1
|
Lee CYP, Carissimo G, Teo TH, Tong SJM, Chang ZW, Rajarethinam R, Chua TK, Chen Z, Chee RSL, Tay A, Howland SW, Ang KS, Chen J, Renia L, Ng LFP. CD8+ T Cells Trigger Auricular Dermatitis and Blepharitis in Mice after Zika Virus Infection in the Absence of CD4+ T Cells. J Invest Dermatol 2022; 143:1031-1041.e8. [PMID: 36566875 DOI: 10.1016/j.jid.2022.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Zika virus (ZIKV) became a public health concern when it re-emerged in 2015 owing to its ability to cause congenital deformities in the fetus and neurological complications in adults. Despite extensive data on protection, the interplay of protective and pathogenic adaptive immune responses toward ZIKV infection remains poorly understood. In this study, using a T-cell‒deficient mouse model that retains persistent ZIKV viral titers in the blood and organs, we show that the adoptive transfer of CD8+ T cells led to a significant reduction in viral load. This mouse model reveals that ZIKV can induce grossly visible auricular dermatitis and blepharitis, mediated by ZIKV-specific CD8+ T cells. Single-cell RNA sequencing of these causative CD8+ T cells from the ears shows an overactivated and elevated cytotoxic signature in mice with severe symptoms. Our results strongly suggest a role for CD8+ T-cell‒associated pathologies after ZIKV infection in CD4+ T-cell‒immunodeficient patients.
Collapse
Affiliation(s)
- Cheryl Yi-Pin Lee
- A(∗)STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Guillaume Carissimo
- A(∗)STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Teck-Hui Teo
- A(∗)STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Samuel Jia Ming Tong
- A(∗)STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Zi Wei Chang
- A(∗)STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Ravisankar Rajarethinam
- Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Tze Kwang Chua
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Zheyuan Chen
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Rhonda Sin-Ling Chee
- A(∗)STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Alicia Tay
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Shanshan Wu Howland
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Kok Siong Ang
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore
| | - Laurent Renia
- A(∗)STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lisa F P Ng
- A(∗)STAR Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A(∗)STAR), Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Health Protection Research Unit in Emerging and Zoonotic Infections, National Institute of Health Research, University of Liverpool, Liverpool, United Kingdom; Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
2
|
Sparling BA, Moss N, Kaur G, Clark D, Hawkins RD, Drechsler Y. Unique Cell Subpopulations and Disease Progression Markers in Canines with Atopic Dermatitis. THE JOURNAL OF IMMUNOLOGY 2022; 209:1379-1388. [DOI: 10.4049/jimmunol.2200304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/02/2022] [Indexed: 11/06/2022]
|
3
|
A Cornflower Extract Containing N-Feruloylserotonin Reduces Inflammation in Human Skin by Neutralizing CCL17 and CCL22 and Inhibiting COX-2 and 5-LOX. Mediators Inflamm 2021; 2021:6652791. [PMID: 34557056 PMCID: PMC8455218 DOI: 10.1155/2021/6652791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
Thymus and Activation-Regulated Chemokine (TARC/CCL17) and Macrophage-Derived Chemokine (MDC/CCL22) are two key chemokines exerting their biological effect via binding and activating a common receptor CCR4, expressed at the surface of type 2 helper T (Th2) cells. By recruiting Th2 cells in the dermis, CCL17 and CCL22 promote the development of inflammation in atopic skin. The aim of this research was to develop a plant extract whose biological properties, when applied topically, could be beneficial for people with atopic-prone skin. The strategy which was followed consisted in identifying ligands able to neutralize the biological activity of CCL17 and CCL22. Thus, an in silico molecular modeling and a generic screening assay were developed to screen natural molecules binding and blocking these two chemokines. N-Feruloylserotonin was identified as a neutraligand of CCL22 in these experiments. A cornflower extract containing N-feruloylserotonin was selected for further in vitro tests: the gene expression modulation of inflammation biomarkers induced by CCL17 or CCL22 in the presence or absence of this extract was assessed in the HaCaT keratinocyte cell line. Additionally, the same cornflower extract in another vehicle was evaluated in parallel with N-feruloylserotonin for cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) enzymatic cellular inhibition. The cornflower extract was shown to neutralize the two chemokines in vitro, inhibited COX-2 and 5-LOX, and demonstrated anti-inflammatory activities due mainly to the presence of N-feruloylserotonin. Although these findings would need to be confirmed in an in vivo study, the in vitro studies lay the foundation to explain the benefits of the cornflower extract when applied topically to individuals with atopic-prone skin.
