1
|
Jégado B, Kashanchi F, Dutartre H, Mahieux R. STLV-1 as a model for studying HTLV-1 infection. Retrovirology 2019; 16:41. [PMID: 31843020 PMCID: PMC6915939 DOI: 10.1186/s12977-019-0503-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/07/2019] [Indexed: 01/17/2023] Open
Abstract
Few years after HTLV-1 identification and isolation in humans, STLV-1, its simian counterpart, was discovered. It then became clear that STLV-1 is present almost in all simian species. Subsequent molecular epidemiology studies demonstrated that, apart from HTLV-1 subtype A, all human subtypes have a simian homolog. As HTLV-1, STLV-1 is the etiological agent of ATL, while no case of TSP/HAM has been described. Given its similarities with HTLV-1, STLV-1 represents a unique tool used for performing clinical studies, vaccine studies as well as basic science.
Collapse
Affiliation(s)
- Brice Jégado
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, VA, USA
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France.
| |
Collapse
|
2
|
Cellular Immune Responses against Simian T-Lymphotropic Virus Type 1 Target Tax in Infected Baboons. J Virol 2016; 90:5280-5291. [PMID: 26984729 DOI: 10.1128/jvi.00281-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/12/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED There are currently 5 million to 10 million human T-lymphotropic virus type 1 (HTLV-1)-infected people, and many of them will develop severe complications resulting from this infection. A vaccine is urgently needed in areas where HTLV-1 is endemic. Many vaccines are best tested in nonhuman primate animal models. As a first step in designing an effective HTLV-1 vaccine, we defined the CD8(+) and CD4(+) T cell response against simian T-lymphotropic virus type 1 (STLV-1), a virus closely related to HTLV-1, in olive baboons (Papio anubis). Consistent with persistent antigenic exposure, we observed that STLV-1-specific CD8(+) T cells displayed an effector memory phenotype and usually expressed CD107a, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α). To assess the viral targets of the cellular immune response in STLV-1-infected animals, we used intracellular cytokine staining to detect responses against overlapping peptides covering the entire STLV-1 proteome. Our results show that, similarly to humans, the baboon CD8(+) T cell response narrowly targeted the Tax protein. Our findings suggest that the STLV-1-infected baboon model may recapitulate some of the important aspects of the human response against HTLV-1 and could be an important tool for the development of immune-based therapy and prophylaxis. IMPORTANCE HTLV-1 infection can lead to many different and often fatal conditions. A vaccine deployed in areas of high prevalence might reduce the incidence of HTLV-1-induced disease. Unfortunately, there are very few animal models of HTLV-1 infection useful for testing vaccine approaches. Here we describe cellular immune responses in baboons against a closely related virus, STLV-1. We show for the first time that the immune response against STLV-1 in naturally infected baboons is largely directed against the Tax protein. Similar findings in humans and the sequence similarity between the human and baboon viruses suggest that the STLV-1-infected baboon model might be useful for developing a vaccine against HTLV-1.
Collapse
|
3
|
Modes of transmission of Simian T-lymphotropic Virus Type 1 in semi-captive mandrills (Mandrillus sphinx). Vet Microbiol 2015; 179:155-61. [PMID: 26143560 DOI: 10.1016/j.vetmic.2015.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/30/2015] [Accepted: 06/15/2015] [Indexed: 12/25/2022]
Abstract
Non-human primates (NHPs) often live in inaccessible areas, have cryptic behaviors, and are difficult to follow in the wild. Here, we present a study on the spread of the simian T-lymphotropic Virus Type 1 (STLV-1), the simian counterpart of the human T-lymphotropic virus type 1 (HTLV-1) in a semi-captive mandrill colony. This study combines 28 years of longitudinal monitoring, including behavioral data, with a dynamic mathematical model and Bayesian inference. Three transmission modes were suspected: aggressive, sexual and familial. Our results show that among males, STLV-1 transmission occurs preferentially via aggression. Because of their impressive aggressive behavior male mandrills can easily transmit the virus during fights. On the contrary, sexual activity seems to have little effect. Thus transmission appears to occur primarily via male-male and female-female contact. In addition, for young mandrills, familial transmission appears to play an important role in virus spread.
