Precipitates were subjected to 2D-gel electrophoresis and differential spots identified by mass spectrometry. K8 and K18 were found significantly increased in F508del-CFTR precipitates. Using surface plasmon resonance, we demonstrate that K8, but not K18, binds directly and preferentially to the F508del over the WT human NBD1 (nucleotide-binding domain-1). In vivo K8 interaction with F508del-CFTR was confirmed by proximity ligation assay in HeLa cells and in primary cultures of human respiratory epithelial cells. Ablation of K8 expression by siRNA in F508del-expressing HeLa cells led to the recovery of CFTR-dependent iodide efflux. Moreover, F508del-expressing mice topically treated with K8-siRNA showed restored nasal potential difference, equivalent to that of WT mice. These results show that disruption of F508del-CFTR and K8 interaction leads to the correction of the F508del-CFTR processing defect, suggesting a novel potential therapeutic target in CF.
Collapse
Affiliation(s)
- Julien Colas
- Faculté de Médecine Paris-Descartes, INSERM, U845, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Valentín-Acevedo A, Sinquett FL, Covey LR. c-Rel deficiency increases caspase-4 expression and leads to ER stress and necrosis in EBV-transformed cells. PLoS One 2011; 6:e25467. [PMID: 21984918 PMCID: PMC3184984 DOI: 10.1371/journal.pone.0025467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/05/2011] [Indexed: 01/03/2023] Open
Abstract
LMP1-mediated activation of nuclear factor of kappaB (NF-κB) is critical for the ligand independent proliferation and cell survival of in vitro EBV-transformed lymphoblastoid cell lines (LCLs). Previous experiments revealed that a majority of LMP1-dependent responses are regulated by NF-κB. However, the extent that individual NF-κB family members are required for these responses, in particular, c-Rel, whose expression is restricted to mature hematopoietic cells, remains unclear. Here we report that low c-Rel expression in LCLs derived from a patient with hyper-IgM syndrome (Pt1), resulted in defects in proliferation and cell survival. In contrast to studies that associated loss of NF-κB with increased apoptosis, Pt1 LCLs failed to initiate apoptosis and alternatively underwent autophagy and necrotic cell death. Whereas the proliferation defect appeared linked to a c-Rel-associated decrease in c-myc expression, identified pro-survival and pro-apoptotic targets were expressed at or near control levels consistent with the absence of apoptosis. Ultrastructural examination of Pt1 LCLs revealed a high level of cellular and ER stress that was further supported by gene expression profiling showing the upregulation of several genes involved in stress and inflammation. Apoptosis-independent cell death was accompanied by increased expression of the inflammatory marker, caspase-4. Using gene overexpression and siRNA knockdown we demonstrated that levels of c-Rel directly modulated expression of caspase-4 as well as other ER stress genes. Overall, these findings reveal the importance of c-Rel in maintaining LCL viability and that decreased expression results in ER stress and a default response leading to necrotic cell death.
Collapse
Affiliation(s)
- Aníbal Valentín-Acevedo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Frank L. Sinquett
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Lori R. Covey
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
24
|
Jordan KA, Dupont CD, Tait ED, Liou HC, Hunter CA. Role of the NF-κB transcription factor c-Rel in the generation of CD8+ T-cell responses to Toxoplasma gondii. Int Immunol 2011; 22:851-61. [PMID: 21118906 DOI: 10.1093/intimm/dxq439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nuclear factor κB transcription factor c-Rel is exclusively expressed in immune cells and plays a role in numerous cellular functions including proliferation, survival and production of chemokines and cytokines. c-Rel has also been implicated in the regulation of multiple genes involved in innate and adaptive immune responses to the intracellular protozoan parasite Toxoplasma gondii, in particular IL-12. To better understand how this transcription factor controls the CD8(+) T-cell response to this organism, wild-type (WT) and c-Rel(-/-) mice were challenged with a replication-deficient strain of T. gondii that expresses the model antigen ovalbumin (OVA). These studies revealed that c-Rel was required for optimal primary expansion of OVA-specific CD8(+) T cells and that immunized c-Rel-deficient mice were susceptible to challenge with a virulent strain of T. gondii. However, when c-Rel(-/-) cells specific for OVA were adoptively transferred into a WT recipient, or c-Rel(-/-) mice were treated with IL-12 at the time of immunization, there was no apparent proliferative defect. Surprisingly, upon secondary challenge, antigen-specific CD8(+) T cells in c-Rel(-/-) mice expanded to a much greater degree in terms of frequency as well as numbers when compared with WT mice. Despite this, the cytokine responses of c-Rel(-/-) mice remained defective, consistent with their susceptibility to secondary challenge. Together, these results indicate that in this infection model, the major influence of c-Rel in generation of CD8(+) T-cell responses is through its regulation of the inflammatory environment, rather than playing a substantial T-cell-intrinsic role.