Collapse
|
4
|
Jandova J, Snell J, Hua A, Dickinson S, Fimbres J, Wondrak GT. Topical hypochlorous acid (HOCl) blocks inflammatory gene expression and tumorigenic progression in UV-exposed SKH-1 high risk mouse skin. Redox Biol 2021; 45:102042. [PMID: 34144392 PMCID: PMC8217684 DOI: 10.1016/j.redox.2021.102042] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Hypochlorous acid (HOCl) is the active oxidizing principle underlying drinking water disinfection, also delivered by numerous skin disinfectants and released by standard swimming pool chemicals used on a global scale, a topic of particular relevance in the context of the ongoing COVID-19 pandemic. However, the cutaneous consequences of human exposure to HOCl remain largely unknown, posing a major public health concern. Here, for the first time, we have profiled the HOCl-induced stress response in reconstructed human epidermis and SKH-1 hairless mouse skin. In addition, we have investigated the molecular consequences of solar simulated ultraviolet (UV) radiation and HOCl combinations, a procedure mimicking co-exposure experienced for example by recreational swimmers exposed to both HOCl (pool disinfectant) and UV (solar radiation). First, gene expression elicited by acute topical HOCl exposure was profiled in organotypic human reconstructed epidermis. Next, co-exposure studies (combining topical HOCl and UV) performed in SKH-1 hairless mouse skin revealed that the HOCl-induced cutaneous stress response blocks redox and inflammatory gene expression elicited by subsequent acute UV exposure (Nos2, Ptgs2, Hmox1, Srxn1), a finding consistent with emerging clinical evidence in support of a therapeutic role of topical HOCl formulations for the suppression of inflammatory skin conditions (e.g. atopic dermatitis, psoriasis). Likewise, in AP-1 transgenic SKH-1 luciferase-reporter mice, topical HOCl suppressed UV-induced inflammatory signaling assessed by bioluminescent imaging and gene expression analysis. In the SKH-1 high-risk mouse model of UV-induced human keratinocytic skin cancer, topical HOCl blocked tumorigenic progression and inflammatory gene expression (Ptgs2, Il19, Tlr4), confirmed by immunohistochemical analysis including 3-chloro-tyrosine-epitopes. These data illuminate the molecular consequences of HOCl-exposure in cutaneous organotypic and murine models assessing inflammatory gene expression and modulation of UV-induced carcinogenesis. If translatable to human skin these observations provide novel insights on molecular consequences of chlorination stress relevant to environmental exposure and therapeutic intervention.
Collapse
Affiliation(s)
- Jana Jandova
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA; UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Jeremy Snell
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA; UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Anh Hua
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA; UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | - Jocelyn Fimbres
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA; UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA; UA Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
5
|
De Zutter A, Van Damme J, Struyf S. The Role of Post-Translational Modifications of Chemokines by CD26 in Cancer. Cancers (Basel) 2021; 13:cancers13174247. [PMID: 34503058 PMCID: PMC8428238 DOI: 10.3390/cancers13174247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Chemokines are a large family of small chemotactic cytokines that fulfill a central function in cancer. Both tumor-promoting and -impeding roles have been ascribed to chemokines, which they exert in a direct or indirect manner. An important post-translational modification that regulates chemokine activity is the NH2-terminal truncation by peptidases. CD26 is a dipeptidyl peptidase (DPPIV), which typically clips a NH2-terminal dipeptide from the chemokine. With a certain degree of selectivity in terms of chemokine substrate, CD26 only recognizes chemokines with a penultimate proline or alanine. Chemokines can be protected against CD26 recognition by specific amino acid residues within the chemokine structure, by oligomerization or by binding to cellular glycosaminoglycans (GAGs). Upon truncation, the binding affinity for receptors and GAGs is altered, which influences chemokine function. The consequences of CD26-mediated clipping vary, as unchanged, enhanced, and reduced activities are reported. In tumors, CD26 most likely has the most profound effect on CXCL12 and the interferon (IFN)-inducible CXCR3 ligands, which are converted into receptor antagonists upon truncation. Depending on the tumor type, expression of CD26 is upregulated or downregulated and often results in the preferential generation of the chemokine isoform most favorable for tumor progression. Considering the tight relationship between chemokine sequence and chemokine binding specificity, molecules with the appropriate characteristics can be chemically engineered to provide innovative therapeutic strategies in a cancer setting.
