1
|
Singhal N, Sharma A, Kumari S, Garg A, Rai R, Singh N, Kumar M, Goel M. Biophysical and Biochemical Characterization of Nascent Polypeptide-Associated Complex of Picrophilus torridus and Elucidation of Its Interacting Partners. Front Microbiol 2020; 11:915. [PMID: 32528429 PMCID: PMC7264160 DOI: 10.3389/fmicb.2020.00915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Neelja Singhal
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Archana Sharma
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Shobha Kumari
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Anjali Garg
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Ruchica Rai
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Nirpendra Singh
- Regional Centre for Biotechnology, NCR-Biotech Science Cluster, Faridabad, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Manisha Goel
- Department of Biophysics, University of Delhi, New Delhi, India
- *Correspondence: Manisha Goel,
| |
Collapse
|
2
|
Wang PH, Wu PC, Huang R, Chung KR. The Role of a Nascent Polypeptide-Associated Complex Subunit Alpha in Siderophore Biosynthesis, Oxidative Stress Response, and Virulence in Alternaria alternata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:668-679. [PMID: 31928525 DOI: 10.1094/mpmi-11-19-0315-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The present study demonstrates that a nascent polypeptide-associated complex α subunit (Nac1) functions as a transcriptional regulator and plays both positive and negative roles in a vast array of functions in Alternaria alternata. Gain- and loss-of-function studies reveal that Nac1 is required for the formation and germination of conidia, likely via the regulation of Fus3 and Slt2 mitogen-activated protein kinase (MAPK)-coding genes, both implicated in conidiation. Nac1 negatively regulates hyphal branching and the production of cell wall-degrading enzymes. Importantly, Nac1 is required for the biosynthesis of siderophores, a novel phenotype that has not been reported to be associated with a Nac in fungi. The expression of Nac1 is positively regulated by iron, as well as by the Hog1 MAPK and the NADPH-dependent oxidase (Nox) complex. Nac1 confers cellular susceptibility to reactive oxygen species (ROS) likely via negatively regulating the expression of the genes encoding Yap1, Skn7, Hog1, and Nox, all involved in ROS resistance. The involvement of Nac1 in sensitivity to glucose-, mannitol-, or sorbitol-induced osmotic stress could be due to its ability to suppress the expression of Skn7. The requirement of Nac1 in resistance to salts is unlikely mediated through the transcriptional activation of Hog1. Although Nac1 plays no role in toxin production, Nac1 is required for fungal full virulence. All observed deficiencies can be restored by re-expressing a functional copy of Nac1, confirming that Nac1 contributes to the phenotypes. Thus, a dynamic regulation of gene expression via Nac1 is critical for developmental, physiological, and pathological processes of A. alternata.
Collapse
Affiliation(s)
- Pin-Hua Wang
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Pei-Ching Wu
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Richie Huang
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 40227, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| |
Collapse
|
3
|
Kogan GL, Akulenko NV, Abramov YA, Sokolova OA, Fefelova EA, Gvozdev VA. Nascent polypeptide-associated complex as tissue-specific cofactor during germinal cell differentiation in Drosophila testes. Mol Biol 2017. [DOI: 10.1134/s0026893317040112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Drosophila Small Heat Shock Proteins: An Update on Their Features and Functions. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_25] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
|
6
|
Dowling JK, Becker CE, Bourke NM, Corr SC, Connolly DJ, Quinn SR, Pandolfi PP, Mansell A, O'Neill LAJ. Promyelocytic leukemia protein interacts with the apoptosis-associated speck-like protein to limit inflammasome activation. J Biol Chem 2014; 289:6429-6437. [PMID: 24407287 DOI: 10.1074/jbc.m113.539692] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apoptosis-associated speck-like protein containing a caspase-activating recruitment domain (ASC) is an essential component of several inflammasomes, multiprotein complexes that regulate caspase-1 activation and inflammation. We report here an interaction between promyelocytic leukemia protein (PML) and ASC. We observed enhanced formation of ASC dimers in PML-deficient macrophages. These macrophages also display enhanced levels of ASC in the cytosol. Furthermore, IL-1β production was markedly enhanced in these macrophages in response to both NLRP3 and AIM2 inflammasome activation and following bone marrow-derived macrophage infection with herpes simplex virus-1 (HSV-1) and Salmonella typhimurium. Collectively, our data indicate that PML limits ASC function, retaining ASC in the nucleus.
