1
|
Vogt ACS, Jennings GT, Mohsen MO, Vogel M, Bachmann MF. Alzheimer's Disease: A Brief History of Immunotherapies Targeting Amyloid β. Int J Mol Sci 2023; 24:3895. [PMID: 36835301 PMCID: PMC9961492 DOI: 10.3390/ijms24043895] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and may contribute to 60-70% of cases. Worldwide, around 50 million people suffer from dementia and the prediction is that the number will more than triple by 2050, as the population ages. Extracellular protein aggregation and plaque deposition as well as accumulation of intracellular neurofibrillary tangles, all leading to neurodegeneration, are the hallmarks of brains with Alzheimer's disease. Therapeutic strategies including active and passive immunizations have been widely explored in the last two decades. Several compounds have shown promising results in many AD animal models. To date, only symptomatic treatments are available and because of the alarming epidemiological data, novel therapeutic strategies to prevent, mitigate, or delay the onset of AD are required. In this mini-review, we focus on our understanding of AD pathobiology and discuss current active and passive immunomodulating therapies targeting amyloid-β protein.
Collapse
Affiliation(s)
- Anne-Cathrine S. Vogt
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | | | - Mona O. Mohsen
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
| | - Monique Vogel
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
| | - Martin F. Bachmann
- Department of Rheumatology and Immunology (RI), University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), Faculty of Medicine, University of Bern, 3008 Bern, Switzerland
- Centre for Cellular and Molecular Physiology (CCMP), Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
2
|
Kumar V, Sinha N, Thakur AK. Necessity of regulatory guidelines for the development of amyloid based biomaterials. Biomater Sci 2021; 9:4410-4422. [PMID: 34018497 DOI: 10.1039/d1bm00059d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amyloid diseases are caused due to protein homeostasis failure where incorrectly folded proteins/peptides form cross-β-sheet rich amyloid fibrillar structures. Besides proteins/peptides, small metabolite assemblies also exhibit amyloid-like features. These structures are linked to several human and animal diseases. In addition, non-toxic amyloids with diverse physiological roles are characterized as a new functional class. This finding, along with the unique properties of amyloid like stability and mechanical strength, led to a surge in the development of amyloid-based biomaterials. However, the usage of these materials by humans and animals may pose a health risk such as the development of amyloid diseases and toxicity. This is possible because amyloid-based biomaterials and their fragments may assist seeding and cross-seeding mechanisms of amyloid formation in the body. This review summarizes the potential uses of amyloids as biomaterials, the concerns regarding their usage, and a prescribed workflow to initiate a regulatory approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nabodita Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, UP-208016, India.
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, UP-208016, India.
| |
Collapse
|
3
|
Madden PW, Klyubin I, Ahearne MJ. Silk fibroin safety in the eye: a review that highlights a concern. BMJ Open Ophthalmol 2020; 5:e000510. [PMID: 33024827 PMCID: PMC7513638 DOI: 10.1136/bmjophth-2020-000510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022] Open
Abstract
The biomedical use of silk as a suture dates back to antiquity. Fibroin is the structural element that determines the strength of silk and here we consider the safety of fibroin in its role in ophthalmology. The high mechanical strength of silk meant sufficiently thin threads could be made for eye microsurgery, but such usage was all but superseded by synthetic polymer sutures, primarily because silk in its entirety was more inflammatory. Significant immunological response can normally be avoided by careful manufacturing to provide high purity fibroin, and it has been utilised in this form for tissue engineering an array of fibre and film substrata deployed in research with cells of the eye. Films of fibroin can also be made transparent, which is a required property in the visual pathway. Transparent layers of corneal epithelial, stromal and endothelial cells have all been demonstrated with maintenance of phenotype, as have constructs supporting retinal cells. Fibroin has a lack of demonstrable infectious agent transfer, an ability to be sterilised and prepared with minimal contamination, long-term predictable degradation and low direct cytotoxicity. However, there remains a known ability to be involved in amyloid formation and potential amyloidosis which, without further examination, is enough to currently question whether fibroin should be employed in the eye given its innervation into the brain.