Collapse
|
6
|
Zdanowska N, Kasprowicz-Furmańczyk M, Placek W, Owczarczyk-Saczonek A. The Role of Chemokines in Psoriasis-An Overview. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:754. [PMID: 34440960 PMCID: PMC8400543 DOI: 10.3390/medicina57080754] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
By participating in both the recruitment and activation of T lymphocytes, macrophages and neutrophils at the site of psoriatic inflammation, chemokines play an important role in the pathogenesis of psoriasis and, crucially, may be one indicator of the response to the systemic treatment of the disease. As a result of their major involvement in both physiological and pathological processes, both chemokines and their receptors have been identified as possible therapeutic targets. Due to their presence in the inflammatory process, they play a role in the pathogenesis of diseases that often coexist with psoriasis, such as atherosclerosis and psoriatic arthritis. Chemokines, cytokines and adhesion molecules may be biological markers of disease severity in psoriasis. However, the mechanism of inflammation in psoriasis is too complex to select only one marker to monitor the disease process and improvement after treatment. The aim of this review was to summarize previous reports on the role of chemokines in the pathogenesis of psoriasis, its treatment and comorbidities.
Collapse
Affiliation(s)
- Natalia Zdanowska
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-229 Olsztyn, Poland; (M.K.-F.); (W.P.); (A.O.-S.)
| | | | | | | |
Collapse
|
7
|
Ribeiro WR, Queiroz AG, Mendes E, Casaro MB, Nascimento CM, Coelho LSSF, Martins FS, Leite-Silva VR, Ferreira CM. Preventive oral supplementation with Bifidobacterium longum 5 1A alleviates oxazolone-induced allergic contact dermatitis-like skin inflammation in mice. Benef Microbes 2021; 12:199-209. [PMID: 33573507 DOI: 10.3920/bm2020.0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allergic contact dermatitis (ACD) is a common allergic skin disease that affects individuals subjected to different antigen exposure conditions and significantly impacts the quality of life of those affected. Numerous studies have demonstrated that probiotics suppress inflammation through immunomodulatory effects. In this study, we aimed to evaluate the effect of the probiotic Bifidobacterium longum 51A as a preventive treatment for ACD using an oxazolone-induced murine model. We demonstrated that B. longum 51A exerted a prophylactic effect on oxazolone-induced ACD-like skin inflammation via reductions in ear and dermal thickness and leucocyte infiltration. The administration of inactivated B. longum 51A did not affect oxazolone-induced ACD-like skin inflammation, suggesting that the bacteria must be alive to be effective. Given that B. longum 51A is an acetate producer, we treated mice with acetate intraperitoneally, which also prevented ear and dermal thickening. Moreover, the tissue levels of the inflammatory cytokines and chemokines interleukin (IL)-10, IL-33, tumour necrosis factor-α, chemokine (C-C motif) ligand 2/monocyte chemoattractant protein-1 and chemokine (C-C motif) ligand 5/RANTES were significantly reduced after probiotic treatment, but only IL-33 and IL-10 were reduced when the mice were treated with acetate. These results show that B. longum 51A exerted a potential prophylactic effect on skin inflammation and that acetate represents one potential mechanism. However, other factors are likely involved since these two treatments do not yield the same results.
Collapse
Affiliation(s)
- W R Ribeiro
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - A G Queiroz
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - E Mendes
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - M B Casaro
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - C M Nascimento
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - L S S F Coelho
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - F S Martins
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos 6627, Campus Pampulha UFMG Belo Horizonte, MG 31970201, Brazil
| | - V R Leite-Silva
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil.,Therapeutics Research Centre, Translational Research Institute, Diamantina Institute, University of Queensland, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - C M Ferreira
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| |
Collapse
|
8
|
Chrysin Inhibits NF-κB-Dependent CCL5 Transcription by Targeting IκB Kinase in the Atopic Dermatitis-Like Inflammatory Microenvironment. Int J Mol Sci 2020; 21:ijms21197348. [PMID: 33027922 PMCID: PMC7583951 DOI: 10.3390/ijms21197348] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/20/2022] Open
Abstract
Chrysin (5,7-dihydroxyflavone) is a natural polyphenolic compound that induces an anti-inflammatory response. In this study, we investigated the molecular mechanism underlying the chrysin-induced suppression of C-C motif chemokine ligand 5 (CCL5) gene expression in atopic dermatitis (AD)-like inflammatory microenvironment. We showed that chrysin inhibited CCL5 expression at the transcriptional level through the suppression of nuclear factor kappa B (NF-κB) in the inflammatory environment. Chrysin could bind to the ATP-binding pocket of the inhibitor of κB (IκB) kinase (IKK) and, subsequently, prevent IκB degradation and NF-κB activation. The clinical efficacy of chrysin in targeting IKK was evaluated in 2,4-dinitrochlorobenzene-induced skin lesions in BALB/c mice. Our results suggested that chrysin prevented CCL5 expression by targeting IKK to reduce the infiltration of mast cells to the inflammatory sites and at least partially attenuate the inflammatory responses. These findings suggested that chrysin might be useful as a platform for the design and synthesis of small-molecule IKK-targeting drugs for the treatment of chronic inflammatory diseases, such as AD.