Collapse
Affiliation(s)
- Kimberly A Jordan
- Department of Pathobiology, University of Pennsylvania, 380 South University Avenue, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
25
|
High frequency of development of B cell lymphoproliferation and diffuse large B cell lymphoma in Dbl knock-in mice. J Mol Med (Berl) 2011; 89:493-504. [PMID: 21221514 DOI: 10.1007/s00109-010-0712-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 12/07/2010] [Accepted: 12/15/2010] [Indexed: 01/03/2023]
Abstract
Dbl is the prototype of a large family of GDP-GTP exchange factors for small GTPases of the Rho family. In vitro, Dbl is known to activate Rho, Rac, and Cdc42 and to induce a transformed phenotype in murine fibroblasts. We previously reported that Dbl-null mice are viable and fertile but display defective dendrite elongation of distinct subpopulations of cortical neurons, suggesting a role of Dbl in controlling dendritic growth. To gain deeper insights into the role of Dbl in development and disease, we attempted a knock-in approach to create an endogenous allele that encodes a missense-mutation-mediated loss of function in the DH domain. We generated, by gene targeting technology, a mutant mouse strain by inserting a mutagenized human proto-Dbl cDNA clone expressing only the Dbl N terminus regulatory sequence at the starting codon of murine exon 1. Animals were monitored over a 21-month period, and necropsy specimens were collected for histological examination and immunohistochemistry analysis. Dbl knock-in mice are viable and did not manifest either decreased reproductive performances or gross developmental phenotype but revealed a reduced lifespan compared to wild-type (w.t.) mice and showed, with aging, a B cell lymphoproliferation that often has features of a frank diffuse large B cell lymphoma. Moreover, Dbl knock-in male mice displayed an increased incidence of lung adenoma compared to w.t. mice. These data indicate that Dbl is a tumor susceptibility gene in mice and that loss of function of Dbl DH domain by genetic missense mutations is responsible for induction of diffuse large B cell lymphoma.
Collapse
|
26
|
Mitra S, Mazumder Indra D, Basu PS, Mondal RK, Roy A, Roychoudhury S, Panda CK. Amplification of CyclinL1 in uterine cervical carcinoma has prognostic implications. Mol Carcinog 2010; 49:935-43. [PMID: 20721974 DOI: 10.1002/mc.20671] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The chromosomal 3q25.31 region was consistently amplified in primary cancer of cervix (CACX). CyclinL1 is a candidate gene of this region and already have been implicated as an oncogene in head and neck cancers. In this study, we aimed to investigate the involvement of CyclinL1 in cervical carcinogenesis and for this purpose its copy number variation (CNV) was studied in 23 cervical intraepithelial neoplasia (CIN) and 110 CACX samples. In CIN lesions CyclinL1 was not amplified; however, the amplification frequency was 16% (9/56) in stage I/II tumors which remained comparable during subsequent stages of tumorigenesis. This implied association of CyclinL1 amplification with development of early invasiveness. Quantitation of mRNA expression revealed 2.6 ± 1.53-fold overexpression of this gene in primary CACX. The amplification/copy number gain of CyclinL1 and its mRNA profile were concordant, in tumors. Immunohistochemical (IHC) analysis in primary CACX, cell lines: SiHa and HeLa revealed intense nuclear expression of cyclinL1, which was further confirmed by Western blot in the cell lines. However 47% (7/15) CACX samples expressed high/intermediate level of cyclin L1. Kaplan-Meier survival analysis indicated CyclinL1 amplification as a determinant of poor patient outcome. Tumor radio-resistance developed as a consequence of CyclinL1 amplification. Cox multivariate analysis revealed that multiparous (≥5) CACX patients with amplified CyclinL1 locus along with advanced tumor stage (III/IV) had worst prognosis. Our data suggest importance of CyclinL1 in cervical carcinogenesis with its associated pathways viz: pre-mRNA splicing, cell-cycle regulation (G₀/G₁ and G₂/M) being potential targets of therapeutic interventions in CACX.
Collapse
Affiliation(s)
- Sraboni Mitra
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | | | | | | | | | | | | |
Collapse
|
27
|
Gilmore TD, Garbati MR. Inhibition of NF-κB signaling as a strategy in disease therapy. Curr Top Microbiol Immunol 2010; 349:245-63. [PMID: 21113699 DOI: 10.1007/82_2010_105] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As described extensively in this issue, NF-κB transcription factors regulate a number of important physiological processes, including inflammation and immune responses, cell growth and survival, and the expression of certain viral genes. Moreover, NF-κB activity is elevated in and contributes to the pathology of several human diseases, including many cancers and chronic inflammatory diseases. Therefore, there has been great interest in the characterization and development of methods to limit NF-κB signaling for pharmacological intervention. This article describes some of the approaches that have been employed to inhibit NF-κB using in vitro and in vivo experimental models. Moreover, some examples of the clinical use of NF-κB inhibitors are discussed, primarily for the treatment of two B-cell malignancies, multiple myeloma and diffuse large B-cell lymphoma. Finally, the rationale and strategies for inhibiting specific NF-κB subunit activity for disease therapy are discussed.
Collapse
Affiliation(s)
- Thomas D Gilmore
- Biology Department, Boston University, 5 Cummington Street, Boston, MA 02215, USA.
| | | |
Collapse
|
28
|
Khan WN. B cell receptor and BAFF receptor signaling regulation of B cell homeostasis. THE JOURNAL OF IMMUNOLOGY 2009; 183:3561-7. [PMID: 19726767 DOI: 10.4049/jimmunol.0800933] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
B lymphocyte homeostasis depends on tonic and induced BCR signaling and receptors sensitive to trophic factors, such as B cell-activating factor receptor (BAFF-R or BR3) during development and maintenance. This review will discuss growing evidence suggesting that the signaling mechanisms that maintain B cell survival and metabolic fitness during selection at transitional stages and survival after maturation rely on cross-talk between BCR and BR3 signaling. Recent findings have also begun to unravel the molecular mechanisms underlying this crosstalk. In this review I also propose a model for regulating the amplitude of BCR signaling by a signal amplification loop downstream of the BCR involving Btk and NF-kappaB that may facilitate BCR-dependent B cell survival as well as its functional coupling to BR3 for the growth and survival of B lymphocytes.
Collapse
Affiliation(s)
- Wasif N Khan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|