Collapse
Affiliation(s)
- Peter W Madden
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology Therapeutics, School of Medicine, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Mark J Ahearne
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Kell DB, Pretorius E. No effects without causes: the Iron Dysregulation and Dormant Microbes hypothesis for chronic, inflammatory diseases. Biol Rev Camb Philos Soc 2018; 93:1518-1557. [PMID: 29575574 PMCID: PMC6055827 DOI: 10.1111/brv.12407] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/11/2022]
Abstract
Since the successful conquest of many acute, communicable (infectious) diseases through the use of vaccines and antibiotics, the currently most prevalent diseases are chronic and progressive in nature, and are all accompanied by inflammation. These diseases include neurodegenerative (e.g. Alzheimer's, Parkinson's), vascular (e.g. atherosclerosis, pre-eclampsia, type 2 diabetes) and autoimmune (e.g. rheumatoid arthritis and multiple sclerosis) diseases that may appear to have little in common. In fact they all share significant features, in particular chronic inflammation and its attendant inflammatory cytokines. Such effects do not happen without underlying and initially 'external' causes, and it is of interest to seek these causes. Taking a systems approach, we argue that these causes include (i) stress-induced iron dysregulation, and (ii) its ability to awaken dormant, non-replicating microbes with which the host has become infected. Other external causes may be dietary. Such microbes are capable of shedding small, but functionally significant amounts of highly inflammagenic molecules such as lipopolysaccharide and lipoteichoic acid. Sequelae include significant coagulopathies, not least the recently discovered amyloidogenic clotting of blood, leading to cell death and the release of further inflammagens. The extensive evidence discussed here implies, as was found with ulcers, that almost all chronic, infectious diseases do in fact harbour a microbial component. What differs is simply the microbes and the anatomical location from and at which they exert damage. This analysis offers novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of ChemistryThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- The Manchester Institute of BiotechnologyThe University of Manchester, 131 Princess StreetManchesterLancsM1 7DNU.K.
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| | - Etheresia Pretorius
- Department of Physiological SciencesStellenbosch University, Stellenbosch Private Bag X1Matieland7602South Africa
| |
Collapse
|
5
|
Westermark GT, Fändrich M, Lundmark K, Westermark P. Noncerebral Amyloidoses: Aspects on Seeding, Cross-Seeding, and Transmission. Cold Spring Harb Perspect Med 2018; 8:a024323. [PMID: 28108533 PMCID: PMC5749146 DOI: 10.1101/cshperspect.a024323] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
More than 30 proteins form amyloid in humans, most of them outside of the brain. Deposition of amyloid in extracerebral tissues is very common and seems inevitable for an aging person. Most deposits are localized, small, and probably without consequence, but in some instances, they are associated with diseases such as type 2 diabetes. Other extracerebral amyloidoses are systemic, with life-threatening effects on the heart, kidneys, and other organs. Here, we review how amyloid may spread through seeding and whether transmission of amyloid diseases may occur between humans. We also discuss whether cross-seeding is important in the development of amyloidosis, focusing specifically on the amyloid proteins AA, transthyretin, and islet amyloid polypeptide (IAPP).
Collapse
Affiliation(s)
- Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, D-89081 Ulm, Germany
| | - Katarzyna Lundmark
- Department of Clinical Pathology and Clinical Genetics, and Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
6
|
Proteins behaving badly. Substoichiometric molecular control and amplification of the initiation and nature of amyloid fibril formation: lessons from and for blood clotting. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 123:16-41. [DOI: 10.1016/j.pbiomolbio.2016.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/19/2016] [Indexed: 02/08/2023]
|
7
|
Dexter AF, Fletcher N, Creasey RG, Filardo F, Boehm MW, Jack KS. Fabrication and characterization of hydrogels formed from designer coiled-coil fibril-forming peptides. RSC Adv 2017. [DOI: 10.1039/c7ra02811c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A peptide sequence was designed to form α-helical fibrils and hydrogels at physiological pH, utilising transient buffering by carbonic acid.
