1
|
Development of artemisinin resistance in malaria therapy. Pharmacol Res 2019; 146:104275. [DOI: 10.1016/j.phrs.2019.104275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/23/2023]
|
2
|
Possible Role of the Ca 2+/Mn 2+ P-Type ATPase Pmr1p on Artemisinin Toxicity through an Induction of Intracellular Oxidative Stress. Molecules 2019; 24:molecules24071233. [PMID: 30934859 PMCID: PMC6480206 DOI: 10.3390/molecules24071233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 02/04/2023] Open
Abstract
Artemisinins are widely used to treat Plasmodium infections due to their high clinical efficacy; however, the antimalarial mechanism of artemisinin remains unresolved. Mutations in P. falciparum ATPase6 (PfATP6), a sarcoplasmic endoplasmic reticulum Ca2+-transporting ATPase, are associated with increased tolerance to artemisinin. We utilized Saccharomyces cerevisiae as a model to examine the involvement of Pmr1p, a functional homolog of PfATP6, on the toxicity of artemisinin. Our analysis demonstrated that cells lacking Pmr1p are less susceptible to growth inhibition from artemisinin and its derivatives. No association between sensitivity to artemisinin and altered trafficking of the drug efflux pump Pdr5p, calcium homeostasis, or protein glycosylation was found in pmr1∆ yeast. Basal ROS levels are elevated in pmr1∆ yeast and artemisinin exposure does not enhance ROS accumulation. This is in contrast to WT cells that exhibit a significant increase in ROS production following treatment with artemisinin. Yeast deleted for PMR1 are known to accumulate excess manganese ions that can function as ROS-scavenging molecules, but no correlation between manganese content and artemisinin resistance was observed. We propose that loss of function mutations in Pmr1p in yeast cells and PfATP6 in P. falciparum are protective against artemisinin toxicity due to reduced intracellular oxidative damage.
Collapse
|
3
|
Nguetse CN, Adegnika AA, Agbenyega T, Ogutu BR, Krishna S, Kremsner PG, Velavan TP. Molecular markers of anti-malarial drug resistance in Central, West and East African children with severe malaria. Malar J 2017; 16:217. [PMID: 28535801 PMCID: PMC5442681 DOI: 10.1186/s12936-017-1868-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/17/2017] [Indexed: 11/10/2022] Open
Abstract
Background The Plasmodium falciparum multidrug resistance 1 (PfMDR1), P. falciparum Ca2+-ATPase (PfATP6) and Kelch-13 propeller domain (PfK13) loci are molecular markers of parasite susceptibility to anti-malarial drugs. Their frequency distributions were determined in the isolates collected from children with severe malaria originating from three African countries. Methods Samples from 287 children with severe malaria [(Gabon: n = 114); (Ghana: n = 89); (Kenya: n = 84)] were genotyped for pfmdr1, pfatp6 and pfk13 loci by DNA sequencing and assessing pfmdr1 copy number variation (CNV) by real-time PCR. Results Pfmdr1-N86Y mutation was detected in 48, 10 and 10% in Lambaréné, Kumasi and Kisumu, respectively. At codon 184, the prevalence of the mutation was 73% in Lambaréné, 63% in Kumasi and 49% Kisumu. The S1034C and N1042D variants were absent at all three sites, while the frequency of the D1246Y mutation was 1, 3 and 13% in Lambaréné, Kumasi and Kisumu, respectively. Isolates with two pfmdr1 gene copy number predominantly harboured the N86Y wild-type allele and were mostly found in Kumasi (10%) (P < 0.0001). Among the main pfmdr1 haplotypes (NFD, NYD and YFD), NYD was associated with highest parasitaemia (P = 0.04). At the pfatp6 locus, H243Y and A623E mutations were observed at very low frequency at all three sites. The prevalence of the pfatp6 E431K variant was 6, 18 and 17% in Lambaréné, Kumasi and Kisumu, respectively. The L263E and S769N mutations were absent in all isolates. The pfk13 variants associated with artemisinin resistance in Southeast Asia were not observed. Eleven novel substitutions in the pfk13 locus occurring at low frequency were observed. Conclusions Artemisinins are still highly efficacious in large malaria-endemic regions though declining efficacy has occurred in Southeast Asia. The return of chloroquine-sensitive strains following the removal of drug pressure is observed. However, selection of wild-type alleles in the multidrug-resistance gene and the increased gene copy number is associated with reduced lumefantrine sensitivity. This study indicates a need to constantly monitor drug resistance to artemisinin in field isolates from malaria-endemic countries.