Collapse
|
4
|
Roussel M, Pontier D, Kazanji M, Ngoubangoye B, Mahieux R, Verrier D, Fouchet D. Quantifying transmission by stage of infection in the field: the example of SIV-1 and STLV-1 infecting mandrills. Am J Primatol 2014; 77:309-18. [PMID: 25296992 DOI: 10.1002/ajp.22346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/17/2014] [Accepted: 09/07/2014] [Indexed: 11/08/2022]
Abstract
The early stage of viral infection is often followed by an important increase of viral load and is generally considered to be the most at risk for pathogen transmission. Most methods quantifying the relative importance of the different stages of infection were developed for studies aimed at measuring HIV transmission in Humans. However, they cannot be transposed to animal populations in which less information is available. Here we propose a general method to quantify the importance of the early and late stages of the infection on micro-organism transmission from field studies. The method is based on a state space dynamical model parameterized using Bayesian inference. It is illustrated by a 28 years dataset in mandrills infected by Simian Immunodeficiency Virus type-1 (SIV-1) and the Simian T-Cell Lymphotropic Virus type-1 (STLV-1). For both viruses we show that transmission is predominant during the early stage of the infection (transmission ratio for SIV-1: 1.16 [0.0009; 18.15] and 9.92 [0.03; 83.8] for STLV-1). However, in terms of basic reproductive number (R0 ), which quantifies the weight of both stages in the spread of the virus, the results suggest that the epidemics of SIV-1 and STLV-1 are mainly driven by late transmissions in this population.
Collapse
Affiliation(s)
- Marion Roussel
- Université de Lyon, F-69000, Lyon ; Université Lyon 1 ; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622 Villeurbanne, France; LabEx ECOFECT - Ecoevolutionary Dynamics of Infectious Diseases, Université de Lyon, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Immunological alterations and associated diseases in mandrills (Mandrillus sphinx) naturally co-infected with SIV and STLV. Virology 2014; 454-455:184-96. [DOI: 10.1016/j.virol.2014.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/16/2014] [Accepted: 02/18/2014] [Indexed: 12/11/2022]
|
6
|
Greenwood EJD, Schmidt F, Liégeois F, Kondova I, Herbert A, Ngoubangoye B, Rouet F, Heeney JL. Loss of memory CD4+ T-cells in semi-wild mandrills (Mandrillus sphinx) naturally infected with species-specific simian immunodeficiency virus SIVmnd-1. J Gen Virol 2013; 95:201-212. [PMID: 24214347 PMCID: PMC3917062 DOI: 10.1099/vir.0.059808-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection is found in a number of African primate species and is thought to be generally non-pathogenic. However, studies of wild primates are limited to two species, with SIV infection appearing to have a considerably different outcome in each. Further examination of SIV-infected primates exposed to their natural environment is therefore warranted. We performed a large cross-sectional study of a cohort of semi-wild mandrills with naturally occurring SIV infection, including 39 SIV-negative and 33 species-specific SIVmnd-1-infected animals. This study was distinguished from previous reports by considerably greater sample size, examination of exclusively naturally infected animals in semi-wild conditions and consideration of simian T-lymphotropic virus (STLV) status in addition to SIVmnd-1 infection. We found that SIVmnd-1 infection was associated with a significant and progressive loss of memory CD4+ T-cells. Limited but significant increases in markers of immune activation in the T-cell populations, significant increases in plasma neopterin and changes to B-cell subsets were also observed in SIV-infected animals. However, no increase in plasma soluble CD14 was observed. Histological examination of peripheral lymph nodes suggested that SIVmnd-1 infection was not associated with a significant disruption of the lymph node architecture. Whilst this species has evolved numerous strategies to resist the development of AIDS, significant effects of SIV infection could be observed when examined in a natural environment. STLVmnd-1 infection also had significant effects on some markers relevant to understanding SIV infection and thus should be considered in studies of SIV infection of African primates where present.