Collapse
Affiliation(s)
- A. F. Dexter
- The University of Queensland
- Australian Institute for Bioengineering and Biotechnology
- Australia
| | - N. L. Fletcher
- The University of Queensland
- Australian Institute for Bioengineering and Biotechnology
- Australia
| | - R. G. Creasey
- The University of Queensland
- School of Chemical Engineering
- Australia
| | - F. Filardo
- The University of Queensland
- Australian Institute for Bioengineering and Biotechnology
- Australia
| | - M. W. Boehm
- The University of Queensland
- School of Chemical Engineering
- Australia
| | - K. S. Jack
- The University of Queensland
- Centre for Microscopy and Microanalysis
- Australia
| |
Collapse
|
8
|
Abstract
There are around 30 human diseases associated with protein misfolding and amyloid formation, each one caused by a certain protein or peptide. Many of these diseases are lethal and together they pose an enormous burden to society. The prion protein has attracted particular interest as being shown to be the pathogenic agent in transmissible diseases such as kuru, Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Whether similar transmission could occur also in other amyloidoses such as Alzheimer's disease, Parkinson's disease and serum amyloid A amyloidosis is a matter of intense research and debate. Furthermore, it has been suggested that novel biomaterials such as artificial spider silk are potentially amyloidogenic. Here, we provide a brief introduction to amyloid, prions and other proteins involved in amyloid disease and review recent evidence for their potential transmission. We discuss the similarities and differences between amyloid and silk, as well as the potential hazards associated with protein-based biomaterials.
Collapse
Affiliation(s)
- L O Tjernberg
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - A Rising
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J Johansson
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - K Jaudzems
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - P Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Tsukawaki S, Murakami T, Ibi K, Kuraishi T, Hattori S, Kai C, Suzuki K, Yanai T. Amyloidosis enhancing activity of bovine amyloid A fibrils in C3H/HeN mice and cynomolgus monkeys (Macaca fascicularis). J Med Primatol 2016; 45:112-7. [PMID: 27072531 DOI: 10.1111/jmp.12213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND In experimentally induced cases of AA amyloidosis, the development of disease is enhanced by the administration of homogenous or heterogeneous amyloid fibrils. In recent years, cross-species transmission of animal amyloidosis into human has become of particular concern. METHODS Cynomolgus monkeys (Macaca fascicularis) and C3H/HeN mice were inoculated with bovine amyloid fibrils under acute inflammation. RESULTS Amyloid A deposits were not detected in any of the monkeys, but mild-to-severe AA deposits were found in all mice. CONCLUSIONS These results suggest that unlike in rodents, cross-species transmission of AA amyloidosis is less likely to develop, at least during acute inflammation, in primates.
Collapse
Affiliation(s)
- Satomi Tsukawaki
- Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomoaki Murakami
- Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kanata Ibi
- Department of Veterinary Medicine, Gifu University, Gifu, Japan
| | - Takeshi Kuraishi
- Amami Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, Kagoshima, Japan
| | - Shosaku Hattori
- Amami Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, Kagoshima, Japan
| | - Chieko Kai
- Amami Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, Kagoshima, Japan.,Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Suzuki
- Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tokuma Yanai
- Department of Veterinary Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
10
|
De Leon Rodriguez LM, Hemar Y, Cornish J, Brimble MA. Structure–mechanical property correlations of hydrogel forming β-sheet peptides. Chem Soc Rev 2016; 45:4797-824. [DOI: 10.1039/c5cs00941c] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review discusses about β-sheet peptide structure at the molecular level and the bulk mechanical properties of the corresponding hydrogels.
Collapse
Affiliation(s)
| | - Yacine Hemar
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
- The Riddet Institute
| | - Jillian Cornish
- Department of Medicine
- The University of Auckland
- Auckland
- New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery
| |
Collapse
|
11
|
De Leon-Rodriguez LM, Kamalov M, Hemar Y, Mitra AK, Castelletto V, Hermida-Merino D, Hamley IW, Brimble MA. A peptide hydrogel derived from a fragment of human cardiac troponin C. Chem Commun (Camb) 2016; 52:4056-9. [DOI: 10.1039/c6cc00209a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The human cardiac troponin C peptide fragment H-V9EQLTEEQKNEFKAAFDIFVLGA31-OH self assembles into β-sheets fibrils that further entangle to give a hydrogels.