Collapse
Affiliation(s)
- Christian N Nguetse
- Institute of Tropical Medicine, University Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
| | - Ayola Akim Adegnika
- Institute of Tropical Medicine, University Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Tsiri Agbenyega
- Department of Physiology, University of Science and Technology, School of Medical Sciences, Kumasi, Ghana.,Departments of Child Health and Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Bernhards R Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Sanjeev Krishna
- Institute of Tropical Medicine, University Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,Institute for Infection and Immunity, St George's University of London, London, UK
| | - Peter G Kremsner
- Institute of Tropical Medicine, University Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany. .,Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo. .,Vietnamese-German Center for Medical Research, Hanoi, Vietnam. .,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
4
|
Aponte S, Guerra ÁP, Álvarez-Larrotta C, Bernal SD, Restrepo C, González C, Yasnot MF, Knudson-Ospina A. Baseline in vivo, ex vivo and molecular responses of Plasmodium falciparum to artemether and lumefantrine in three endemic zones for malaria in Colombia. Trans R Soc Trop Med Hyg 2017; 111:71-80. [DOI: 10.1093/trstmh/trx021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/13/2017] [Indexed: 01/28/2023] Open
|
5
|
Reappraising the effects of artemisinin on the ATPase activity of PfATP6 and SERCA1a E255L expressed in Xenopus laevis oocytes. Nat Struct Mol Biol 2016; 23:1-2. [PMID: 26733217 DOI: 10.1038/nsmb.3156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Figueiredo HCP, Soares SC, Pereira FL, Dorella FA, Carvalho AF, Teixeira JP, Azevedo VAC, Leal CAG. Comparative genome analysis of Weissella ceti, an emerging pathogen of farm-raised rainbow trout. BMC Genomics 2015; 16:1095. [PMID: 26694728 PMCID: PMC4687380 DOI: 10.1186/s12864-015-2324-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background The genus Weissella belongs to the lactic acid bacteria and includes 18 currently identified species, predominantly isolated from fermented food but rarely from cases of bacteremia in animals. Recently, a new species, designated Weissella ceti, has been correlated with hemorrhagic illness in farm-raised rainbow trout in China, Brazil, and the USA, with high transmission and mortality rates during outbreaks. Although W. ceti is an important emerging veterinary pathogen, little is known about its genomic features or virulence mechanisms. To better understand these and to characterize the species, we have previously sequenced the genomes of W. ceti strains WS08, WS74, and WS105, isolated from different rainbow trout farms in Brazil and displaying different pulsed-field gel electrophoresis patterns. Here, we present a comparative analysis of the three previously sequenced genomes of W. ceti strains from Brazil along with W. ceti NC36 from the USA and those of other Weissella species. Results Phylogenomic and orthology-based analyses both showed a high-similarity in the genetic structure of these W. ceti strains. This structure is corroborated by the highly syntenic order of their genes and the neutral evolution inferred from Tajima’s D. A whole-genome multilocus sequence typing analysis distinguished strains WS08 and NC36 from strains WS74 and WS105. We predicted 10 putative genomic islands (GEI), among which PAIs 3a and 3b are phage sequences that occur only in WS105 and WS74, respectively, whereas PAI 1 is species specific. Conclusions We identified several genes putatively involved in the basic processes of bacterial physiology and pathogenesis, including survival in aquatic environment, adherence in the host, spread inside the host, resistance to immune-system-mediated stresses, and antibiotic resistance. These data provide new insights in the molecular epidemiology and host adaptation for this emerging pathogen in aquaculture. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2324-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Henrique C P Figueiredo
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,Veterinary School, Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, 30161-970, MG, Brazil.