Collapse
|
9
|
Enhancement of Chemokine mRNA Expression by Toll-Like Receptor 2 Stimulation in Human Peripheral Blood Mononuclear Cells of Patients with Atopic Dermatitis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1497175. [PMID: 32280674 PMCID: PMC7115052 DOI: 10.1155/2020/1497175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease which is often associated with Staphylococcus aureus (S. aureus) colonization. S. aureus ingredients are potential ligands to activate the Toll-like receptor 2 (TLR2) and drive inflammatory cytokine or chemokine production. However, the role of TLR2-mediated chemokine expression in AD development has not been systematically investigated. In this study, we sought to determine the mode of TLR2-mediated chemokine expression in AD patients. Human peripheral blood mononuclear cells (PBMCs) were isolated from AD patients and healthy controls. Upon incubation with TLR2 ligands Pam3CSK4 and PGN, mRNA expression of chemokines, including CCL1, CCL5, CCL8, CCL13, CCL17, CCL18, CCL22, and CCL27, were determined by quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The results showed that basal mRNA expression of CCL17 in PBMCs from AD patients was upregulated compared with healthy controls, while those of CCL8 and CCL13 were downregulated. When stimulated with TLR2 ligands, the mRNA expression of CCL5, CCL8, CCL13, CCL18, and CCL22 in PBMCs from AD patients was significantly higher than those from healthy controls. The different basal chemokine mRNA expression profiles indicate the different immune status in patients with AD compared with healthy controls. Excessive chemokine mRNA expression induced by TLR2 activation is associated with the development of AD.
Collapse
|
10
|
Manresa MC, Smith L, Casals‐Diaz L, Fagundes RR, Brown E, Radhakrishnan P, Murphy SJ, Crifo B, Strowitzki MJ, Halligan DN, van den Bogaard EH, Niehues H, Schneider M, Taylor CT, Steinhoff M. Pharmacologic inhibition of hypoxia-inducible factor (HIF)-hydroxylases ameliorates allergic contact dermatitis. Allergy 2019; 74:753-766. [PMID: 30394557 DOI: 10.1111/all.13655] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/05/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND When an immune cell migrates from the bloodstream to a site of chronic inflammation, it experiences a profound decrease in microenvironmental oxygen levels leading to a state of cellular hypoxia. The hypoxia-inducible factor-1α (HIF-1α) promotes an adaptive transcriptional response to hypoxia and as such is a major regulator of immune cell survival and function. HIF hydroxylases are the family of oxygen-sensing enzymes primarily responsible for conferring oxygen dependence upon the HIF pathway. METHODS Using a mouse model of allergic contact dermatitis (ACD), we tested the effects of treatment with the pharmacologic hydroxylase inhibitor DMOG, which mimics hypoxia, on disease development. RESULTS Re-exposure of sensitized mice to 2,4-dinitrofluorobenzene (DNFB) elicited inflammation, edema, chemokine synthesis (including CXCL1 and CCL5) and the recruitment of neutrophils and eosinophils. Intraperitoneal or topical application of the pharmacologic hydroxylase inhibitors dymethyloxalylglycine (DMOG) or JNJ1935 attenuated this inflammatory response. Reduced inflammation was associated with diminished recruitment of neutrophils and eosinophils but not lymphocytes. Finally, hydroxylase inhibition reduced cytokine-induced chemokine production in cultured primary keratinocytes through attenuation of the JNK pathway. CONCLUSION These data demonstrate that hydroxylase inhibition attenuates the recruitment of neutrophils to inflamed skin through reduction of chemokine production and increased neutrophilic apoptosis. Thus, pharmacologic inhibition of HIF hydroxylases may be an effective new therapeutic approach in allergic skin inflammation.
