1
|
Living in mixed species groups promotes predator learning in degraded habitats. Sci Rep 2021; 11:19335. [PMID: 34588494 PMCID: PMC8481234 DOI: 10.1038/s41598-021-98224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/17/2021] [Indexed: 11/08/2022] Open
Abstract
Living in mix-species aggregations provides animals with substantive anti-predator, foraging and locomotory advantages while simultaneously exposing them to costs, including increased competition and pathogen exposure. Given each species possess unique morphology, competitive ability, parasite vulnerability and predator defences, we can surmise that each species in mixed groups will experience a unique set of trade-offs. In addition to this unique balance, each species must also contend with anthropogenic changes, a relatively new, and rapidly increasing phenomenon, that adds further complexity to any system. This complex balance of biotic and abiotic factors is on full display in the exceptionally diverse, yet anthropogenically degraded, Great Barrier Reef of Australia. One such example within this intricate ecosystem is the inability of some damselfish to utilize their own chemical alarm cues within degraded habitats, leaving them exposed to increased predation risk. These cues, which are released when the skin is damaged, warn nearby individuals of increased predation risk and act as a crucial associative learning tool. Normally, a single exposure of alarm cues paired with an unknown predator odour facilitates learning of that new odour as dangerous. Here, we show that Ambon damselfish, Pomacentrus amboinensis, a species with impaired alarm responses in degraded habitats, failed to learn a novel predator odour as risky when associated with chemical alarm cues. However, in the same degraded habitats, the same species learned to recognize a novel predator as risky when the predator odour was paired with alarm cues of the closely related, and co-occurring, whitetail damselfish, Pomacentrus chrysurus. The importance of this learning opportunity was underscored in a survival experiment which demonstrated that fish in degraded habitats trained with heterospecific alarm cues, had higher survival than those we tried to train with conspecific alarm cues. From these data, we conclude that redundancy in learning mechanisms among prey guild members may lead to increased stability in rapidly changing environments.
Collapse
|
2
|
Palacios MDM, McCormick MI. Positive indirect effects of top‐predators on the behaviour and survival of juvenile fishes. OIKOS 2020. [DOI: 10.1111/oik.07731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria del Mar Palacios
- ARC Centre of Excellence for Coral Reef Studies, James Cook Univ. Townsville Queensland Australia
- School of Life and Environmental Sciences, Deakin Univ. Victoria Australia
| | - Mark I. McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook Univ. Townsville Queensland Australia
| |
Collapse
|
3
|
McCormick MI, Chivers DP, Ferrari MCO, Blandford MI, Nanninga GB, Richardson C, Fakan EP, Vamvounis G, Gulizia AM, Allan BJM. Microplastic exposure interacts with habitat degradation to affect behaviour and survival of juvenile fish in the field. Proc Biol Sci 2020; 287:20201947. [PMID: 33109008 DOI: 10.1098/rspb.2020.1947] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coral reefs are degrading globally due to increased environmental stressors including warming and elevated levels of pollutants. These stressors affect not only habitat-forming organisms, such as corals, but they may also directly affect the organisms that inhabit these ecosystems. Here, we explore how the dual threat of habitat degradation and microplastic exposure may affect the behaviour and survival of coral reef fish in the field. Fish were caught prior to settlement and pulse-fed polystyrene microplastics six times over 4 days, then placed in the field on live or dead-degraded coral patches. Exposure to microplastics or dead coral led fish to be bolder, more active and stray further from shelter compared to control fish. Effect sizes indicated that plastic exposure had a greater effect on behaviour than degraded habitat, and we found no evidence of synergistic effects. This pattern was also displayed in their survival in the field. Our results highlight that attaining low concentrations of microplastic in the environment will be a useful management strategy, since minimizing microplastic intake by fishes may work concurrently with reef restoration strategies to enhance the resilience of coral reef populations.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon SK S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon SK S7 W 5B4, Canada
| | - Makeely I Blandford
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Gerrit B Nanninga
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK.,Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Celia Richardson
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | - Eric P Fakan
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - George Vamvounis
- College of Sciences and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Alexandra M Gulizia
- College of Sciences and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Bridie J M Allan
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
Habitat degradation and predators have independent trait-mediated effects on prey. Sci Rep 2019; 9:15705. [PMID: 31673067 PMCID: PMC6823502 DOI: 10.1038/s41598-019-51798-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/07/2019] [Indexed: 11/13/2022] Open
Abstract
Coral reefs are degrading globally leading to a catastrophic loss of biodiversity. While shifts in the species composition of communities have been well documented associated with habitat change, the mechanisms that underlie change are often poorly understood. Our study experimentally examines the effects of coral degradation on the trait-mediated effects of predators on the morphology, behaviour and performance of a juvenile coral reef fish. Juvenile damselfish were exposed to predators or controls (omnivore or nothing) in seawater that had flowed over either live or dead-degraded coral over a 45d period. No interaction between water source and predator exposure was found. However, fish exposed to degraded water had larger false eyespots relative to the size of their true eyes, and were more active, both of which may lead to a survival advantage. Non-consumptive effects of predators on prey occurred regardless of water source and included longer and deeper bodies, large false eyespots that may distract predator strikes away from the vulnerable head region, and shorter latencies in their response to a simulated predator strike. Research underscores that phenotypic plasticity may assist fishes in coping with habitat degradation and promote greater resilience to habitat change than may otherwise be predicted.
Collapse
|
5
|
Warren DT, McCormick MI. Intrageneric differences in the effects of acute temperature exposure on competitive behaviour of damselfishes. PeerJ 2019; 7:e7320. [PMID: 31346499 PMCID: PMC6642626 DOI: 10.7717/peerj.7320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 12/01/2022] Open
Abstract
Projected increases in global temperatures brought on by climate change threaten to disrupt many biological and ecological processes. Tropical ectotherms, like many fishes, can be particularly susceptible to temperature change as they occupy environments with narrow thermal fluctuations. While climate change models predict temperatures to increase over decades, thermal fluctuations are already experienced on a seasonal scale, which may affect the ability to capture and defend resources across a thermal gradient. For coral reef fish, losers of competitive interactions are often more vulnerable to predation, and this pressure is strongest just after settlement. Competitive interactions may determine future success for coral reef fishes, and understanding how temperature experienced during settlement can influence such interactions will give insight to community dynamics in a future warmer world. We tested the effect of increased temperatures on intraspecific competitive interactions of two sympatric species of reef damselfish, the blue damselfish Pomacentrus nagasakiensis, and the whitetail damselfish Pomacentrus chrysurus. Juvenile fishes were exposed to one of four temperature treatments, ranging from 26–32 °C, for seven days then placed into competitive arenas where aggressive interactions were recorded between sized matched individuals within each species. While there was no apparent effect of temperature treatment on aggressive behaviour for P. chrysurus, we observed up to a four-fold increase in aggression scores for P. nagasakiensis with increasing temperature. Results suggest that temperature experienced as juveniles can impact aggressive behaviour; however, species-specific thermal tolerances led to behavioural affects that differ among closely related species. Differential thermal tolerance among species may cause restructuring of the interaction network that underlies the structure of reef assemblages.