| | - Siomar C Soares
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Felipe L Pereira
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Fernanda A Dorella
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Alex F Carvalho
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Júnia P Teixeira
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Vasco A C Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute for Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Carlos A G Leal
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Fisheries and Aquaculture, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Kiaco K, Teixeira J, Machado M, do Rosário V, Lopes D. Evaluation of artemether-lumefantrine efficacy in the treatment of uncomplicated malaria and its association with pfmdr1, pfatpase6 and K13-propeller polymorphisms in Luanda, Angola. Malar J 2015; 14:504. [PMID: 26670642 PMCID: PMC4681156 DOI: 10.1186/s12936-015-1018-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/26/2015] [Indexed: 11/10/2022] Open
Abstract
Background Drug resistance in Plasmodiumfalciparum has posed an obstacle to effective treatment and challenges many malaria control programmes in endemic areas. In Angola, until 2003, chloroquine (CQ) was used as first-line therapy for uncomplicated malaria. It was replaced initially by amodiaquine and, in 2006, by artemisinin-based combination therapy (ACT) with artemether-lumefantrine (AL, Coartem®). Efficacy study of ACT, conducted in Angola between 2004 and 2005, showed a baseline efficacy of ≈99 %. Methods 103 malaria patients were enrolled according to WHO proceedings. Patients were followed up with clinical and parasitological evaluations for 28 days, parasite density and identification was evaluated by microscopy, the pfmsp2 were genotyped by nested-PCR, to distinguish parasite recrudescence from new infections; the polymorphisms at codons 86 and 1246 of pfmdr1 gene, and 769 of pfatp6 gene were assessed by PCR–RFLP and sequencing for pfk13-propeller genotype. Results The cure rate was 91.3 %. The obtained results showed that from 103 patients, 12.6 % (n = 13) still had parasitaemia 1 day after the treatment was finished. On day 0, of the 94 evaluated samples, wild-type alleles were identified in 73.4 % (n = 69) for pfmdr1 N86Y position and only one sample carried the mutant allele (Y) for pfmdr1 1246; 14 % of these samples showed increased pfmdr1 copy number; 100 % (n = 21) had wild-type allele of k13 gene in all the studied positions. Discussion These results showed changes in parasite profile susceptibility to AL in comparison to the baseline data from 2002 to 2004 and on the genotyping characteristics; the clinical outcome after treatment with AL did not link a particular genotype with treatment failure; observed changes do not provide sufficient evidence for a treatment policy change, but they suggest that a carefully monitoring is needed in this area.
Collapse
Affiliation(s)
- Kinanga Kiaco
- Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal. .,Serviços de Saúde das Forças Armadas Angolanas, Estado Maior General das Forças Armadas, Luanda, Angola.
| | - Joana Teixeira
- Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
| | - Marta Machado
- Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal. .,Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
| | - Virgílio do Rosário
- Unidade de Parasitologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
| | - Dinora Lopes
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
| |
Collapse
|
8
|
Gupta R, Mishra N, Kumar A, Rana R, Srivastava B, Tyagi PK, Anvikar AR, Valecha N. Monitoring artemisinin resistance in Plasmodium falciparum: comparison of parasite clearance time by microscopy and real-time PCR and evaluation of mutations in Pfatpase6 gene in Odisha state of India. Parasitol Res 2015; 114:3487-96. [DOI: 10.1007/s00436-015-4577-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/10/2015] [Indexed: 11/28/2022]
|
9
|
Heuchert A, Abduselam N, Zeynudin A, Eshetu T, Löscher T, Wieser A, Pritsch M, Berens-Riha N. Molecular markers of anti-malarial drug resistance in southwest Ethiopia over time: regional surveillance from 2006 to 2013. Malar J 2015; 14:208. [PMID: 25986047 PMCID: PMC4490604 DOI: 10.1186/s12936-015-0723-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/05/2015] [Indexed: 01/29/2023] Open