Collapse
Affiliation(s)
- Mario C. Manresa
- UCD Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
- Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA
| | - Leila Smith
- UCD Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Laura Casals‐Diaz
- UCD Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Raphael R. Fagundes
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Eric Brown
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery University of Heidelberg Heidelberg Germany
| | - Stephen J. Murphy
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Bianca Crifo
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Moritz J. Strowitzki
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Doug N. Halligan
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Ellen H. van den Bogaard
- Department of Dermatology Radboud University Medical Center Radboud Institute for Molecular Life Sciences Nijmegen The Netherlands
| | - Hanna Niehues
- Department of Dermatology Radboud University Medical Center Radboud Institute for Molecular Life Sciences Nijmegen The Netherlands
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery University of Heidelberg Heidelberg Germany
| | - Cormac T. Taylor
- UCD Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
- Conway Institute of Biomedical and Biomolecular Research School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
- Systems Biology Ireland School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
| | - Martin Steinhoff
- UCD Charles Institute of Dermatology School of Medicine and Medical Science University College Dublin Belfield, Dublin Ireland
- Department of Dermatology & Venereology Translational Research Institute Hamad Medical Corporation Weill Cornell University‐Qatar and Qatar University Doha Qatar
| |
Collapse
|
11
|
Abstract
Allergic contact dermatitis (ACD) is a common skin disease that results in significant cost and morbidity. Despite its high prevalence, therapeutic options are limited. Allergic contact dermatitis is regulated primarily by T cells within the adaptive immune system, but also by natural killer and innate lymphoid cells within the innate immune system. The chemokine receptor system, consisting of chemokine peptides and chemokine G protein-coupled receptors, is a critical regulator of inflammatory processes such as ACD. Specific chemokine signaling pathways are selectively up-regulated in ACD, most prominently CXCR3 and its endogenous chemokines CXCL9, CXCL10, and CXCL11. Recent research demonstrates that these 3 chemokines are not redundant and indeed activate distinct intracellular signaling profiles such as those activated by heterotrimeric G proteins and β-arrestin adapter proteins. Such differential signaling provides an attractive therapeutic target for novel therapies for ACD and other inflammatory diseases.
Collapse
|
12
|
Abboud D, Hanson J. Chemokine neutralization as an innovative therapeutic strategy for atopic dermatitis. Drug Discov Today 2017; 22:702-711. [DOI: 10.1016/j.drudis.2016.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/17/2016] [Accepted: 11/30/2016] [Indexed: 01/02/2023]
|
13
|
Zablotna M, Sobjanek M, Purzycka-Bohdan D, Szczerkowska-Dobosz A, Nedoszytko B, Nowicki R. The -2518 A/GMCP-1and -403 G/ARANTESpromoter gene polymorphisms are associated with psoriasis vulgaris. Clin Exp Dermatol 2016; 41:878-883. [DOI: 10.1111/ced.12937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2016] [Indexed: 11/27/2022]
Affiliation(s)
- M. Zablotna
- Department of Dermatology, Venereology and Allergology; Medical University of Gdansk; Gdansk Poland
| | - M. Sobjanek
- Department of Dermatology, Venereology and Allergology; Medical University of Gdansk; Gdansk Poland
| | - D. Purzycka-Bohdan
- Department of Dermatology, Venereology and Allergology; Medical University of Gdansk; Gdansk Poland
| | - A. Szczerkowska-Dobosz
- Department of Dermatology, Venereology and Allergology; Medical University of Gdansk; Gdansk Poland
| | - B. Nedoszytko
- Department of Dermatology, Venereology and Allergology; Medical University of Gdansk; Gdansk Poland
| | - R. Nowicki
- Department of Dermatology, Venereology and Allergology; Medical University of Gdansk; Gdansk Poland
| |
Collapse
|
14
|
Gawlik R, Glück J, Jawor B, Rogala B. Effects of venom immunotherapy on serum level of CCL5/RANTES in patients withHymenopteravenom allergy. Immunopharmacol Immunotoxicol 2015; 37:375-9. [DOI: 10.3109/08923973.2015.1063645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Toll-like receptor 3 increases allergic and irritant contact dermatitis. J Invest Dermatol 2014; 135:411-417. [PMID: 25229251 DOI: 10.1038/jid.2014.402] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 07/30/2014] [Accepted: 08/18/2014] [Indexed: 11/09/2022]
Abstract
There is increasing recognition of the role of Toll-like receptor 3 (TLR3) in noninfectious inflammatory diseases, but the function of TLR3 in inflammatory skin diseases is unclear. We investigated the functions of TLR3 in allergic and irritant contact dermatitis (ICD). The contact hypersensitivity (CHS) response was lower in Toll-like receptor 3 knockout (Tlr3 KO) mice, and was greater in TLR3 transgenic (Tg) mice than in wild-type (WT) mice after challenge with 2,4,6-trinitro-1-chlorobenzene. Adoptive transfer of immunized lymph node cells from Tlr3 KO mice induced CHS in WT recipients. In contrast, adoptive transfer of those from WT mice did not fully induce CHS in Tlr3 KO recipients. The ICD reaction following croton oil application was lower in Tlr3 KO mice, and was greater in TLR3 Tg mice than in WT mice. Maturation, migration, and antigen presentation of dendritic cells and proliferation of lymphocytes between WT mice and Tlr3 KO mice were comparable. These results show that TLR3 enhances antigen-independent skin inflammation in the elicitation phase of allergic contact dermatitis and in ICD.