Collapse
Affiliation(s)
- Donald T Warren
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Mark I McCormick
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
6
|
McCormick MI, Ferrari MC, Fakan EP, Barry RP, Chivers DP. Diet cues and their utility for risk assessment in degraded habitats. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Chivers DP, McCormick MI, Fakan EP, Barry RP, Edmiston JW, Ferrari MCO. Coral degradation alters predator odour signatures and influences prey learning and survival. Proc Biol Sci 2019; 286:20190562. [PMID: 31138070 DOI: 10.1098/rspb.2019.0562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Habitat degradation is a key factor leading to the global loss of biodiversity. This problem is particularly acute in coral reef ecosystems. We investigated whether recognition of predator odours by damselfish was influenced by coral degradation and whether these changes altered survival in the wild. We taught whitespot damselfish to recognize the odour of a predator in the presence of live/healthy coral or dead/degraded coral. Fish were tested for a response to predator odours in environments that matched their conditioning environment or in environments that were mismatched. Next, we taught blue damselfish to recognize the odour of three common reef predators in live and degraded coral environments and then stocked them onto live or degraded patch reefs, where we monitored their subsequent response to predator odour along with their survival. Damselfish learned to recognize predator odours in both coral environments, but the intensity of their antipredator response was much greater when the conditioning and test environments matched. Fish released on degraded coral had about 50% higher survival if they had been trained in the presence of degraded coral rather than live coral. Altering the intensity of antipredator responses could have rather profound consequences on population growth.
Collapse
Affiliation(s)
- D P Chivers
- 1 Department of Biology, University of Saskatchewan , Saskatoon, Saskatchewan, Canada S7N 5E2
| | - M I McCormick
- 2 ARC Centre of Excellence for Coral Reef Studies, and College of Marine & Environmental Sciences, James Cook University , Townsville, Queensland 4811 , Australia
| | - E P Fakan
- 2 ARC Centre of Excellence for Coral Reef Studies, and College of Marine & Environmental Sciences, James Cook University , Townsville, Queensland 4811 , Australia
| | - R P Barry
- 2 ARC Centre of Excellence for Coral Reef Studies, and College of Marine & Environmental Sciences, James Cook University , Townsville, Queensland 4811 , Australia
| | - J W Edmiston
- 2 ARC Centre of Excellence for Coral Reef Studies, and College of Marine & Environmental Sciences, James Cook University , Townsville, Queensland 4811 , Australia
| | - M C O Ferrari
- 3 Department of Biomedical Sciences, WCVM, University of Saskatchewan , Saskatoon, Saskatchewan, Canada S7W 5B4
| |
Collapse
|
8
|
The cost of carryover effects in a changing environment: context-dependent benefits of a behavioural phenotype in a coral reef fish. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Ferrari MCO, McCormick MI, Meekan MG, Simpson SD, Nedelec SL, Chivers DP. School is out on noisy reefs: the effect of boat noise on predator learning and survival of juvenile coral reef fishes. Proc Biol Sci 2019; 285:rspb.2018.0033. [PMID: 29386370 DOI: 10.1098/rspb.2018.0033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 01/30/2023] Open
Abstract
Noise produced by anthropogenic activities is increasing in many marine ecosystems. We investigated the effect of playback of boat noise on fish cognition. We focused on noise from small motorboats, since its occurrence can dominate soundscapes in coastal communities, the number of noise-producing vessels is increasing rapidly and their proximity to marine life has the potential to cause deleterious effects. Cognition-or the ability of individuals to learn and remember information-is crucial, given that most species rely on learning to achieve fitness-promoting tasks, such as finding food, choosing mates and recognizing predators. The caveat with cognition is its latent effect: the individual that fails to learn an important piece of information will live normally until the moment where it needs the information to make a fitness-related decision. Such latent effects can easily be overlooked by traditional risk assessment methods. Here, we conducted three experiments to assess the effect of boat noise playbacks on the ability of fish to learn to recognize predation threats, using a common, conserved learning paradigm. We found that fish that were trained to recognize a novel predator while being exposed to 'reef + boat noise' playbacks failed to subsequently respond to the predator, while their 'reef noise' counterparts responded appropriately. We repeated the training, giving the fish three opportunities to learn three common reef predators, and released the fish in the wild. Those trained in the presence of 'reef + boat noise' playbacks survived 40% less than the 'reef noise' controls over our 72 h monitoring period, a performance equal to that of predator-naive fish. Our last experiment indicated that these results were likely due to failed learning, as opposed to stress effects from the sound exposure. Neither playbacks nor real boat noise affected survival in the absence of predator training. Our results indicate that boat noise has the potential to cause latent effects on learning long after the stressor has gone.
