1
|
Bao K, Yoon JS, Ahn S, Lee JH, Cross CJ, Jeong MY, Frangioni JV, Choi HS. A robotic system for automated chemical synthesis of therapeutic agents. MATERIALS ADVANCES 2024; 5:5290-5297. [PMID: 38894709 PMCID: PMC11181120 DOI: 10.1039/d4ma00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The development of novel compounds for tissue-specific targeting and imaging is often impeded by a lack of lead compounds and the availability of reliable chemistry. Automated chemical synthesis systems provide a potential solution by enabling reliable, repeated access to large compound libraries for screening. Here we report an integrated solid-phase combinatorial chemistry system created using commercial and customized robots. Our goal is to optimize reaction parameters, such as varying temperature, shaking, microwave irradiation, aspirating and dispensing large-sized solid beads, and handling different washing solvents for separation and purification. This automated system accommodates diverse chemical reactions such as peptide synthesis and conventional coupling reactions. To confirm its functionality and reproducibility, 20 nerve-specific contrast agents for biomedical imaging were systematically and repeatedly synthesized and compared to other nerve-targeted agents using molecular fingerprinting and Uniform Manifold Approximation and Projection, which lays the foundation for creating reliable and reproductive chemical libraries in bioimaging and nanomedicine.
Collapse
Affiliation(s)
- Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School Boston MA 02114 USA
- Center for Molecular Imaging, Department of Medicine, Beth Israel Deaconess Medical Center Boston MA 02215 USA
| | - Jong Seo Yoon
- Center for Molecular Imaging, Department of Medicine, Beth Israel Deaconess Medical Center Boston MA 02215 USA
| | - Sung Ahn
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School Boston MA 02114 USA
| | - Jeong Heon Lee
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School Boston MA 02114 USA
- Center for Molecular Imaging, Department of Medicine, Beth Israel Deaconess Medical Center Boston MA 02215 USA
| | - Conor J Cross
- Center for Molecular Imaging, Department of Medicine, Beth Israel Deaconess Medical Center Boston MA 02215 USA
| | - Myung Yung Jeong
- Center for Molecular Imaging, Department of Medicine, Beth Israel Deaconess Medical Center Boston MA 02215 USA
- Department of Cogno-Mechatronics Engineering, Pusan National University Busan 46241 South Korea
| | - John V Frangioni
- Center for Molecular Imaging, Department of Medicine, Beth Israel Deaconess Medical Center Boston MA 02215 USA
- Curadel, LLC Natick MA 01760 USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School Boston MA 02114 USA
- Center for Molecular Imaging, Department of Medicine, Beth Israel Deaconess Medical Center Boston MA 02215 USA
| |
Collapse
|
2
|
Martínez
Ceron MC, Ávila L, Giudicessi SL, Minoia JM, Fingermann M, Camperi SA, Albericio F, Cascone O. Fully Automated Screening of a Combinatorial Library to Avoid False Positives: Application to Tetanus Toxoid Ligand Identification. ACS OMEGA 2021; 6:18756-18762. [PMID: 34337215 PMCID: PMC8319927 DOI: 10.1021/acsomega.1c01814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/02/2021] [Indexed: 05/12/2023]
Abstract
Peptide ligands are widely used in protein purification by affinity chromatography. Here, we applied a fully automated two-stage library screening method that avoids false positive peptidyl-bead selection and applied it to tetanus toxoid purification. The first library screening was performed using only sulforhodamine (a fluorescent dye), and fluorescent beads were isolated automatically by flow cytometry and discarded. A second screening was then performed with the rest of the library, using the target protein (tetanus toxoid)-rhodamine conjugate. This time, fluorescent beads were isolated, and peptide sequences were identified by matrix-assisted laser desorption/ionization tandem mass spectrometry. Those appearing with greater frequency were synthesized and immobilized on agarose to evaluate a range of chromatographic purification conditions. The affinity matrix PTx1-agarose (Ac-Leu-Arg-Val-Tyr-His-Gly-Gly-Ala-Gly-Lys-agarose) showed the best performance when 20 mM sodium phosphate, 0.05% Tween 20, pH 5.9 as adsorption buffer and 100 mM Tris-HCl, 100 mM NaCl, pH 8.0 as elution buffer were used. A pure tetanus toxoid (Ttx) was loaded on a chromatographic column filled with the PTx1 matrix, and 96% adsorption was achieved, with a K d of 9.18 ± 0.07 nmol/L and a q m of 1.31 ± 0.029 μmol Ttx/mL matrix. Next, a Clostridium tetani culture supernatant treated with formaldehyde (to obtain the toxoid) was applied as a sample. The sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis showed a band, identified by electrospray ionization mass spectrometry as the Ttx, that appeared only in the elution fraction, where an S-layer protein was also detected.