Abstract
Background Drug resistance is one of the main reasons of anti-malarial treatment failures and impedes malaria containment strategies. As single nucleotide polymorphisms (SNPs) have been found to correlate with anti-malarial drug resistance, the surveillance strategy includes continuous monitoring of known molecular markers and detection of new mutation patterns. With the introduction of artemisinin-based combination therapy, selection of specific patterns has been observed worldwide. Methods From March to June 2013, whole blood was collected on filter paper from microscopically malaria positive patients in Jimma zone (District), southwestern Ethiopia. Plasmodium falciparum, Plasmodium vivax and mixed infections were included. SNPs were investigated by conventional or real-time PCR, restriction fragment length pattern analysis or sequencing. Results were compared to molecular patterns from Ethiopian isolates in 2004, 2006 and 2008/9. Results Plasmodium falciparum, P. vivax, and mixed infections were molecularly confirmed in 177, 80, and 14 samples, respectively. In P. falciparum, mutations in the pfcrt, pfmdr 1and pfATP 6 (SERCA) gene were investigated. Whereas the mutation in the pfcrt gene at codon 76 K was still found in 95.6 % of all samples, the pfmdr 1 86 T mutation fell to 1.2 % (2/163) in 2013 compared to 9 % in 2008/9 and 86 % in 2006 (P <0.001). The pfmdr 1 184 F mutation dominated with 100.0 % (172/172) in 2013. Sequencing of the recently reported PF3D7_1343700 kelch propeller domain showed no mutation at codon 476. First sequencing data of the pvmdr 1 gene from Jimma region revealed a prevalence of the mutations 976 F and 1076 L in 72.7 % (16/23) and 100.0 % (19/19) of the isolates, respectively. Conclusion Since the introduction of artemether-lumefantrine (AL) in Jimma, Ethiopia, in 2006, the prevalence of certain SNPs associated with AL use has increased. Markers for chloroquine resistance in P. vivax were highly frequent. Continuous molecular and clinical surveillance are of paramount importance. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0723-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Heuchert
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Leopoldstrasse 5, 80802, Munich, Germany.
| | - Nuredin Abduselam
- Department of Laboratory Sciences and Pathology, Jimma University, Jimma for Infection Research (DZIF) at LMU, Munich, Germany.
| | - Ahmed Zeynudin
- Department of Laboratory Sciences and Pathology, Jimma University, Jimma for Infection Research (DZIF) at LMU, Munich, Germany.
| | - Teferi Eshetu
- Department of Laboratory Sciences and Pathology, Jimma University, Jimma for Infection Research (DZIF) at LMU, Munich, Germany.
| | - Thomas Löscher
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Leopoldstrasse 5, 80802, Munich, Germany.
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Leopoldstrasse 5, 80802, Munich, Germany. .,Department of Laboratory Sciences and Pathology, Jimma University, Jimma for Infection Research (DZIF) at LMU, Munich, Germany. .,German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany. .,Max von Pettenkofer-Institute of Hygiene and Medical Microbiology, Munich, Germany.
| | - Michael Pritsch
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Leopoldstrasse 5, 80802, Munich, Germany. .,German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany.
| | - Nicole Berens-Riha
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Leopoldstrasse 5, 80802, Munich, Germany.
| |
Collapse
|
10
|
Pimenta PFP, Orfano AS, Bahia AC, Duarte APM, Ríos-Velásquez CM, Melo FF, Pessoa FAC, Oliveira GA, Campos KMM, Villegas LM, Rodrigues NB, Nacif-Pimenta R, Simões RC, Monteiro WM, Amino R, Traub-Cseko YM, Lima JBP, Barbosa MGV, Lacerda MVG, Tadei WP, Secundino NFC. An overview of malaria transmission from the perspective of Amazon Anopheles vectors. Mem Inst Oswaldo Cruz 2015; 110:23-47. [PMID: 25742262 PMCID: PMC4371216 DOI: 10.1590/0074-02760140266] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023] Open
Abstract
In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.