Collapse
Affiliation(s)
- Maud C O Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Drive, Saskatoon, Canada
| | - Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Mark G Meekan
- Australian Institute of Marine Science, c/o UWA OI (MO96), 35 Stirling Hwy, Crawley, Western Australia, Australia
| | - Stephen D Simpson
- College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Sophie L Nedelec
- College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, UK.,School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Canada
| |
Collapse
|
10
|
Loss of live coral compromises predator-avoidance behaviour in coral reef damselfish. Sci Rep 2018; 8:7795. [PMID: 29773843 PMCID: PMC5958076 DOI: 10.1038/s41598-018-26090-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/19/2018] [Indexed: 11/09/2022] Open
Abstract
Tropical reefs have experienced an unprecedented loss of live coral in the past few decades and the biodiversity of coral-dependent species is under threat. Many reef fish species decline in abundance as coral cover is lost, yet the mechanisms responsible for these losses are largely unknown. A commonly hypothesised cause of fish decline is the loss of shelter space between branches as dead corals become overgrown by algae. Here we tested this hypothesis by quantifying changes in predator-avoidance behaviour of a common damselfish, Pomacentrus moluccensis, before and after the death of their coral colony. Groups of P. moluccensis were placed on either healthy or degraded coral colonies, startled using a visual stimulus and their sheltering responses compared over a 7-week period. P. moluccensis stopped sheltering amongst the coral branches immediately following the death of the coral, despite the presence of ample shelter space. Instead, most individuals swam away from the dead coral, potentially increasing their exposure to predators. It appears that the presence of live coral rather than shelter per se is the necessary cue that elicits the appropriate behavioural response to potential predators. The disruption of this link poses an immediate threat to coral-associated fishes on degrading reefs.
Collapse
|
11
|
Hamilton SL. From a sea of phenotypic traits, fast reaction and boldness emerge as the most influential to survival in marine fish. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
McCormick MI, Allan BJM, Harding H, Simpson SD. Boat noise impacts risk assessment in a coral reef fish but effects depend on engine type. Sci Rep 2018; 8:3847. [PMID: 29497097 PMCID: PMC5832755 DOI: 10.1038/s41598-018-22104-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/16/2018] [Indexed: 11/09/2022] Open
Abstract
Human noise pollution has increased markedly since the start of industrialization and there is international concern about how this may impact wildlife. Here we determined whether real motorboat noise affected the behavior, space use and escape response of a juvenile damselfish (Pomacentrus wardi) in the wild, and explored whether fish respond effectively to chemical and visual threats in the presence of two common types of motorboat noise. Noise from 30 hp 2-stroke outboard motors reduced boldness and activity of fish on habitat patches compared to ambient reef-sound controls. Fish also no longer responded to alarm odours with an antipredator response, instead increasing activity and space use, and fewer fish responded appropriately to a looming threat. In contrast, while there was a minor influence of noise from a 30 hp 4-stroke outboard on space use, there was no influence on their ability to respond to alarm odours, and no impact on their escape response. Evidence suggests that anthropogenic noise impacts the way juvenile fish assess risk, which will reduce individual fitness and survival, however, not all engine types cause major effects. This finding may give managers options by which they can reduce the impact of motorboat noise on inshore fish communities.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Bridie J M Allan
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, 4811, Australia
- Institute of Marine Research, Bergen, Norway
| | - Harry Harding
- School of Biological Sciences & Cabot Institute, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Stephen D Simpson
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
13
|
McCormick MI, Fakan E, Allan BJM. Behavioural measures determine survivorship within the hierarchy of whole‐organism phenotypic traits. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13033] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mark I. McCormick
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
- Department of Marine Biology and Aquaculture James Cook University Townsville Qld Australia
| | - Eric Fakan
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
- Department of Marine Biology and Aquaculture James Cook University Townsville Qld Australia
| | - Bridie J. M. Allan
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
- Department of Marine Biology and Aquaculture James Cook University Townsville Qld Australia
| |
Collapse
|
14
|
McCormick MI, Barry RP, Allan BJM. Algae associated with coral degradation affects risk assessment in coral reef fishes. Sci Rep 2017; 7:16937. [PMID: 29208978 PMCID: PMC5717098 DOI: 10.1038/s41598-017-17197-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/22/2017] [Indexed: 01/26/2023] Open
Abstract
Habitat degradation alters the chemical landscape through which information about community dynamics is transmitted. Olfactory information is crucial for risk assessment in aquatic organisms as predators release odours when they capture prey that lead to an alarm response in conspecific prey. Recent studies show some coral reef fishes are unable to use alarm odours when surrounded by dead-degraded coral. Our study examines the spatial and temporal dynamics of this alarm odour-nullifying effect, and which substratum types may be responsible. Field experiments showed that settlement-stage damselfish were not able to detect alarm odours within 2 m downcurrent of degraded coral, and that the antipredator response was re-established 20-40 min after transferral to live coral. Laboratory experiments indicate that the chemicals from common components of the degraded habitats, the cyanobacteria, Okeania sp., and diatom, Pseudo-nitzschia sp.prevented an alarm odour response. The same nullifying effect was found for the common red algae, Galaxauria robusta, suggesting that the problem is of a broader nature than previously realised. Those fish species best able to compensate for a lack of olfactory risk information at key times will be those potentially most resilient to the effects of coral degradation that operate through this mechanism.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, and Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Randall P Barry
- ARC Centre of Excellence for Coral Reef Studies, and Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia
| | - Bridie J M Allan
- ARC Centre of Excellence for Coral Reef Studies, and Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, 4811, Australia
- Institute of Marine Research, Bergen, Norway
| |
Collapse
|
15
|
Chivers DP, McCormick MI, Warren DT, Allan BJ, Ramasamy RA, Arvizu BK, Glue M, Ferrari MC. Competitive superiority versus predation savvy: the two sides of behavioural lateralization. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Ferrari MC, McCormick MI, Watson SA, Meekan MG, Munday PL, Chivers DP. Predation in High CO2 Waters: Prey Fish from High-Risk Environments are Less Susceptible to Ocean Acidification. Integr Comp Biol 2017; 57:55-62. [DOI: 10.1093/icb/icx030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
17
|