Collapse
Affiliation(s)
| | - Meder Kamalov
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| | - Yacine Hemar
- School of Chemical Sciences
- The University of Auckland
- Auckland
- New Zealand
| | - Alok K. Mitra
- School of Biological Sciences
- The University of Auckland
- Auckland
- New Zealand
| | | | | | - Ian W. Hamley
- School of Chemistry
- Food Science and Pharmacy
- University of Reading
- Reading
- UK
| | | |
Collapse
|
12
|
Rad-Malekshahi M, Lempsink L, Amidi M, Hennink WE, Mastrobattista E. Biomedical Applications of Self-Assembling Peptides. Bioconjug Chem 2015; 27:3-18. [DOI: 10.1021/acs.bioconjchem.5b00487] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mazda Rad-Malekshahi
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584
CG Utrecht, The Netherlands
| | - Ludwijn Lempsink
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584
CG Utrecht, The Netherlands
| | - Maryam Amidi
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584
CG Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584
CG Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, 3584
CG Utrecht, The Netherlands
| |
Collapse
|
13
|
Oskarsson ME, Paulsson JF, Schultz SW, Ingelsson M, Westermark P, Westermark GT. In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:834-46. [PMID: 25700985 DOI: 10.1016/j.ajpath.2014.11.016] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/31/2014] [Accepted: 11/06/2014] [Indexed: 01/21/2023]
Abstract
Several proteins have been identified as amyloid forming in humans, and independent of protein origin, the fibrils are morphologically similar. Therefore, there is a potential for structures with amyloid seeding ability to induce both homologous and heterologous fibril growth; thus, molecular interaction can constitute a link between different amyloid forms. Intravenous injection with preformed fibrils from islet amyloid polypeptide (IAPP), proIAPP, or amyloid-beta (Aβ) into human IAPP transgenic mice triggered IAPP amyloid formation in pancreas in 5 of 7 mice in each group, demonstrating that IAPP amyloid could be enhanced through homologous and heterologous seeding with higher efficiency for the former mechanism. Proximity ligation assay was used for colocalization studies of IAPP and Aβ in islet amyloid in type 2 diabetic patients and Aβ deposits in brains of patients with Alzheimer disease. Aβ reactivity was not detected in islet amyloid although islet β cells express AβPP and convertases necessary for Aβ production. By contrast, IAPP and proIAPP were detected in cerebral and vascular Aβ deposits, and presence of proximity ligation signal at both locations showed that the peptides were <40 nm apart. It is not clear whether IAPP present in brain originates from pancreas or is locally produced. Heterologous seeding between IAPP and Aβ shown here may represent a molecular link between type 2 diabetes and Alzheimer disease.
Collapse
Affiliation(s)
- Marie E Oskarsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Johan F Paulsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Martin Ingelsson
- Department of Public Health/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
14
|
Colón W, Aguilera JJ, Srinivasan S. Intrinsic Stability, Oligomerization, and Amyloidogenicity of HDL-Free Serum Amyloid A. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:117-34. [PMID: 26149928 DOI: 10.1007/978-3-319-17344-3_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Serum amyloid A (SAA) is an acute-phase reactant protein predominantly bound to high-density lipoprotein in serum and presumed to play various biological and pathological roles. Upon tissue trauma or infection, hepatic expression of SAA increases up to 1,000 times the basal levels. Prolonged increased levels of SAA may lead to amyloid A (AA) amyloidosis, a usually fatal systemic disease in which the amyloid deposits are mostly comprised of the N-terminal 1-76 fragment of SAA. SAA isoforms may differ across species in their ability to cause AA amyloidosis, and the mechanism of pathogenicity remains poorly understood. In vitro studies have shown that SAA is a marginally stable protein that folds into various oligomeric species at 4 °C. However, SAA is largely disordered at 37 °C, reminiscent of intrinsically disordered proteins. Non-pathogenic murine (m)SAA2.2 spontaneously forms amyloid fibrils in vitro at 37 °C whereas pathogenic mSAA1.1 has a long lag (nucleation) phase, and eventually forms fibrils of different morphology than mSAA2.2. Remarkably, human SAA1.1 does not form mature fibrils in vitro. Thus, it appears that the intrinsic amyloidogenicity of SAA is not a key determinant of pathogenicity, and that other factors, including fibrillation kinetics, ligand binding effects, fibril stability, nucleation efficiency, and SAA degradation may play key roles. This chapter will focus on the known structural and biophysical properties of SAA and discuss how these properties may help better understand the molecular mechanism of AA amyloidosis.
Collapse
Affiliation(s)
- Wilfredo Colón
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,
| | | | | |
Collapse
|
15
|
Murakami T, Inoshima Y, Ishiguro N. Systemic AA amyloidosis as a prion-like disorder. Virus Res 2014; 207:76-81. [PMID: 25533533 DOI: 10.1016/j.virusres.2014.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/06/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
Amyloidosis is a collective term for a group of disorders that induce functional impairment of organs and occurs through the accumulation of amyloid, or misfolded protein in beta-sheets. AA amyloidosis is a lethal systemic amyloidosis with SAA as the precursor protein, and is observed in various animal species, including humans. AA amyloidosis can be induced artificially by continuously administering inflammatory stimuli in experimental animal models. In this process of experimental induction, the administration of AA amyloids from either the same or different species is known to markedly expedite AA amyloidosis development, and this is also termed transmission of AA amyloidosis. Similarly to prion disease, AA amyloidosis is considered to be transmitted via a "seeding-nucleation" process. In this manuscript, we reviewed the pathology and transmissibility of AA amyloidosis in animals.