Collapse
|
16
|
Gene transfer of the S24F regulated on activation normal T-cell expressed and secreted-chemokine ligand 5 variant attenuates cardiac allograft rejection. Transplantation 2014; 97:1233-9. [PMID: 24825519 DOI: 10.1097/tp.0000000000000122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Regulated on activation normal T-cell expressed and secreted (RANTES)-chemokine ligand 5 plays a key role in mediating heart transplant rejection. Suppression of RANTES-mediated signals can reduce leukocyte recruitment and mitigate transplant rejection severity. The present study describes the construction of an adenovirus overexpression vector encoding a natural S24F RANTES variant as a means of reducing leukocyte recruitment, resulting in the prevention of allograft rejection. METHODS The in vitro transendothelial chemotaxis assay was used to compare RANTES-induced transmigration of peripheral blood mononuclear cells across human umbilical vein endothelial cells cultured on the upper Transwell chamber. Intracoronary delivery of Ad-S24F, Ad-Null, or phosphate-buffered saline was performed in BALB/c donor hearts that were transplanted into the abdominal cavity of C57BL/6 recipients as a measure of allograft survival. Intragraft inflammatory cell infiltrates and associated proinflammatory cytokine expression profiles were detected by immunohistochemistry and quantitative real-time polymerase chain reaction on day 6 after transplantation, respectively. RESULTS Regulated on activation normal T-cell expressed and secreted-induced peripheral blood mononuclear cell transendothelial chemotaxis is inhibited by S24F (Ad-S24F, 9.2%±0.02%; Ad-Null, 17.7%±0.02%; medium control, 15.1%±0.01%; P<0.05). Cardiac allograft survival was prolonged after delivery of 1×10 plaque-forming units of Ad-S24F (13.00±0.33 days compared with 9.38±0.60 and 9.00±0.38 days after Ad-Null or phosphate-buffered saline treatment, respectively, P<0.05). S24F gene transfer reduced the number of intragraft CD8 T lymphocytes, monocyte-macrophages, and T-cell receptor αβ cell infiltrates (P<0.05) and decreased transcripts for RANTES and interferon-γ (P<0.05). CONCLUSION S24F is an important component of the chemokine network involved in regulating the biologic activity of RANTES, and its expression can be used in the prevention and treatment of cardiac allograft rejection.
Collapse
|
17
|
Invariant NKT cells suppress CD8(+) T-cell-mediated allergic contact dermatitis independently of regulatory CD4(+) T cells. J Invest Dermatol 2012. [PMID: 23190881 DOI: 10.1038/jid.2012.404] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Invariant natural killer T (iNKT) cells expressing a CD1d-restricted invariant αβTCR have key regulatory roles in autoimmunity, pathogen immunity, and tumor surveillance, but their function in the control of allergic skin diseases remains poorly documented. Using a model of contact hypersensitivity (CHS) to the hapten DNFB, we show here that iNKT cell deficiency results in enhanced skin inflammation due to augmented hapten-specific IFN-γ-producing CD8(+) effectors in skin draining lymph nodes (dLNs) and their massive recruitment into the allergen-exposed skin. Adoptive transfer and antibody depletion experiments as well as in vitro studies revealed that iNKT cells (1) reduce the severity of CHS, even in presensitized mice, (2) require hapten presentation by CD1d(+) dendritic cells (DCs) to dampen skin inflammation, and (3) produce IL-4 and IL-13 after CD1d-dependent in vitro stimulation by hapten-loaded DCs only in the presence of IFN-γ released from activated CD8(+) effector T cells. In corollary, mice double deficient in IL-4 and IL-13 exhibit an exacerbated CHS. Finally, iNKT-suppressive function is independent of Foxp3(+) regulatory T cells (Tregs). These data highlight that, besides Foxp3(+) Tregs, iNKT cells are potent downregulators of CD8(+) T cell-mediated CHS, and underscore that both cell types are important for the regulation of allergic skin inflammation.