Collapse
Affiliation(s)
- Paulo FP Pimenta
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | - Ana C Bahia
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Ana PM Duarte
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | - Fabrício F Melo
- Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, MG,
Brasil
| | | | | | - Keillen MM Campos
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | | | | | | | - Rejane C Simões
- Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brasil
| | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Rogerio Amino
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, Paris,
France
| | | | - José BP Lima
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Maria GV Barbosa
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
| | - Marcus VG Lacerda
- Fundação de Medicina Tropical Dr Heitor Vieira Dourado, Manaus, AM,
Brasil
- Instituto Leônidas e Maria Deane-Fiocruz, Manaus, AM, Brasil
| | | | | |
Collapse
|
11
|
Occurrence of pfatpase6 Single Nucleotide Polymorphisms Associated with Artemisinin Resistance among Field Isolates of Plasmodium falciparum in North-Eastern Tanzania. Malar Res Treat 2015; 2015:279028. [PMID: 25685593 PMCID: PMC4313681 DOI: 10.1155/2015/279028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/12/2014] [Indexed: 12/25/2022] Open
Abstract
We aimed to determine the current prevalence of four P. falciparum candidate artemisinin resistance biomarkers L263E, E431K, A623E, and S769N in the pfatpase6 gene in a high transmission area in Tanzania in a retrospective cross sectional study using 154 archived samples collected from three previous malaria studies in 2010, 2011 and 2013. Mutations in pfatpase6 gene were detected in parasite DNA isolated from Dried Blood Spots by using PCR-RFLP. We observed overall allelic frequencies for L263E, E431K, A623E, and S769N to be 5.8% (9/154), 16.2% (25/154), 0.0% (0/154), and 3.9% (6/154). The L263E mutation was not detected in 2010 but occurred at 3.9% and 2.6% in 2011 and 2013 respectively. The L263E mutation showed a significant change of frequency between 2010 and 2011, but not between 2011 and 2013 (P < 0.05). Frequency of E431K was highest of all without any clear trend whereas S769N increased from 2.2% in 2010 to 3.6% in 2011 and 5.1% in 2013. A623E mutation was not detected. The worrisome detection and the increase in the frequency of S769N and other mutations calls for urgent assessment of temporal changes of known artemisinin biomarkers in association with in vivo ACT efficacy.
Collapse
|
12
|
Na-Bangchang K, Karbwang J. Emerging artemisinin resistance in the border areas of Thailand. Expert Rev Clin Pharmacol 2013; 6:307-22. [PMID: 23656342 DOI: 10.1586/ecp.13.17] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emergence of artemisinin resistance has been confirmed in Cambodia and the border areas of Thailand, the well-known hotspots of multidrug resistance Plasmodium falciparum. It appears to be spreading to the western border of Thailand along the Thai-Myanmar border, and will probably spread to other endemic areas of the world in the near future. This raises a serious concern on the long-term efficacy of artemisinin-based combination therapies, as these combination therapies currently constitute the last effective and most tolerable treatment for multidrug-resistant Plasmodium falciparum. Attempts have been made by a diverse array of stakeholders to prevent the emergence of new foci of artemisinin resistance, as well as to limit the spread of resistance to the original foci. The success in achieving this goal depends on effective integration of containment and surveillance programs with other malaria control measures, with support from both basic and operational research.
Collapse
|
13
|
Ménard D, Ariey F, Mercereau-Puijalon O. [Plasmodium falciparum susceptibility to antimalarial drugs: global data issued from the Pasteur Institutes international network]. Med Sci (Paris) 2013; 29:647-55. [PMID: 23859522 DOI: 10.1051/medsci/2013296020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Malaria research units within the Institut Pasteur international network (RIIP-Palu) located in Africa, in South-East Asia and in South America, work for many years in close collaboration with the National malaria control programmes. Relying on technical platforms with well-equipped laboratories and scientific expertise, they are at the forefront of research on the antimalarial drug resistance by working together for training young scientists and developping similar protocols allowing comprehensive comparisons. Including fundamental and operational researches, they conduct regional and international projects which aim (1) to detect the emergence of antimalarial drugs resistant parasites and to evaluate their spatio-temporal distribution, (2) to develop in vitro and molecular tools, (3) to identify epidemiological factors involved in the emergence and the spread of antimalarial drugs resistant parasites and (4) to understand the molecular and cellular mechanisms implicated in resistance. In this review, will be presented methodological approaches and data obtained since 2000.