Collapse
Affiliation(s)
- María C. Martínez
Ceron
- Facultad
de Farmacia y Bioquímica, Cátedra de Biotecnología, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
- Instituto
de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Junín 956, 1113 Buenos
Aires, Argentina
- . Tel.: +54 11
5287-4671
| | - Lucía Ávila
- Instituto
Nacional de Producción de Biológicos, ANLIS “Dr.
Carlos G. Malbrán”, Av. Vélez Sársfield 563, 1282 Buenos Aires, Argentina
| | - Silvana L. Giudicessi
- Facultad
de Farmacia y Bioquímica, Cátedra de Biotecnología, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
- Instituto
de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Junín 956, 1113 Buenos
Aires, Argentina
| | - Juan M. Minoia
- Facultad
de Farmacia y Bioquímica, Cátedra de Biotecnología, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
- Instituto
de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Junín 956, 1113 Buenos
Aires, Argentina
| | - Matías Fingermann
- Instituto
Nacional de Producción de Biológicos, ANLIS “Dr.
Carlos G. Malbrán”, Av. Vélez Sársfield 563, 1282 Buenos Aires, Argentina
- CONICET, Godoy Cruz
2290, 1425 Buenos
Aires, Argentina
| | - Silvia A. Camperi
- Facultad
de Farmacia y Bioquímica, Cátedra de Biotecnología, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
- Instituto
de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Junín 956, 1113 Buenos
Aires, Argentina
| | - Fernando Albericio
- Institute
for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine,
Department of Organic Chemistry, University
of Barcelona, 08028 Barcelona, Spain
- School
of Chemistry & Physics, University of
Kwazulu-Natal, 4001 Durban, South Africa
| | - Osvaldo Cascone
- Facultad
de Farmacia y Bioquímica, Cátedra de Biotecnología, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina
- Instituto
de Nanobiotecnología (NANOBIOTEC), Universidad de Buenos Aires (UBA) - Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Junín 956, 1113 Buenos
Aires, Argentina
- Instituto
Nacional de Producción de Biológicos, ANLIS “Dr.
Carlos G. Malbrán”, Av. Vélez Sársfield 563, 1282 Buenos Aires, Argentina
| |
Collapse
|
3
|
Hu H, Nikitin S, Berthelsen AB, Diness F, Schoffelen S, Meldal M. Sustainable Flow Synthesis of Encoded Beads for Combinatorial Chemistry and Chemical Biology. ACS COMBINATORIAL SCIENCE 2018; 20:492-498. [PMID: 29969235 DOI: 10.1021/acscombsci.8b00052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Monosized beads of polar resins were synthesized for combinatorial chemistry and chemical biology by sustainable microchannel flow synthesis. Regular, biocompatible, and optically encoded beads could be efficiently prepared on large scale and in high yield. In a preparative flow polymerization instrument, taking advantage of a designed T-connector for droplet formation, quality beads were synthesized with accurate size control using a minimal amount of recirculating silicon oil as suspension medium. Bead-size was controlled through shear imposed by the silicon oil flow rate. This process provided 86% yield of ∼500 μm macrobeads beads within a 20 μm size range with no deformities or vacuoles, ideally suited for combinatorial chemistry and protein binding studies. The simple flow equipment consisted of a syringe pump for monomer and initiator delivery, a T-connector, a gear pump for oil recirculation, a long, heated coil of Teflon tubing and a collector syringe. The method was used for preparation of PEGA1900 beads, optically encoded with fluorescent microparticles. The microparticle matrix (MPM) encoded beads were tested in a MPM-decoder showing excellent recognition in bead decoding.