Collapse
Affiliation(s)
- Tomoaki Murakami
- Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yasuo Inoshima
- Department of Veterinary Medicine, Gifu University, Gifu, Japan
| | - Naotaka Ishiguro
- Department of Veterinary Medicine, Gifu University, Gifu, Japan.
| |
Collapse
|
16
|
Westermark GT, Fändrich M, Westermark P. AA amyloidosis: pathogenesis and targeted therapy. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 10:321-44. [PMID: 25387054 DOI: 10.1146/annurev-pathol-020712-163913] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The understanding of why and how proteins misfold and aggregate into amyloid fibrils has increased considerably during recent years. Central to amyloid formation is an increase in the frequency of the β-sheet structure, leading to hydrogen bonding between misfolded monomers and creating a fibril that is comparably resistant to degradation. Generation of amyloid fibrils is nucleation dependent, and once formed, fibrils recruit and catalyze the conversion of native molecules. In AA amyloidosis, the expression of cytokines, particularly interleukin 6, leads to overproduction of serum amyloid A (SAA) by the liver. A chronically high plasma concentration of SAA results in the aggregation of amyloid into cross-β-sheet fibrillar deposits by mechanisms not fully understood. Therefore, AA amyloidosis can be thought of as a consequence of long-standing inflammatory disease. This review summarizes current knowledge about AA amyloidosis. The systemic amyloidoses have been regarded as intractable conditions, but improvements in the understanding of fibril composition and pathogenesis over the past decade have led to the development of a number of different therapeutic approaches with promising results.
Collapse
|
17
|
Maude S, Ingham E, Aggeli A. Biomimetic self-assembling peptides as scaffolds for soft tissue engineering. Nanomedicine (Lond) 2013; 8:823-47. [DOI: 10.2217/nnm.13.65] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tissue engineered therapies are emerging as solutions to several of the medical challenges facing aging societies. To this end, a fundamental research goal is the development of novel biocompatible materials and scaffolds. Self-assembling peptides are materials that have undergone rapid development in the last two decades and they hold promise in meeting some of these challenges. Using amino acids as building blocks enables a great versatility to be incorporated into the structures that peptides form, their physical properties and their interactions with biological systems. This review discusses several classes of short self-assembling sequences, explaining the principles that drive their self-assembly into structures with nanoscale ordering, and highlighting in vitro and in vivo studies that demonstrate the potential of these materials as novel soft tissue engineering scaffolds.
Collapse
Affiliation(s)
- Steven Maude
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Eileen Ingham
- The Institute of Medical & Biological Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Amalia Aggeli
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
18
|
|
19
|
Hartman K, Brender JR, Monde K, Ono A, Evans M, Popovych N, Chapman MR, Ramamoorthy A. Bacterial curli protein promotes the conversion of PAP248-286 into the amyloid SEVI: cross-seeding of dissimilar amyloid sequences. PeerJ 2013; 1:e5. [PMID: 23638387 PMCID: PMC3629062 DOI: 10.7717/peerj.5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/05/2012] [Indexed: 01/02/2023] Open
Abstract
Fragments of prostatic acid phosphatase (PAP248-286) in human semen dramatically increase HIV infection efficiency by increasing virus adhesion to target cells. PAP248-286 only enhances HIV infection in the form of amyloid aggregates termed SEVI (Semen Enhancer of Viral Infection), however monomeric PAP248-286 aggregates very slowly in isolation. It has therefore been suggested that SEVI fiber formation in vivo may be promoted by exogenous factors. We show here that a bacterially-produced extracellular amyloid (curli or Csg) acts as a catalytic agent for SEVI formation from PAP248-286 at low concentrations in vitro, producing fibers that retain the ability to enhance HIV (Human Immunodeficiency Virus) infection. Kinetic analysis of the cross-seeding effect shows an unusual pattern. Cross-seeding PAP248-286 with curli only moderately affects the nucleation rate while significantly enhancing the growth of fibers from existing nuclei. This pattern is in contrast to most previous observations of cross-seeding, which show cross-seeding partially bypasses the nucleation step but has little effect on fiber elongation. Seeding other amyloidogenic proteins (IAPP (islet amyloid polypeptide) and Aβ1-40) with curli showed varied results. Curli cross-seeding decreased the lag-time of IAPP amyloid formation but strongly inhibited IAPP elongation. Curli cross-seeding exerted a complicated concentration dependent effect on Aβ1-40 fibrillogenesis kinetics. Combined, these results suggest that the interaction of amyloidogenic proteins with preformed fibers of a different type can take a variety of forms and is not limited to epitaxial nucleation between proteins of similar sequence. The ability of curli fibers to interact with proteins of dissimilar sequences suggests cross-seeding may be a more general phenomenon than previously supposed.