McCormick MI, Lönnstedt OM. Disrupted learning: habitat degradation impairs crucial antipredator responses in naive prey. Proc Biol Sci 2017; 283:rspb.2016.0441. [PMID: 27170715 DOI: 10.1098/rspb.2016.0441] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/18/2016] [Indexed: 11/12/2022] Open
Abstract
Habitat degradation is a global problem and one of the main causes of biodiversity loss. Though widespread, the mechanisms that underlie faunal changes are poorly understood. In tropical marine systems, corals play a crucial role in forming habitat, but coral cover on many reefs is declining sharply. Coral degradation affects the olfactory cues that provide reliable information on the presence and intensity of threat. Here, we show for the first time that the ability of a habitat generalist to learn predators using an efficient and widespread method of predator learning is compromised in degraded coral habitats. Results indicate that chemical alarm cues are no longer indicative of a local threat for the habitat generalist (the damselfish, Pomacentrus amboinensis), and these cues can no longer be used to learn the identity of novel predators in degraded habitats. By contrast, a rubble specialist and congeneric (Pomacentrus coelestis) responded to olfactory threat cues regardless of background environment and could learn the identity of a novel predator using chemical alarm cues. Understanding how some species can cope with or acclimate to the detrimental impacts of habitat degradation on risk assessment abilities will be crucial to defining the scope of resilience in threatened communities.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies and College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Oona M Lönnstedt
- ARC Centre of Excellence for Coral Reef Studies and College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
McCormick MI, Chivers DP, Allan BJM, Ferrari MCO. Habitat degradation disrupts neophobia in juvenile coral reef fish. GLOBAL CHANGE BIOLOGY 2017; 23:719-727. [PMID: 27393344 DOI: 10.1111/gcb.13393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Habitat degradation not only disrupts habitat-forming species, but alters the sensory landscape within which most species must balance behavioural activities against predation risk. Rapidly developing a cautious behavioural phenotype, a condition known as neophobia, is advantageous when entering a novel risky habitat. Many aquatic organisms rely on damage-released conspecific cues (i.e. alarm cues) as an indicator of impending danger and use them to assess general risk and develop neophobia. This study tested whether settlement-stage damselfish associated with degraded coral reef habitats were able to use alarm cues as an indicator of risk and, in turn, develop a neophobic response at the end of their larval phase. Our results indicate that fish in live coral habitats that were exposed to alarm cues developed neophobia, and, in situ, were found to be more cautious, more closely associated with their coral shelters and survived four-times better than non-neophobic control fish. In contrast, fish that settled onto degraded coral habitats did not exhibit neophobia and consequently suffered much greater mortality on the reef, regardless of their history of exposure to alarm cues. Our results show that habitat degradation alters the efficacy of alarm cues with phenotypic and survival consequences for newly settled recruits.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, College of Marine and Environmental Sciences, James Cook University, Townsville, Qld, 4811, Australia
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Bridie J M Allan
- ARC Centre of Excellence for Coral Reef Studies, College of Marine and Environmental Sciences, James Cook University, Townsville, Qld, 4811, Australia
| | - Maud C O Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, S7W 5B4, Canada
| |
Collapse
|
19
|
Warren DT, Donelson JM, McCormick MI, Ferrari MCO, Munday PL. Duration of Exposure to Elevated Temperature Affects Competitive Interactions in Juvenile Reef Fishes. PLoS One 2016; 11:e0164505. [PMID: 27736924 PMCID: PMC5063334 DOI: 10.1371/journal.pone.0164505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/26/2016] [Indexed: 11/18/2022] Open
Abstract
Climate change will affect key ecological processes that structure natural communities, but the outcome of interactions between individuals and species will depend on their thermal plasticity. We tested how short- and long-term exposure to projected future temperatures affects intraspecific and interspecific competitive interactions in two species of coral reef damselfishes. In conspecific contests, juvenile Ambon damselfish, Pomacentrus amboinensis, exhibited no change in aggressive interactions after 4d exposure to higher temperatures. However, after 90d of exposure, fish showed a nonadaptive reduction in aggression at elevated temperatures. Conversely, 4d exposure to higher temperature increased aggression towards conspecifics in the lemon damselfish, Pomacentrus moluccensis. 90d exposure began to reduce this pattern, but overall there was little effect of temperature. Aggression in interspecific contests increased with short-term exposure, but was significantly lower after long-term exposure indicative of acclimation. Our results show how the length of exposure to elevated temperature can affect the outcome of competitive interactions. Furthermore, we illustrate that results from intraspecific contests may not accurately predict interspecific interactions, which will challenge our ability to generalise the effects of warming on competitive interactions.
Collapse
Affiliation(s)
- Donald T. Warren
- Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, 4811 Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811 Australia
- * E-mail:
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811 Australia
- School of Life Sciences, University of Technology Sydney, PO Box 123, Broadway, New South Wales, 2007 Australia
| | - Mark I. McCormick
- Department of Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, 4811 Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811 Australia
| | - Maud C. O. Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, Canada
| | - Philip L. Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811 Australia
| |
Collapse
|
20
|
Risk assessment and predator learning in a changing world: understanding the impacts of coral reef degradation. Sci Rep 2016; 6:32542. [PMID: 27611870 PMCID: PMC5017198 DOI: 10.1038/srep32542] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/08/2016] [Indexed: 01/22/2023] Open
Abstract
Habitat degradation is among the top drivers of the loss of global biodiversity. This problem is particularly acute in coral reef system. Here we investigated whether coral degradation influences predator risk assessment and learning for damselfish. When in a live coral environment, Ambon damselfish were able to learn the identity of an unknown predator upon exposure to damselfish alarm cues combined with predator odour and were able to socially transmit this learned recognition to naïve conspecifics. However, in the presence of dead coral water, damselfish failed to learn to recognize the predator through alarm cue conditioning and hence could not transmit the information socially. Unlike alarm cues of Ambon damselfish that appear to be rendered unusable in degraded coral habitats, alarm cues of Nagasaki damselfish remain viable in this same environment. Nagasaki damselfish were able to learn predators through conditioning with alarm cues in degraded habitats and subsequently transmit the information socially to Ambon damselfish. Predator-prey dynamics may be profoundly affected as habitat degradation proceeds; the success of one species that appears to have compromised predation assessment and learning, may find itself reliant on other species that are seemingly unaffected by the same degree of habitat degradation.