Collapse
Affiliation(s)
- Didier Ménard
- Institut Pasteur du Cambodge, unité d'épidémiologie moléculaire du paludisme, Cambodge
| | | | | |
Collapse
|
14
|
Pulcini S, Staines HM, Pittman JK, Slavic K, Doerig C, Halbert J, Tewari R, Shah F, Avery MA, Haynes RK, Krishna S. Expression in yeast links field polymorphisms in PfATP6 to in vitro artemisinin resistance and identifies new inhibitor classes. J Infect Dis 2013; 208:468-78. [PMID: 23599312 DOI: 10.1093/infdis/jit171] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The mechanism of action of artemisinins against malaria is unclear, despite their widespread use in combination therapies and the emergence of resistance. RESULTS Here, we report expression of PfATP6 (a SERCA pump) in yeast and demonstrate its inhibition by artemisinins. Mutations in PfATP6 identified in field isolates (such as S769N) and in laboratory clones (such as L263E) decrease susceptibility to artemisinins, whereas they increase susceptibility to unrelated inhibitors such as cyclopiazonic acid. As predicted from the yeast model, Plasmodium falciparum with the L263E mutation is also more susceptible to cyclopiazonic acid. An inability to knockout parasite SERCA pumps provides genetic evidence that they are essential in asexual stages of development. Thaperoxides are a new class of potent antimalarial designed to act by inhibiting PfATP6. Results in yeast confirm this inhibition. CONCLUSIONS The identification of inhibitors effective against mutated PfATP6 suggests ways in which artemisinin resistance may be overcome.
Collapse
Affiliation(s)
- Serena Pulcini
- Division of Clinical Sciences, St. George's, University of London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Miao M, Wang Z, Yang Z, Yuan L, Parker DM, Putaporntip C, Jongwutiwes S, Xangsayarath P, Pongvongsa T, Moji H, Dinh Tuong T, Abe T, Nakazawa S, Kyaw MP, Yan G, Sirichaisinthop J, Sattabongkot J, Mu J, Su XZ, Kaneko O, Cui L. Genetic diversity and lack of artemisinin selection signature on the Plasmodium falciparum ATP6 in the Greater Mekong Subregion. PLoS One 2013; 8:e59192. [PMID: 23555629 PMCID: PMC3608609 DOI: 10.1371/journal.pone.0059192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/12/2013] [Indexed: 11/30/2022] Open
Abstract
The recent detection of clinical Artemisinin (ART) resistance manifested as delayed parasite clearance in the Cambodia-Thailand border area raises a serious concern. The mechanism of ART resistance is not clear; but the P. falciparum sarco/endoplasmic reticulum Ca2+-ATPase (PfSERCA or PfATP6) has been speculated to be the target of ARTs and thus a potential marker for ART resistance. Here we amplified and sequenced pfatp6 gene (∼3.6 Kb) in 213 samples collected after 2005 from the Greater Mekong Subregion, where ART drugs have been used extensively in the past. A total of 24 single nucleotide polymorphisms (SNPs), including 8 newly found in this study and 13 nonsynonymous, were identified. However, these mutations were either uncommon or also present in other geographical regions with limited ART use. None of the mutations were suggestive of directional selection by ARTs. We further analyzed pfatp6 from a worldwide collection of 862 P. falciparum isolates in 19 populations from Asia, Africa, South America and Oceania, which include samples from regions prior to and after deployments ART drugs. A total of 71 SNPs were identified, resulting in 106 nucleotide haplotypes. Similarly, many of the mutations were continent-specific and present at frequencies below 5%. The most predominant and perhaps the ancestral haplotype occurred in 441 samples and was present in 16 populations from Asia, Africa, and Oceania. The 3D7 haplotype found in 54 samples was the second most common haplotype and present in nine populations from all four continents. Assessment of the selection strength on pfatp6 in the 19 parasite populations found that pfatp6 in most of these populations was under purifying selection with an average dN/dS ratio of 0.333. Molecular evolution analyses did not detect significant departures from neutrality in pfatp6 for most populations, challenging the suitability of this gene as a marker for monitoring ART resistance.