Collapse
Affiliation(s)
- Edward J D Greenwood
- University of Cambridge, Department of Veterinary Medicine, Cambridge CB3 0ES, UK
| | - Fabian Schmidt
- University of Cambridge, Department of Veterinary Medicine, Cambridge CB3 0ES, UK
| | - Florian Liégeois
- Institut de Recherches pour le Développement, UMI 233, Montpellier, BP64501, France.,Centre International de Recherches Médicales de Franceville, Laboratoire de Rétrovirologie, Franceville, BP769, Gabon
| | - Ivanela Kondova
- Biomedical Primate Research Centre, Division of Pathology and Microbiology, Rijswijk 2288 GJ, The Netherlands
| | - Anaïs Herbert
- Centre International de Recherches Médicales de Franceville, Centre de Primatologie, Franceville, BP769, Gabon
| | - Barthelemy Ngoubangoye
- Centre International de Recherches Médicales de Franceville, Centre de Primatologie, Franceville, BP769, Gabon
| | - François Rouet
- Institut Pasteur du Cambodge, Unité VIH/Hépatites, 5 Boulevard Monivong, BP 983 Phnom-Penh, Cambodia.,Centre International de Recherches Médicales de Franceville, Laboratoire de Rétrovirologie, Franceville, BP769, Gabon
| | - Jonathan L Heeney
- University of Cambridge, Department of Veterinary Medicine, Cambridge CB3 0ES, UK
| |
Collapse
|
7
|
d'Offay JM, Eberle R, Wolf RF, Kosanke SD, Doocy KR, Ayalew S, Mansfeild KG, White GL. Simian T-lymphotropic Virus-associated lymphoma in 2 naturally infected baboons: T-cell clonal expansion and immune response during tumor development. Comp Med 2013; 63:288-294. [PMID: 23759532 PMCID: PMC3690435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 12/20/2012] [Accepted: 01/09/2013] [Indexed: 06/02/2023]
Abstract
Two young female baboons naturally infected with simian T-lymphotropic virus type 1 (STLV1) were euthanized due to chronic respiratory disease that was unresponsive to treatment. Massive lymphocytic infiltration of the lung interstitium suggested a diagnosis of STLV-associated lymphoma. In each case, the diagnosis was confirmed through inverse PCR (IPCR) that detected monoclonally integrated STLV1 provirus in cellular DNA extracted from lymphoma tissue and peripheral blood cells (PBC). One dominant STLV1-infected T-cell clone and 3 minor clones were detected in PBC from each baboon. Using archived PBC DNA and primers within the proviral genome and chromosomal DNA flanking the STLV1 integration sites in PCR analyses, we determined that the dominant clone in one baboon had first appeared approximately 8 mo after infection and had circulated for 4 y before clinical disease developed. ELISA testing of archived serum revealed that both baboons seroconverted to the p19 and p24 gag proteins and the envelope gp46 protein but not to the viral tax protein. Titers to p24 and gp46 rose significantly after infection and remained relatively constant until death, whereas titers to p19 increased with time. Although spontaneous STLV1-associated lymphomas have been described in baboons, the STLV1-associated lymphomas described here occurred in 2 relatively young baboons, both of whom had become infected with STLV at 3 to 4 y of age and developed lymphoma within 5 y of infection.
Collapse
Affiliation(s)
- Jean M d'Offay
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Yee JL, Montiel NA, Ardeshir A, Lerche NW. Constitutive release of IFNγ and IL2 from peripheral blood mononuclear cells of rhesus macaques (Macaca mulatta) infected with simian T-lymphotropic virus type 1. Comp Med 2013; 63:508-514. [PMID: 24326227 PMCID: PMC3866988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/04/2013] [Accepted: 04/18/2013] [Indexed: 06/03/2023]
Abstract
Simian T-cell lymphotropic viruses (STLV), the nonhuman primate counterparts of human T-cell lymphotropic viruses (HTLV), are endemic in many populations of African and Asian monkeys and apes. Although an etiologic link between STLV1 infection and lymphoproliferative disorders such as malignant lymphomas has been suggested in some nonhuman primate species, most STLV infections are inapparent, and infected animals remain clinically healthy. The retroviral transactivator, tax, is well known to increase transcription of viral and cellular genes, resulting in altered cytokine profiles. This study compared the cytokine profiles of peripheral blood mononuclear cell (PBMC) cultures from 25 STLV1-seropositive rhesus macaques (Macaca mulatta) with those of age- and sex-matched seronegative controls. IFNγ, TNFα, IL10, and IL2 levels in unstimulated PBMC culture supernatants were measured at 24, 48, and 72 h by using enzyme immunoassays. IFNγ concentrations were found significantly higher in the supernatants of PBMC cultures of seropositive monkeys as compared with seronegative controls. In addition, although IL2 concentrations were not significantly elevated in the supernatants of PBMC cultures of all seropositive monkeys as compared with all seronegative controls, IL2 levels were increased in a subset of 5 pairs. Increased constitutive cytokine release occurred in the absence of spontaneous proliferation. The increased constitutive release of IFNγ and IL2 suggests that STLV1 alters immune functions in infected but clinically healthy rhesus macaques and further characterizes STLV1 infection of rhesus macaques as a potential model for human HTLV1 infection.