Collapse
|
21
|
Asymmetries in body condition and order of arrival influence competitive ability and survival in a coral reef fish. Oecologia 2015. [DOI: 10.1007/s00442-015-3401-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Bosiger YJ, McCormick MI. Temporal links in daily activity patterns between coral reef predators and their prey. PLoS One 2014; 9:e111723. [PMID: 25354096 PMCID: PMC4213059 DOI: 10.1371/journal.pone.0111723] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/07/2014] [Indexed: 11/19/2022] Open
Abstract
Few studies have documented the activity patterns of both predators and their common prey over 24 h diel cycles. This study documents the temporal periodicity of two common resident predators of juvenile reef fishes, Cephalopholis cyanostigma (rockcod) and Pseudochromis fuscus (dottyback) and compares these to the activity and foraging pattern of a common prey species, juvenile Pomacentrus moluccensis (lemon damselfish). Detailed observations of activity in the field and using 24 h infrared video in the laboratory revealed that the two predators had very different activity patterns. C. cyanostigma was active over the whole 24 h period, with a peak in feeding strikes at dusk and increased activity at both dawn and dusk, while P. fuscus was not active at night and had its highest strike rates at midday. The activity and foraging pattern of P. moluccensis directly opposes that of C. cyanostigma with individuals reducing strike rate and intraspecific aggression at both dawn and dusk, and reducing distance from shelter and boldness at dusk only. Juveniles examined were just outside the size-selection window of P. fuscus. We suggest that the relatively predictable diel behaviour of coral reef predators results from physiological factors such as visual sensory abilities, circadian rhythmicity, variation in hunting profitability, and predation risk at different times of the day. Our study suggests that the diel periodicity of P. moluccensis behaviour may represent a response to increased predation risk at times when both the ability to efficiently capture food and visually detect predators is reduced.
Collapse
Affiliation(s)
- Yoland J. Bosiger
- ARC Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Mark I. McCormick
- ARC Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
23
|
Killen SS, Mitchell MD, Rummer JL, Chivers DP, Ferrari MCO, Meekan MG, McCormick MI. Aerobic scope predicts dominance during early life in a tropical damselfish. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12296] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shaun S. Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow G12 8QQ UK
| | - Matthew D. Mitchell
- School of Marine and Tropical Biology; James Cook University; Townsville Qld 4811 Australia
- ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
| | - Jodie L. Rummer
- ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
| | - Douglas P. Chivers
- Department of Biology; University of Saskatchewan; Saskatoon Saskatchewan Canada S7N 5E2
| | - Maud C. O. Ferrari
- Department of Biomedical Sciences; WCVM; University of Saskatchewan; Saskatoon Saskatchewan S7N 5B4 Canada
| | - Mark G. Meekan
- UWA Ocean Sciences Centre (MO96); Australian Institute of Marine Science; 35 Stirling Highway Crawley Western Australia 6009 Australia
| | - Mark I. McCormick
- School of Marine and Tropical Biology; James Cook University; Townsville Qld 4811 Australia
- ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
| |
Collapse
|
24
|
Poulos DE, McCormick MI. Who wins in the battle for space? The importance of priority, behavioural history and size. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Lönnstedt OM, McCormick MI, Chivers DP, Ferrari MCO. Habitat degradation is threatening reef replenishment by making fish fearless. J Anim Ecol 2014; 83:1178-85. [DOI: 10.1111/1365-2656.12209] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/24/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Oona M. Lönnstedt
- ARC Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology; James Cook University; Townsville Qld 4811 Australia
| | - Mark I. McCormick
- ARC Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology; James Cook University; Townsville Qld 4811 Australia
| | - Douglas P. Chivers
- Department of Biology; University of Saskatchewan; Saskatoon SK S7N 5E2 Canada
| | - Maud C. O. Ferrari
- Department of Biomedical Sciences; WCVM; University of Saskatchewan; Saskatoon SK S7N 5B4 Canada
| |
Collapse
|
26
|
Chivers DP, McCormick MI, Nilsson GE, Munday PL, Watson SA, Meekan MG, Mitchell MD, Corkill KC, Ferrari MCO. Impaired learning of predators and lower prey survival under elevated CO2 : a consequence of neurotransmitter interference. GLOBAL CHANGE BIOLOGY 2014; 20:515-22. [PMID: 23765546 DOI: 10.1111/gcb.12291] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/30/2013] [Indexed: 05/24/2023]
Abstract
Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but further advances require greater integration across disciplines. Here, we showed that projected near-future CO2 levels impaired the ability of damselfish to learn the identity of predators. These effects stem from impaired neurotransmitter function; impaired learning under elevated CO2 was reversed when fish were treated with gabazine, an antagonist of the GABA-A receptor - a major inhibitory neurotransmitter receptor in the brain of vertebrates. The effects of CO2 on learning and the link to neurotransmitter interference were manifested as major differences in survival for fish released into the wild. Lower survival under elevated CO2 , as a result of impaired learning, could have a major influence on population recruitment.
Collapse
Affiliation(s)
- Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
White JR, McCormick MI, Meekan MG. Syndromes or flexibility: behavior during a life history transition of a coral reef fish. PLoS One 2013; 8:e84262. [PMID: 24386358 PMCID: PMC3874005 DOI: 10.1371/journal.pone.0084262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/21/2013] [Indexed: 11/24/2022] Open
Abstract
The theory of behavioral syndromes focuses on quantifying variation in behavior within and among individual organisms and attempts to account for the maintenance of differences in behavior that occur in a consistent manner among individuals. Behavioral syndromes have potentially important ecological consequences (e.g. survivorship tradeoffs) and can be shaped by population dynamics through selective mortality. Here, we search for any evidence for consistency of behavior across situations in juveniles of a common damselfish, Pomacentrus amboinensis (Pomacentridae) at the transition between larval habitats in the plankton and juvenile habitats on the reef. Naïve fish leaving the pelagic phase to settle on reefs were caught by light traps and their behaviors observed using similar methods across three different situations (small aquaria, large aquaria, field setting); all of which represent low risk and well-sheltered environments. Seven behavioral traits were compared within and among individuals across situations to determine if consistent behavioral syndromes existed. No consistency was found in any single or combination of behavioral traits for individuals across all situations. We suggest that high behavioral flexibility is likely beneficial for newly-settled fish at this ontogenetic transition and it is possible that consistent behavioral syndromes are unlikely to emerge in juveniles until environmental experience is gained or certain combinations of behaviors are favored by selective mortality.