Collapse
Affiliation(s)
- Kevin Hartman
- Department of Chemistry, University of Michigan, USA
- Department of Biophysics, University of Michigan, USA
| | - Jeffrey R. Brender
- Department of Chemistry, University of Michigan, USA
- Department of Biophysics, University of Michigan, USA
| | - Kazuaki Monde
- Department of Microbiology and Immunology, University of Michigan Medical School, USA
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, USA
| | - Margery L. Evans
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, USA
| | - Nataliya Popovych
- Department of Chemistry, University of Michigan, USA
- Department of Biophysics, University of Michigan, USA
| | - Matthew R. Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, USA
- Department of Biophysics, University of Michigan, USA
| |
Collapse
|
20
|
Seeding and Cross-seeding in Amyloid Diseases. PROTEOPATHIC SEEDS AND NEURODEGENERATIVE DISEASES 2013. [DOI: 10.1007/978-3-642-35491-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Abstract
Prion replication occurs via a template-assisted mechanism, which postulates that the folding pattern of a newly recruited polypeptide chain accurately reproduces that of a template. The concept of prion-like template-assisted propagation of an abnormal protein conformation has been expanded to amyloidogenic proteins associated with Alzheimer, Parkinson, Huntington diseases, amyotrophic lateral sclerosis and others. Recent studies demonstrated that authentic PrPSc and transmissible prion disease could be generated in wild type animals by inoculation of recombinant prion protein amyloid fibrils, which are structurally different from PrPSc and lack any detectable PrPSc particles. Here we discuss a new replication mechanism designated as “deformed templating,” according to which fibrils with one cross-β folding pattern can seed formation of fibrils or particles with a fundamentally different cross-β folding pattern. Transformation of cross-β folding pattern via deformed templating provides a mechanistic explanation behind genesis of transmissible protein states induced by amyloid fibrils that are considered to be non-infectious. We postulate that deformed templating is responsible for generating conformationally diverse amyloid populations, from which conformers that are fit to replicate in a particular cellular environment are selected. We propose that deformed templating represents an essential step in the evolution of transmissible protein states.
Collapse
Affiliation(s)
- Natallia Makarava
- Department of Anatomy and Neurobiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
22
|
Clos AL, Kayed R, Lasagna-Reeves CA. Association of skin with the pathogenesis and treatment of neurodegenerative amyloidosis. Front Neurol 2012; 3:5. [PMID: 22319507 PMCID: PMC3262151 DOI: 10.3389/fneur.2012.00005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/04/2012] [Indexed: 12/12/2022] Open
Abstract
Amyloidosis are a large group of conformational diseases characterized by abnormal protein folding and assembly which results in the accumulation of insoluble protein aggregates that may accumulate systemically or locally in certain organs or tissue. In local amyloidosis, amyloid deposits are restricted to a particular organ or tissue. Alzheimer’s, Parkinson’s disease, and amyotrophic lateral sclerosis are some examples of neurodegenerative amyloidosis. Local manifestation of protein aggregation in the skin has also been reported. Brain and skin are highly connected at a physiological and pathological level. Recently several studies demonstrated a strong connection between brain and skin in different amyloid diseases. In the present review, we discuss the relevance of the “brain–skin connection” in different neurodegenerative amyloidosis, not only at the pathological level, but also as a strategy for the treatment of these diseases.