Collapse
Affiliation(s)
- Hongxia Hu
- Center for Evolutionary Chemical Biology, Department of Chemistry University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Sergei Nikitin
- Center for Evolutionary Chemical Biology, Department of Chemistry University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Adam Bjørnholdt Berthelsen
- Center for Evolutionary Chemical Biology, Department of Chemistry University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Frederik Diness
- Center for Evolutionary Chemical Biology, Department of Chemistry University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Sanne Schoffelen
- Center for Evolutionary Chemical Biology, Department of Chemistry University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Morten Meldal
- Center for Evolutionary Chemical Biology, Department of Chemistry University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Kondasinghe TD, Saraha HY, Odeesho SB, Stockdill JL. Direct palladium-mediated on-resin disulfide formation from Allocam protected peptides. Org Biomol Chem 2017; 15:2914-2918. [PMID: 28327729 PMCID: PMC5475270 DOI: 10.1039/c7ob00536a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of disulfide-containing polypeptides represents a long-standing challenge in peptide chemistry, and broadly applicable methods for the construction of disulfides are in constant demand. Few strategies exist for on-resin formation of disulfides directly from their protected counterparts. We present herein a novel strategy for the on-resin construction of disulfides directly from Allocam-protected cysteines. Our palladium-mediated approach is mild and uses readily available reagents, requiring no special equipment. No reduced peptide intermediates or S-allylated products are observed, and no residual palladium can be detected in the final products. The utility of this method is demonstrated through the synthesis of the C-carboxy analog of oxytocin.
Collapse
Affiliation(s)
| | - Hasina Y Saraha
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | - Samantha B Odeesho
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
5
|
Cheng X, Zhu T, Hong H, Zhou Z, Wu Z. Sortase A-mediated on-resin peptide cleavage and in situ ligation: an efficient one-pot strategy for the synthesis of functional peptides and proteins. Org Chem Front 2017. [DOI: 10.1039/c7qo00481h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A one-pot approach combining Sortase A mediated on-resin peptide cleavage, activation and in situ ligation was developed and was employed to synthesize dual functional peptides, modify peptides with lipid, biotin and PEG, as well as protein N-terminal labeling in high efficiency.
Collapse
Affiliation(s)
- Xiaozhong Cheng
- Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Tao Zhu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| |
Collapse
|
6
|
St-Pierre JF, Karttunen M, Mousseau N, Róg T, Bunker A. Use of Umbrella Sampling to Calculate the Entrance/Exit Pathway for Z-Pro-Prolinal Inhibitor in Prolyl Oligopeptidase. J Chem Theory Comput 2011; 7:1583-94. [PMID: 26596426 DOI: 10.1021/ct1007058] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Prolyl oligopeptidase (POP), a member of the prolyl endopeptidase family, is known to play a role in several neurological disorders. Its primary function is to cleave a wide range of small oligopeptides, including neuroactive peptides. We have used force biased molecular dynamics simulation to study the binding mechanism of POP. We examined three possible binding pathways using Steered Molecular Dynamics (SMD) and Umbrella Sampling (US) on a crystal structure of porcine POP with bound Z-pro-prolinal (ZPP). Using SMD, an exit pathway between the first and seventh blade of the β-propeller domain of POP was found to be a nonviable route. US on binding pathways through the β-propeller tunnel and the TYR190-GLN208 flexible loop at the interface between both POP domains allowed us to isolate the flexible loop pathway as the most probable. Further analysis of that pathway suggests a long-range covariation of the interdomain H-bond network, which indicates the possibility of large-scale domain reorientation observed in bacterial homologues and hypothesized to also occur in human POP.
Collapse
Affiliation(s)
- Jean-François St-Pierre
- Département de Physique and Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal , C.P. 6128, succursale centre-ville, Montréal (Québec), Canada H3C 3J7
| | - Mikko Karttunen
- Department of Applied Mathematics, The University of Western Ontario , 1151 Richmond Street North, London (Ontario), Canada N6A 5B7
| | - Normand Mousseau
- Département de Physique and Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal , C.P. 6128, succursale centre-ville, Montréal (Québec), Canada H3C 3J7
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI-33101 Tampere, Finland
| | - Alex Bunker
- Centre for Drug Research, Faculty of Pharmacy, University of Helsinki , P.O. Box 56, FI-00014, University of Helsinki, Finland.,Department of Chemistry, Aalto University , PO Box 6100, FI-02015, Aalto, Finland
| |
Collapse
|