Collapse
Affiliation(s)
- James R. White
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Mark I. McCormick
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Mark G. Meekan
- Australian Institute of Marine Science, Botany Building, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
28
|
McCormick MI, Watson SA, Munday PL. Ocean acidification reverses competition for space as habitats degrade. Sci Rep 2013; 3:3280. [PMID: 24263692 PMCID: PMC3836291 DOI: 10.1038/srep03280] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/01/2013] [Indexed: 01/02/2023] Open
Abstract
How marine communities are affected by CO2-induced climate change depends on the ability of species to tolerate or adapt to the new conditions, and how the altered characteristics of species influence the outcomes of key processes, such as competition and predation. Our study examines how near future CO2 levels may affect the interactions between two damselfish species known to compete for space, and the effects of declining habitat quality on these interactions. The two focal species differed in their tolerance to elevated CO2, with the species that is competitively dominant under present day conditions being most affected. Field experiments showed that elevated CO2 (945 μatm) reversed the competitive outcome between the two species with mortal consequences, and this reversal was accentuated in degraded habitats. Understanding these complex interactions will be crucial to predicting the likely composition of future communities under ocean acidification and climate change.
Collapse
Affiliation(s)
- Mark I. McCormick
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Sue-Ann Watson
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| | - Philip L. Munday
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
29
|
White JR, Meekan MG, McCormick MI, Ferrari MCO. A comparison of measures of boldness and their relationships to survival in young fish. PLoS One 2013; 8:e68900. [PMID: 23874804 PMCID: PMC3712919 DOI: 10.1371/journal.pone.0068900] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/09/2013] [Indexed: 11/20/2022] Open
Abstract
Boldness is the propensity of an animal to engage in risky behavior. Many variations of novel-object or novel-environment tests have been used to quantify the boldness of animals, although the relationship between test outcomes has rarely been investigated. Furthermore, the relationship of outcomes to any ecological aspect of fitness is generally assumed, rather than measured directly. Our study is the first to compare how the outcomes of the same test of boldness differ among observers and how different tests of boldness relate to the survival of individuals in the field. Newly-metamorphosed lemon damselfish, Pomacentrus moluccensis, were placed onto replicate patches of natural habitat. Individual behavior was quantified using four tests (composed of a total of 12 different measures of behavior): latency to enter a novel environment, activity in a novel environment, and reactions to threatening and benign novel objects. After behavior was quantified, survival was monitored for two days during which time fish were exposed to natural predators. Variation among observers was low for most of the 12 measures, except distance moved and the threat test (reaction to probe thrust), which displayed unacceptable amounts of inter-observer variation. Overall, the results of the behavioral tests suggested that novel environment and novel object tests quantified similar behaviors, yet these behavioral measures were not interchangeable. Multiple measures of behavior within the context of novel environment or object tests were the most robust way to assess boldness and these measures have a complex relationship with survivorship of young fish in the field. Body size and distance ventured from shelter were the only variables that had a direct and positive relationship with survival.
Collapse
Affiliation(s)
- James R White
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia.
| | | | | | | |
Collapse
|
30
|
Wenger AS, McCormick MI. Determining trigger values of suspended sediment for behavioral changes in a coral reef fish. MARINE POLLUTION BULLETIN 2013; 70:73-80. [PMID: 23465624 DOI: 10.1016/j.marpolbul.2013.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/09/2013] [Accepted: 02/11/2013] [Indexed: 06/01/2023]
Abstract
Sediment from land use increases water turbidity and threatens the health of inshore coral reefs. This study performed experiments with a damselfish, Pomacentrus moluccensis, in four sediment treatments, control (0 mg l⁻¹), 10 mg l⁻¹ (∼1.7 NTU), 20 mg l⁻¹ (∼3.3 NTU) and 30 mg l⁻¹ (∼5 NTU), to determine when sediment triggers a change in habitat use and movement. We reviewed the literature to assess how frequently P. moluccensis would experience sub-optimal sediment conditions on the reef. Preference for live coral declined from 49.4% to 23.3% and movement between habitats declined from 2.1 to 0.4 times between 20 mg l⁻¹ and 30 mg l⁻¹, suggesting a sediment threshold for behavioral changes. Inshore areas of the Great Barrier Reef, P. moluccensis may encounter sub-optimal conditions between 8% and 53% of the time. Changes in these vital processes may have long-term effects on the persistence of populations, particularly as habitat loss on coral reefs increases.
Collapse
Affiliation(s)
- Amelia S Wenger
- ARC Centre of Excellence for Coral Reef Studies, School of Marine and Tropical Biology, James Cook University, Townsville, QLD 4811, Australia.
| | | |
Collapse
|
31
|
Lönnstedt OM, McCormick MI, Chivers DP. Degraded environments alter prey risk assessment. Ecol Evol 2012; 3:38-47. [PMID: 23403754 PMCID: PMC3568841 DOI: 10.1002/ece3.388] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 08/29/2012] [Accepted: 09/03/2012] [Indexed: 12/31/2022] Open
Abstract
Elevated water temperatures, a decrease in ocean pH, and an increasing prevalence of severe storms have lead to bleaching and death of the hard corals that underpin coral reef ecosystems. As coral cover declines, fish diversity and abundance declines. How degradation of coral reefs affects behavior of reef inhabitants is unknown. Here, we demonstrate that risk assessment behaviors of prey are severely affected by coral degradation. Juvenile damselfish were exposed to visual and olfactory indicators of predation risk in healthy live, thermally bleached, and dead coral in a series of laboratory and field experiments. While fish still responded to visual cues in all habitats, they did not respond to olfactory indicators of risk in dead coral habitats, likely as a result of alteration or degradation of chemical cues. These cues are critical for learning and avoiding predators, and a failure to respond can have dramatic repercussions for survival and recruitment.
Collapse
Affiliation(s)
- Oona M Lönnstedt
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University Townsville, Qld 4811, Australia
| | | | | |
Collapse
|
32
|
McCormick MI. Lethal effects of habitat degradation on fishes through changing competitive advantage. Proc Biol Sci 2012; 279:3899-904. [PMID: 22810432 PMCID: PMC3427570 DOI: 10.1098/rspb.2012.0854] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 06/26/2012] [Indexed: 11/12/2022] Open
Abstract
Coral bleaching has caused catastrophic changes to coral reef ecosystems around the world with profound ecological, social and economic repercussions. While its occurrence is predicted to increase in the future, we have little understanding of mechanisms that underlie changes in the fish community associated with coral degradation. The present study uses a field-based experiment to examine how the intensity of interference competition between juveniles of two species of damselfish changes as healthy corals degrade through thermal bleaching. The mortality of a damselfish that is a live coral specialist (Pomacentrus moluccensis) increased on bleached and dead coral in the presence of the habitat generalist (Pomacentrus amboinensis). Increased mortality of the specialist was indirectly owing to enhanced aggression by the generalist forcing the specialist higher up and further away from shelter on bleached and dead coral. Evidence from this study stresses the importance of changing interspecific interactions to community dynamics as habitats change.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia.