Collapse
|
18
|
Chevigné A, Fievez V, Schmit JC, Deroo S. Engineering and screening the N-terminus of chemokines for drug discovery. Biochem Pharmacol 2011; 82:1438-56. [DOI: 10.1016/j.bcp.2011.07.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/21/2011] [Accepted: 07/22/2011] [Indexed: 01/21/2023]
|
19
|
Raffetseder U, Liehn EA, Weber C, Mertens PR. Role of cold shock Y-box protein-1 in inflammation, atherosclerosis and organ transplant rejection. Eur J Cell Biol 2011; 91:567-75. [PMID: 21943779 DOI: 10.1016/j.ejcb.2011.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 12/14/2022] Open
Abstract
Chemokines (chemoattractant cytokines) are crucial regulators of immune cell extravasation from the bloodstream into inflamed tissue. Dysfunctional regulation and perpetuated chemokine gene expression are linked to progressive chronic inflammatory diseases and, in respect to transplanted organs, may trigger graft rejection. RANTES (regulated upon activation, normal T cell expressed and secreted (also known as CCL5)) is a model chemokine with relevance in numerous inflammatory diseases where the innate immune response predominates. Transcription factor Y-box binding protein-1 (YB-1) serves as a trans-regulator of CCL5 gene transcription in vascular smooth muscle cells and leucocytes. This review provides an update on YB-1 as a mediator of inflammatory processes and focuses on the role of YB-1 in CCL5 expression in diseases with monocytic cell infiltrates, albeit acute or chronic. Paradigms of such diseases encompass atherosclerosis and transplant rejection where cold shock protein YB-1 takes a dominant role in transcriptional regulation.
Collapse
Affiliation(s)
- Ute Raffetseder
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Pauwelsstrasse 30, 52057 Aachen, Germany.
| | | | | | | |
Collapse
|
20
|
Price JA, Rogers JV, Wendling MQS, Plahovinsak JL, Perry MR, Reid FM, Kiser RC, Graham JS. Temporal effects in porcine skin following bromine vapor exposure. Cutan Ocul Toxicol 2011; 30:187-97. [PMID: 21231885 DOI: 10.3109/15569527.2010.546003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bromine is an industrial chemical that causes severe cutaneous burns. When selecting or developing effective treatments for bromine burns, it is important to understand the molecular mechanisms of tissue damage and wound healing. This study investigated the effect of cutaneous bromine vapor exposure on gene expression using a weanling swine burn model by microarray analysis. Ventral abdominal sites were exposed to a mean calculated bromine vapor concentration of 0.51 g/L for 7 or 17 min. At 6 h, 48 h, and 7 days post-exposure, total RNA from skin samples was isolated, processed, and analyzed with Affymetrix GeneChip® Porcine Genome Arrays (N = 3 per experimental group). Differences in gene expression were observed with respect to exposure duration and sampling time. Ingenuity Pathways Analysis (IPA) revealed four common biological functions (cancer, cellular movement, cell-to-cell signaling and interaction, and tissue development) among the top ten functions of each experimental group, while canonical pathway analysis revealed 9 genes (ARG2, CCR1, HMOX1, ATF2, IL-8, TIMP1, ESR1, HSPAIL, and SELE) that were commonly shared among four significantly altered signaling pathways. Among these, the transcripts encoding HMOX1 and ESR1 were identified using IPA as common potential therapeutic targets for Phase II/III clinical trial or FDA-approved drugs. The present study describes the transcriptional responses to cutaneous bromine vapor exposure identifying molecular networks and genes that could serve as targets for developing therapeutics for bromine-induced skin injury.
Collapse
|