Collapse
Affiliation(s)
- JoAnn L Yee
- Pathogen Detection Laboratory, California National Primate Research Center, University of California, Davis, California, USA.
| | | | | | | |
Collapse
|
9
|
Zhu L, Han JB, Zhang XH, Ma JP, Lv LB, Zhang GH, Zheng YT. [Epidemiological survey of a captive Chinese rhesus macaque breeding colony in Yunnan for SRV, STLV and BV]. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2012; 33:49-54. [PMID: 22345008 DOI: 10.3724/sp.j.1141.2012.01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nonhuman primates are critical resources for biomedical research. Rhesus macaque is a popularly used laboratory nonhuman primate that share many characteristics with humans. However, rhesus macaques are the natural host of two exogenous retroviruses, SRV (simian type D retrovirus) and STLV (simian T lymphotropic virus). SRV and STLV may introduce potentially significant confounding factors into the study of AIDS model. Moreover, B virus (ceropithecine herpesvirus 1) is likely to harm not only rhesus macaque but also humans in experiments involving rhesus macaque. Yunnan province has large-scale breeding colonies of Chinese rhesus macaque. Therefore there is an urgent need for SPF Chinese rhesus macaque colonies. Here we investigated SRV, STLV and BV infections in 411 Chinese rhesus macaque by PCR technique. The results showed that the prevalence of SRV, STLV and BV among Chinese rhesus macaque breeding colony was 19.71% (81/411), 13.38% (55/411) and 23.11% (95/411), respectively. Comparison of viruses infection in different age-groups and male/female of Chinese rhesus macaque was also analyzed. This study will contribute to establishment of SPF Chinese rhesus macaque breeding colony.
Collapse
Affiliation(s)
- Lin Zhu
- Chinese Academy of Sciences, Kunming, China
| | | | | | | | | | | | | |
Collapse
|
10
|
Mouinga-Ondémé A, Betsem E, Caron M, Makuwa M, Sallé B, Renault N, Saib A, Telfer P, Marx P, Gessain A, Kazanji M. Two distinct variants of simian foamy virus in naturally infected mandrills (Mandrillus sphinx) and cross-species transmission to humans. Retrovirology 2010; 7:105. [PMID: 21156043 PMCID: PMC3009703 DOI: 10.1186/1742-4690-7-105] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 12/14/2010] [Indexed: 12/30/2022] Open
Abstract
Background Each of the pathogenic human retroviruses (HIV-1/2 and HTLV-1) has a nonhuman primate counterpart, and the presence of these retroviruses in humans results from interspecies transmission. The passage of another simian retrovirus, simian foamy virus (SFV), from apes or monkeys to humans has been reported. Mandrillus sphinx, a monkey species living in central Africa, is naturally infected with SFV. We evaluated the natural history of the virus in a free-ranging colony of mandrills and investigated possible transmission of mandrill SFV to humans. Results We studied 84 semi-free-ranging captive mandrills at the Primate Centre of the Centre International de Recherches Médicales de Franceville (Gabon) and 15 wild mandrills caught in various areas of the country. The presence of SFV was also evaluated in 20 people who worked closely with mandrills and other nonhuman primates. SFV infection was determined by specific serological (Western blot) and molecular (nested PCR of the integrase region in the polymerase gene) assays. Seropositivity for SFV was found in 70/84 (83%) captive and 9/15 (60%) wild-caught mandrills and in 2/20 (10%) humans. The 425-bp SFV integrase fragment was detected in peripheral blood DNA from 53 captive and 8 wild-caught mandrills and in two personnel. Sequence and phylogenetic studies demonstrated the presence of two distinct strains of mandrill SFV, one clade including SFVs from mandrills living in the northern part of Gabon and the second consisting of SFV from animals living in the south. One man who had been bitten 10 years earlier by a mandrill and another bitten 22 years earlier by a macaque were found to be SFV infected, both at the Primate Centre. The second man had a sequence close to SFVmac sequences. Comparative sequence analysis of the virus from the first man and from the mandrill showed nearly identical sequences, indicating genetic stability of SFV over time. Conclusion Our results show a high prevalence of SFV infection in a semi-free-ranging colony of mandrills, with the presence of two different strains. We also showed transmission of SFV from a mandrill and a macaque to humans.
Collapse
Affiliation(s)
- Augustin Mouinga-Ondémé
- Unité de Rétrovirologie, Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|