Collapse
Affiliation(s)
- Miao Miao
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Zenglei Wang
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Zhaoqing Yang
- Parasitology Department, Kunming Medical College, Kunming, Yunnan, China
| | - Lili Yuan
- Parasitology Department, Kunming Medical College, Kunming, Yunnan, China
| | - Daniel M. Parker
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Chulalongkorn University, Bangkok, Thailand
| | - Phonepadith Xangsayarath
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN) and the Global Center of Excellence program, Nagasaki University, Japan
| | - Tiengkham Pongvongsa
- Station of Malariology, Parasitology and Entomology, North Phonesavang Village, Kaysone District, Savannakhet Province, Laos
| | - Hazuhiko Moji
- Research Institute for Humanity and Nature, Kyoto, Japan
| | - Trinh Dinh Tuong
- Department of Epidemiology, National Institute of Malariology, Parasitology, and Entomology, Hanoi, Vietnam
| | - Tomoko Abe
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN) and the Global Center of Excellence program, Nagasaki University, Japan
| | - Shusuke Nakazawa
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN) and the Global Center of Excellence program, Nagasaki University, Japan
| | - Myat Phone Kyaw
- Parasitology Research Division, Department of Medical Research-Lower Myanmar, Yangon, Myanmar
| | - Guiyun Yan
- Program in Public Health, University of California Irvine, Irvine, California, United States of America
| | | | | | - Jianbing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Osamu Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN) and the Global Center of Excellence program, Nagasaki University, Japan
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Fernández-Martínez A, Mula P, Cravo P, Charle P, Amor A, Ncogo P, Benito A, Berzosa P. Characterization of the Plasmodium falciparum sarcoplasmic/endoplasmic reticulum Ca2+-ATPase gene in samples from Equatorial Guinea before implementation of artemisinin-based combination therapy. Am J Trop Med Hyg 2012. [PMID: 23185077 PMCID: PMC3541744 DOI: 10.4269/ajtmh.2012.12-0364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plasmodium falciparum resistance to the primary drugs used for treatment of malaria has become the main obstacle to malaria control. Artemisinin combination therapies are the current treatment strategy, and it has been suggested that resistance to artemisinin derivatives may be related to mutations in the Plasmodium falciparum sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase ortholog of the mammalian sarco-endoplasmic reticulum Ca(2+) ATPase gene, known as the pfatp6 gene. Thus, the purpose of this study was to determine the prevalence of single-nucleotide polymorphisms (SNPs) in pfatp6. The presence of different SNPs was detected by polymerase chain reaction amplification of the pfatp6 gene, and then sequencing to identify all possible alleles of the gene. A total of 20 SNPs were detected, including eight SNPs that have not been previously described: K481R in Malabo; R801H on Annobon Island; and the synonymous SNPs a141t, c1788t, a2211g, t2739g, a2760c, and g2836a. The genotypic profile of pfatp6 in samples from Equatorial Guinea, may be a useful epidemiologic tool for monitoring local efficacy of artemisinin combination therapies.
Collapse
Affiliation(s)
- Amalia Fernández-Martínez
- *Address correspondence to Amalia Fernández-Martínez, Malaria Laboratory, National Centre of Tropical Medicine, Carlos III Institute of Health, C/Melchor Fernández Almagro 3, Pabellón 13, 28029 Madrid, Spain. E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zakeri S, Hemati S, Pirahmadi S, Afsharpad M, Raeisi A, Djadid ND. Molecular assessment of atpase6 mutations associated with artemisinin resistance among unexposed and exposed Plasmodium falciparum clinical isolates to artemisinin-based combination therapy. Malar J 2012; 11:373. [PMID: 23140394 PMCID: PMC3552969 DOI: 10.1186/1475-2875-11-373] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 10/31/2012] [Indexed: 11/17/2022] Open
Abstract