Collapse
Affiliation(s)
- Audra L Clos
- Department of Dermatology, MD Anderson Cancer Center, University of Texas Houston, TX, USA
| | | | | |
Collapse
|
23
|
|
24
|
Clos AL, Lasagna-Reeves CA, Kelly B, Wagner R, Wilkerson M, Jackson GR, Kayed R. Role of oligomers in the amyloidogenesis of primary cutaneous amyloidosis. J Am Acad Dermatol 2011; 65:1023-31. [DOI: 10.1016/j.jaad.2010.09.735] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/28/2010] [Accepted: 09/30/2010] [Indexed: 11/30/2022]
|
25
|
Westermark GT, Westermark P. Prion-like aggregates: infectious agents in human disease. Trends Mol Med 2010; 16:501-7. [DOI: 10.1016/j.molmed.2010.08.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/16/2010] [Accepted: 08/18/2010] [Indexed: 11/28/2022]
|
26
|
Villar-Piqué A, Sabaté R, Lopera O, Gibert J, Torne JM, Santos M, Ventura S. Amyloid-like protein inclusions in tobacco transgenic plants. PLoS One 2010; 5:e13625. [PMID: 21049018 PMCID: PMC2964307 DOI: 10.1371/journal.pone.0013625] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 10/01/2010] [Indexed: 11/19/2022] Open
Abstract
The formation of insoluble protein deposits in human tissues is linked to the onset of more than 40 different disorders, ranging from dementia to diabetes. In these diseases, the proteins usually self-assemble into ordered β-sheet enriched aggregates known as amyloid fibrils. Here we study the structure of the inclusions formed by maize transglutaminase (TGZ) in the chloroplasts of tobacco transplastomic plants and demonstrate that they have an amyloid-like nature. Together with the evidence of amyloid structures in bacteria and fungi our data argue that amyloid formation is likely a ubiquitous process occurring across the different kingdoms of life. The discovery of amyloid conformations inside inclusions of genetically modified plants might have implications regarding their use for human applications.
Collapse
Affiliation(s)
- Anna Villar-Piqué
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Raimon Sabaté
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Oriol Lopera
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, Molecular Genetics Laboratory, Barcelona, Spain
| | - Jordi Gibert
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, Molecular Genetics Laboratory, Barcelona, Spain
| | - Josep Maria Torne
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, Molecular Genetics Laboratory, Barcelona, Spain
| | - Mireya Santos
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB, Molecular Genetics Laboratory, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
27
|
Clos AL, Lasagna-Reeves CA, Wagner R, Kelly B, Jackson GR, Kayed R. Therapeutic removal of amyloid deposits in cutaneous amyloidosis by localised intra-lesional injections of anti-amyloid antibodies. Exp Dermatol 2010; 19:904-11. [DOI: 10.1111/j.1600-0625.2010.01121.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Treatment of experimental amyloidosis with antirheumatic drugs. Acta Med Litu 2010. [DOI: 10.2478/v10140-010-0003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
29
|
|
30
|
Nilsson KPR, Ikenberg K, Aslund A, Fransson S, Konradsson P, Röcken C, Moch H, Aguzzi A. Structural typing of systemic amyloidoses by luminescent-conjugated polymer spectroscopy. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:563-74. [PMID: 20035056 PMCID: PMC2808065 DOI: 10.2353/ajpath.2010.080797] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2009] [Indexed: 12/20/2022]
Abstract
Most systemic amyloidoses are progressive and lethal, and their therapy depends on the identification of the offending proteins. Here we report that luminescent-conjugated thiophene polymers (LCP) sensitively detect amyloid deposits. The heterodisperse polythiophene acetic acid derivatives, polythiophene acetic acid (PTAA) and trimeric PTAA, emitted yellow-red fluorescence on binding to amyloid deposits, whereas chemically homogeneous pentameric formic thiophene acetic acid emitted green-yellow fluorescence. The geometry of LCPs modulates the spectral composition of the emitted light, thereby reporting ligand-induced steric changes. Accordingly, a screen of PTAA-stained amyloid deposits in histological tissue arrays revealed striking spectral differences between specimens. Blinded cluster assignments of spectral profiles of tissue samples from 108 tissue samples derived from 96 patients identified three nonoverlapping classes, which were found to match AA, AL, and ATTR immunotyping. We conclude that LCP spectroscopy is a sensitive and powerful tool for identifying and characterizing amyloid deposits.
Collapse
Affiliation(s)
- K Peter R Nilsson
- Institute of Neuropathology, Department of Pathology, University Hospital of Zurich,CH-8091 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|