Collapse
Affiliation(s)
- Jennifer K Dowling
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Christine E Becker
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Nollaig M Bourke
- Centre for Innate Immunity and Infectious Disease, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | - Sinead C Corr
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Dympna J Connolly
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Susan R Quinn
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Paolo P Pandolfi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 01605
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Disease, MIMR-PHI Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | - Luke A J O'Neill
- Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
7
|
Conservation of caspase substrates across metazoans suggests hierarchical importance of signaling pathways over specific targets and cleavage site motifs in apoptosis. Cell Death Differ 2012; 19:2040-8. [PMID: 22918439 DOI: 10.1038/cdd.2012.99] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Caspases, cysteine proteases with aspartate specificity, are key players in programmed cell death across the metazoan lineage. Hundreds of apoptotic caspase substrates have been identified in human cells. Some have been extensively characterized, revealing key functional nodes for apoptosis signaling and important drug targets in cancer. But the functional significance of most cuts remains mysterious. We set out to better understand the importance of caspase cleavage specificity in apoptosis by asking which cleavage events are conserved across metazoan model species. Using N-terminal labeling followed by mass spectrometry, we identified 257 caspase cleavage sites in mouse, 130 in Drosophila, and 50 in Caenorhabditis elegans. The large majority of the caspase cut sites identified in mouse proteins were found conserved in human orthologs. However, while many of the same proteins targeted in the more distantly related species were cleaved in human orthologs, the exact sites were often different. Furthermore, similar functional pathways are targeted by caspases in all four species. Our data suggest a model for the evolution of apoptotic caspase specificity that highlights the hierarchical importance of functional pathways over specific proteins, and proteins over their specific cleavage site motifs.
Collapse
|
8
|
Abstract
The caspases are unique proteases that mediate the major morphological changes of apoptosis and various other cellular remodeling processes. As we catalog and study the myriad proteins subject to cleavage by caspases, we are beginning to appreciate the full functional repertoire of these enzymes. Here, we examine current knowledge about caspase cleavages: what kinds of proteins are cut, in what contexts, and to what end. After reviewing basic caspase biology, we describe the technologies that enable high-throughput caspase substrate discovery and the datasets they have yielded. We discuss how caspases recognize their substrates and how cleavages are conserved among different metazoan organisms. Rather than comprehensively reviewing all known substrates, we use examples to highlight some functional impacts of caspase cuts during apoptosis and differentiation. Finally, we discuss the roles caspase substrates can play in medicine. Though great progress has been made in this field, many important areas still await exploration.
Collapse
Affiliation(s)
- Emily D Crawford
- Department of Pharmaceutical Chemistry and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158-2330, USA.
| | | |
Collapse
|
9
|
Contreras V, Friday AJ, Morrison JK, Hao E, Keiper BD. Cap-independent translation promotes C. elegans germ cell apoptosis through Apaf-1/CED-4 in a caspase-dependent mechanism. PLoS One 2011; 6:e24444. [PMID: 21909434 PMCID: PMC3164730 DOI: 10.1371/journal.pone.0024444] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/10/2011] [Indexed: 11/19/2022] Open
Abstract
Apoptosis is a natural process during animal development for the programmed removal of superfluous cells. During apoptosis general protein synthesis is reduced, but the synthesis of cell death proteins is enhanced. Selective translation has been attributed to modification of the protein synthesis machinery to disrupt cap-dependent mRNA translation and induce a cap-independent mechanism. We have previously shown that disruption of the balance between cap-dependent and cap-independent C. elegans eIF4G isoforms (IFG-1 p170 and p130) by RNA interference promotes apoptosis in developing oocytes. Germ cell apoptosis was accompanied by the appearance of the Apaf-1 homolog, CED-4. Here we show that IFG-1 p170 is a native substrate of the worm executioner caspase, CED-3, just as mammalian eIF4GI is cleaved by caspase-3. Loss of Bcl-2 function (ced-9ts) in worms induced p170 cleavage in vivo, coincident with extensive germ cell apoptosis. Truncation of IFG-1 occurred at a single site that separates the cap-binding and ribosome-associated domains. Site-directed mutagenesis indicated that CED-3 processes IFG-1 at a non-canonical motif, TTTD456. Coincidentally, the recognition site was located 65 amino acids downstream of the newly mapped IFG-1 p130 start site suggesting that both forms support cap-independent initiation. Genetic evidence confirmed that apoptosis induced by loss of ifg-1 p170 mRNA was caspase (ced-3) and apoptosome (ced-4/Apaf-1) dependent. These findings support a new paradigm in which modal changes in protein synthesis act as a physiological signal to initiate cell death, rather than occur merely as downstream consequences of the apoptotic event.