| |
Collapse
|
33
|
McCormick MI, Weaver CJ. It pays to be pushy: intracohort interference competition between two reef fishes. PLoS One 2012; 7:e42590. [PMID: 22900030 PMCID: PMC3416846 DOI: 10.1371/journal.pone.0042590] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 07/10/2012] [Indexed: 11/21/2022] Open
Abstract
Competition is often most intense between similar sized organisms that have similar ecological requirements. Many coral reef fish species settle preferentially to live coral at the end of their larval phase where they interact with other species that recruited to the same habitat patch at a similar time. Mortality is high and usually selective and individuals must compete for low risk space. This study examined the competitive interactions between two species of juvenile damselfish and the extent to which interactions that occurred within a recruitment cohort established the disjunct distribution patterns that were displayed in later life stages. Censuses and field experiments with juveniles found that one species, the ambon damsel, was dominant immediately after settlement and pushed the subordinate species higher up the reef and further from shelter. Presence of a competitor resulted in reduced growth for both species. Juvenile size was the best predictor of competitive success and outweighed the effects of short term prior residency. Size at settlement also dramatically influenced survival, with slightly larger individuals displaying higher aggression, pushing the subordinate species into higher risk habitats. While subordinates had higher feeding rates, they also sustained higher mortality. The study highlights the importance of interaction dynamics between species within a recruitment cohort to patterns of growth and distribution of species within communities.
Collapse
Affiliation(s)
- Mark I McCormick
- ARC Centre of Excellence for Coral Reef Studies, and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia.
| | | |
Collapse
|
34
|
Lönnstedt OM, McCormick MI, Meekan MG, Ferrari MCO, Chivers DP. Learn and live: predator experience and feeding history determines prey behaviour and survival. Proc Biol Sci 2012; 279:2091-8. [PMID: 22237904 DOI: 10.1098/rspb.2011.2516] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Determining how prey learn the identity of predators and match their vigilance with current levels of threat is central to understanding the dynamics of predator-prey systems and the determinants of fitness. Our study explores how feeding history influences the relative importance of olfactory and visual sensory modes of learning, and how the experience gained through these sensory modes influences behaviour and survival in the field for a juvenile coral reef damselfish. We collected young fish immediately prior to their settlement to benthic habitats. In the laboratory, these predator-naïve fish were exposed to a high- or low-food ration and then conditioned to recognize the olfactory cues (odours) and/or visual cues from two common benthic predators. Fish were then allowed to settle on reefs in the field, and their behaviour and survival over 70 h were recorded. Feeding history strongly influenced their willingness to take risks in the natural environment. Conditioning in the laboratory with visual, olfactory or both cues from predators led fish in the field to display risk-averse behaviour compared with fish conditioned with sea water alone. Well-fed fish that were conditioned with visual, chemical or a combination of predator cues survived eight times better over the first 48 h on reefs than those with no experience of benthic predator cues. This experiment highlights the importance of a flexible and rapid mechanism of learning the identity of predators for survival of young fish during the critical life-history transition between pelagic and benthic habitats.
Collapse
Affiliation(s)
- Oona M Lönnstedt
- ARC Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia
| | | | | | | | | |
Collapse
|
35
|
The use of the zebrafish model in stress research. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1432-51. [PMID: 20971150 DOI: 10.1016/j.pnpbp.2010.10.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/05/2010] [Accepted: 10/13/2010] [Indexed: 01/21/2023]
Abstract
The study of the causes and mechanisms underlying psychiatric disorders requires the use of non-human models for the test of scientific hypotheses as well as for use in pre-clinical drug screening and discovery. This review argues in favor of the use of zebrafish as a novel animal model to study the impact of early (stressful) experiences on the development of differential stress phenotypes in later life. This phenomenon is evolutionary conserved among several vertebrate species and has relevance to the etiology of psychiatric disorders. Why do we need novel animal models? Although significant progress has been achieved with the use of traditional mammalian models, there are major pitfalls associated with their use that impedes progress on two major fronts: 1) uncovering of the molecular mechanisms underlying aspects of compromised (stress-exposed) brain development relevant to the etiology of psychiatric disorders, and 2) ability to develop high-throughput technology for drug discovery in the field of psychiatry. The zebrafish model helps resolve these issues. Here we present a conceptual framework for the use of zebrafish in stress research and psychiatry by addressing three specific domains of application: 1) stress research, 2) human disease mechanisms, and 3) drug discovery. We also present novel methodologies associated with the development of the zebrafish stress model and discuss how such methodologies can contribute to remove the main bottleneck in the field of drug discovery.
Collapse
|
36
|
Grutter AS, Crean AJ, Curtis LM, Kuris AM, Warner RR, McCormick MI. Indirect effects of an ectoparasite reduce successful establishment of a damselfish at settlement. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2010.01798.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Replenishment of fish populations is threatened by ocean acidification. Proc Natl Acad Sci U S A 2010; 107:12930-4. [PMID: 20615968 DOI: 10.1073/pnas.1004519107] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is increasing concern that ocean acidification, caused by the uptake of additional CO(2) at the ocean surface, could affect the functioning of marine ecosystems; however, the mechanisms by which population declines will occur have not been identified, especially for noncalcifying species such as fishes. Here, we use a combination of laboratory and field-based experiments to show that levels of dissolved CO(2) predicted to occur in the ocean this century alter the behavior of larval fish and dramatically decrease their survival during recruitment to adult populations. Altered behavior of larvae was detected at 700 ppm CO(2), with many individuals becoming attracted to the smell of predators. At 850 ppm CO(2), the ability to sense predators was completely impaired. Larvae exposed to elevated CO(2) were more active and exhibited riskier behavior in natural coral-reef habitat. As a result, they had 5-9 times higher mortality from predation than current-day controls, with mortality increasing with CO(2) concentration. Our results show that additional CO(2) absorbed into the ocean will reduce recruitment success and have far-reaching consequences for the sustainability of fish populations.