Collapse
Affiliation(s)
- Vince Contreras
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Andrew J. Friday
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - J. Kaitlin Morrison
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Enhui Hao
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
| | - Brett D. Keiper
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
10
|
Pech M, Spreter T, Beckmann R, Beatrix B. Dual binding mode of the nascent polypeptide-associated complex reveals a novel universal adapter site on the ribosome. J Biol Chem 2010; 285:19679-87. [PMID: 20410297 DOI: 10.1074/jbc.m109.092536] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nascent polypeptide-associated complex (NAC) was identified in eukaryotes as the first cytosolic factor that contacts the nascent polypeptide chain emerging from the ribosome. NAC is present as a homodimer in archaea and as a highly conserved heterodimer in eukaryotes. Mutations in NAC cause severe embryonically lethal phenotypes in mice, Drosophila melanogaster, and Caenorhabditis elegans. In the yeast Saccharomyces cerevisiae NAC is quantitatively associated with ribosomes. Here we show that NAC contacts several ribosomal proteins. The N terminus of betaNAC, however, specifically contacts near the tunnel exit ribosomal protein Rpl31, which is unique to eukaryotes and archaea. Moreover, the first 23 amino acids of betaNAC are sufficient to direct an otherwise non-associated protein to the ribosome. In contrast, alphaNAC (Egd2p) contacts Rpl17, the direct neighbor of Rpl31 at the ribosomal tunnel exit site. Rpl31 was also recently identified as a contact site for the SRP receptor and the ribosome-associated complex. Furthermore, in Escherichia coli peptide deformylase (PDF) interacts with the corresponding surface area on the eubacterial ribosome. In addition to the previously identified universal adapter site represented by Rpl25/Rpl35, we therefore refer to Rpl31/Rpl17 as a novel universal docking site for ribosome-associated factors on the eukaryotic ribosome.
Collapse
Affiliation(s)
- Markus Pech
- Department of Biochemistry, Ludwig-Maximilians-Universität München, Gene Center Munich, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | |
Collapse
|
11
|
Fallin MD, Szymanski M, Wang R, Gherman A, Bassett SS, Avramopoulos D. Fine mapping of the chromosome 10q11-q21 linkage region in Alzheimer's disease cases and controls. Neurogenetics 2010; 11:335-48. [PMID: 20182759 DOI: 10.1007/s10048-010-0234-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 01/15/2010] [Indexed: 10/19/2022]
Abstract
We have previously reported strong linkage on chromosome 10q in pedigrees transmitting Alzheimer's disease through the mother, overlapping with many significant linkage reports including the largest reported study. Here, we report the most comprehensive fine mapping of this region to date. In a sample of 638 late-onset Alzheimer's disease (LOAD) cases and controls including 104 maternal LOAD cases, we genotyped 3,884 single nucleotide polymorphisms (SNPs) covering 15.2 Mb. We then used imputations and publicly available data to generate an extended dataset including 4,329 SNPs for 1,209 AD cases and 839 controls in the same region. Further, we screened eight genes in this region for rare alleles in 283 individuals by nucleotide sequencing, and we tested for possible monoallelic expression as it might underlie our maternal parent of origin linkage. We excluded the possibility of multiple rare coding risk variants for these genes and monoallelic expression when we could test for it. One SNP, rs10824310 in the PRKG1 gene, showed study-wide significant association without a parent of origin effect, but the effect size estimate is not of sufficient magnitude to explain the linkage, and no association is observed in an independent genome-wide association studies (GWAS) report. Further, no causative variants were identified though sequencing. Analysis of cases with maternal disease origin pointed to a few regions of interest that included the genes PRKG1 and PCDH15 and an intergenic interval of 200 Kb. It is likely that non-transcribed rare variants or other mechanisms involving these genomic regions underlie the observed linkage and parent of origin effect. Acquiring additional support and clarifying the mechanisms of such involvement is important for AD and other complex disorder genetics research.
Collapse
Affiliation(s)
- Margaret Daniele Fallin
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
12
|
Becker CE, Creagh EM, O'Neill LAJ. Rab39a binds caspase-1 and is required for caspase-1-dependent interleukin-1beta secretion. J Biol Chem 2009; 284:34531-7. [PMID: 19833722 PMCID: PMC2787314 DOI: 10.1074/jbc.m109.046102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Interleukin-1β (IL-1β) is an important pro-inflammatory cytokine that is secreted by unconventional means in a caspase-1-dependent manner. Using a one-step immunoprecipitation approach to isolate endogenous caspase-1 from the monocytic THP1 cell line, we identified previously undescribed binding partners using mass spectrometry. One of the proteins identified was Rab39a, a member of the Rab GTPase family, a group of proteins that have important roles in protein trafficking and secretion. We confirmed by co-immunoprecipitation that Rab39a binds caspase-1. Knock down of Rab39a with small interfering RNA resulted in diminished levels of secreted IL-1β but had no effect on induction of pro-IL-1β mRNA by lipopolysaccharide. Rab39a contains a highly conserved caspase-1 cleavage site and was cleaved in the presence of recombinant caspase-1 or lipopolysaccharide. Finally, overexpression of Rab39a results in an increase in IL-1β secretion, and furthermore, overexpression of a Rab39a construct lacking the caspase-1 cleavage site leads to an additional increase in IL-1β secretion. Altogether, our findings show that Rab39a interacts with caspase-1 and suggest that Rab39a functions as a trafficking adaptor linking caspase-1 to IL-1β secretion.
Collapse
Affiliation(s)
- Christine E Becker
- School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|