Collapse
|
38
|
Fuiman LA, Meekan MG, McCormick MI. Maladaptive behavior reinforces a recruitment bottleneck in newly settled fishes. Oecologia 2010; 164:99-108. [PMID: 20602117 DOI: 10.1007/s00442-010-1712-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 06/22/2010] [Indexed: 11/24/2022]
Abstract
Settlement from the plankton ends the major dispersive stage of life for many marine organisms and exposes them to intense predation pressure in juvenile habitats. This predation mortality represents a life-history bottleneck that can determine recruitment success. At the level of individual predator-prey interactions, prey survival depends upon behavior, specifically how behavior affects prey conspicuousness and evasive ability. We conducted an experiment to identify behavioral traits and performance levels that are important determinants of which individuals survive or die soon after settlement. We measured a suite of behavioral traits on late stage, pre-settlement Ward's damsel (Pomacentrus wardi) collected using light traps. These behavioral traits included two measures of routine swimming (indicators of conspicuousness) and eight measures of escape performance to a visual startle stimulus. Fish were then released onto individual patch reefs, where divers measured an additional behavioral trait (boldness). We censused each patch reef until approximately 50% of the fish were missing (~24 h), which we assumed to be a result of predation. We used classification tree analysis to discriminate survivors from fish presumed dead based on poor behavioral performance. The classification tree revealed that individuals displaying the maladaptive combination of low escape response speed, low boldness on the reef, and high routine swimming speed were highly susceptible to predation (92.4% with this combination died within 24 h). This accounted for 55.2% of all fish that died. Several combinations of behavioral traits predicted likely survival over 24 h, but there was greater uncertainty about that prediction than there was for fish that were predicted to die. Thus maladaptive behavioral traits were easier to identify than adaptive traits.
Collapse
Affiliation(s)
- Lee A Fuiman
- Marine Science Institute, The University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA.
| | | | | |
Collapse
|
39
|
Wilson SK, Adjeroud M, Bellwood DR, Berumen ML, Booth D, Bozec YM, Chabanet P, Cheal A, Cinner J, Depczynski M, Feary DA, Gagliano M, Graham NAJ, Halford AR, Halpern BS, Harborne AR, Hoey AS, Holbrook SJ, Jones GP, Kulbiki M, Letourneur Y, De Loma TL, McClanahan T, McCormick MI, Meekan MG, Mumby PJ, Munday PL, Öhman MC, Pratchett MS, Riegl B, Sano M, Schmitt RJ, Syms C. Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. J Exp Biol 2010; 213:894-900. [DOI: 10.1242/jeb.037895] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Expert opinion was canvassed to identify crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Scientists that had published three or more papers on the effects of climate and environmental factors on reef fishes were invited to submit five questions that, if addressed, would improve our understanding of climate change effects on coral reef fishes. Thirty-three scientists provided 155 questions, and 32 scientists scored these questions in terms of: (i) identifying a knowledge gap, (ii) achievability, (iii) applicability to a broad spectrum of species and reef habitats, and (iv) priority. Forty-two per cent of the questions related to habitat associations and community dynamics of fish, reflecting the established effects and immediate concern relating to climate-induced coral loss and habitat degradation. However, there were also questions on fish demographics, physiology, behaviour and management, all of which could be potentially affected by climate change. Irrespective of their individual expertise and background, scientists scored questions from different topics similarly, suggesting limited bias and recognition of a need for greater interdisciplinary and collaborative research. Presented here are the 53 highest-scoring unique questions. These questions should act as a guide for future research, providing a basis for better assessment and management of climate change impacts on coral reefs and associated fish communities.
Collapse
Affiliation(s)
- S. K. Wilson
- Marine Science Program, Department of Environment and Conservation, Kensington, WA, Australia
| | - M. Adjeroud
- UMR 5244 CNRS-EPHE-UPVD, Centre de Biologie et d'Ecologie Tropicale et Mediterranéenne, Université de Perpignan Via Domitia, Perpignan, France
| | - D. R. Bellwood
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - M. L. Berumen
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - D. Booth
- Department of Environmental Sciences, University of Technology, Sydney, NSW, Australia
| | - Y.-Marie Bozec
- Agrocampus Ouest, Laboratory of Computer Science, Rennes, France
| | - P. Chabanet
- Institut de Recherche pour le Développement (IRD), Marseille, France
| | - A. Cheal
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - J. Cinner
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - M. Depczynski
- Australian Institute of Marine Science, c/— The Oceans Institute, University of Western Australia, Crawley WA, Australia
| | - D. A. Feary
- United Nations University, International Network on Water, Environment and Health, Dubai, United Arab Emirates
| | - M. Gagliano
- Centre of Evolutionary Biology, University of Western Australia, Crawley WA, Australia
| | - N. A. J. Graham
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - A. R. Halford
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Marine Lab, University of Guam, Mangilao, Guam
| | - B. S. Halpern
- National Center for Ecological Analysis and Synthesis, Santa Barbara, CA, USA
| | - A. R. Harborne
- Marine Spatial Ecology Lab, School of Biosciences, University of Exeter, UK
| | - A. S. Hoey
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - S. J. Holbrook
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - G. P. Jones
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - M. Kulbiki
- UMR 5244 CNRS-EPHE-UPVD, Centre de Biologie et d'Ecologie Tropicale et Mediterranéenne, Université de Perpignan Via Domitia, Perpignan, France
| | - Y. Letourneur
- Centre d'Océanologie de Marseille, Université de la Méditerranée, Marseille, France
| | - T. L. De Loma
- Centre de Recherches Insulaires et Observatoire de l'Environnement, Moorea, French Polynesia
| | - T. McClanahan
- Marine Programs, Wildlife Conservation Society, Bronx, NY, USA
| | - M. I. McCormick
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - M. G. Meekan
- Australian Institute of Marine Science, c/— The Oceans Institute, University of Western Australia, Crawley WA, Australia
| | - P. J. Mumby
- Marine Spatial Ecology Lab, School of Biosciences, University of Exeter, UK
| | - P. L. Munday
- School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - M. C. Öhman
- Department of Zoology, Stockholm University, Sweden
| | - M. S. Pratchett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - B. Riegl
- National Coral Reef Institute, Nova Southeastern University, Florida, USA
| | - M. Sano
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - R. J. Schmitt
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - C. Syms
- Department of Environmental Sciences, University of Technology, Sydney, NSW, Australia
| |
Collapse
|