Background Artemisinin-based combination therapy (ACT) is the mainstay of global efforts for treatment of Plasmodium falciparum malaria, but decline in its efficacy is the most important obstacle towards malaria control and elimination. Therefore, the present molecular analysis provides information on putative mutations associated with artemisinin resistance in P. falciparum clinical population unexposed and exposed to artesunate 4 years after adoption of ACT as the first-line anti-malarial therapy in Iran. Methods In this study, blood samples (n = 226) were collected from uncomplicated P. falciparum-infected patients from different health centers of Chabahar district in Sistan and Baluchistan province in the south-eastern part of Iran, during 2003 to 2010. All collected isolates were analysed for putative candidate mutations (TTA) L263E (GAA), (GAA) E431K (AAA), (GCA) A623E (GAA) and (AGT) S769N (AAT) of pfatpase6 gene using nested PCR/RFLP, followed by sequencing. Furthermore, the gene copy number was assessed by real-time quantitative PCR (RT-qPCR) in the presence of SYBR green. Results Neither the pfatpase6 L263E nor the A623E mutation was detected among all examined isolates. The E431K mutation was found in 23% of the analysed samples unexposed to ACT; however, it was detected in 17.8% (34/191) of P. falciparum isolates exposed to artesunate after 2007. High frequency of this single nucleotide polymorphisms (SNP) (overall 18.6%) among both examined groups (X2 test, P>0.05) indicated that this SNP should be considered as an unrelated mutation to artemisinin resistance. In contrast, S769N mutation was not detected in unexposed isolates; however, it was found in 2.6% (5/191), four years after introduction of ACT in this malaria setting. Also, detected SNPs were not significantly frequent in both unexposed and exposed examined isolates (X2 test, P> 0.05). Investigation in the copy number of pfatpase6 gene revealed a similar number of copy (n = 1) as in an isolate sensitive to artemisinin. Conclusion Taken together, the results suggest, in particular, that pfatpase6 S769N gene needs more consideration for its possible association with artesunate resistance among P. falciparum isolates.
Collapse
Affiliation(s)
- Sedigheh Zakeri
- Malaria and Vector Research Group MVRG, Biotechnology Research Center BRC, Pasteur Institut, P. O. Box 1316943551, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
18
|
Wang Z, Parker D, Meng H, Wu L, Li J, Zhao Z, Zhang R, Fan Q, Wang H, Cui L, Yang Z. In vitro sensitivity of Plasmodium falciparum from China-Myanmar border area to major ACT drugs and polymorphisms in potential target genes. PLoS One 2012; 7:e30927. [PMID: 22701513 PMCID: PMC3365119 DOI: 10.1371/journal.pone.0030927] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/25/2011] [Indexed: 01/16/2023] Open
Abstract
Drug resistance has always been one of the most important impediments to global malaria control. Artemisinin resistance has recently been confirmed in the Greater Mekong Subregion (GMS) and efforts for surveillance and containment are intensified. To determine potential mechanisms of artemisinin resistance and monitor the emergence and spread of resistance in other regions of the GMS, we investigated the in vitro sensitivity of 51 culture-adapted parasite isolates from the China-Myanmar border area to four drugs. The 50% inhibitory concentrations (IC₅₀s) of dihydroartemisinin, mefloquine and lumefantrine were clustered in a relatively narrow, 3- to 6-fold range, whereas the IC₅₀ range of artesunate was 12-fold. We assessed the polymorphisms of candidate resistance genes pfcrt, pfmdr1, pfATP6, pfmdr6 and pfMT (a putative metabolite/drug transporter). The K76T mutation in pfcrt reached fixation in the study parasite population, whereas point mutations in pfmdr1 and pfATP6 had low levels of prevalence. In addition, pfmdr1 gene amplification was not detected. None of the mutations in pfmdr1 and pfATP6 was associated significantly with in vitro sensitivity to artemisinin derivatives. The ABC transporter gene pfmdr6 harbored two point mutations, two indels, and number variations in three simple repeats. Only the length variation in a microsatellite repeat appeared associated with altered sensitivity to dihydroartemisinin. The PfMT gene had two point mutations and one codon deletion; the I30N and N496- both reached high levels of prevalence. However, none of the SNPs or haplotypes in PfMT were correlated significantly with resistance to the four tested drugs. Compared with other parasite populations from the GMS, our studies revealed drastically different genotype and drug sensitivity profiles in parasites from the China-Myanmar border area, where artemisinins have been deployed extensively for over 30 years.
Collapse
Affiliation(s)
- Zenglei Wang
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Daniel Parker
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hao Meng
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Parasitology, Kunming Medical University, Kunming, Yunnan, China
| | - Lanou Wu
- Department of Pharmacology, Kunming Medical University, Kunming, Yunnan, China
| | - Jia Li
- Department of Parasitology, Kunming Medical University, Kunming, Yunnan, China
| | - Zhen Zhao
- Department of Parasitology, Kunming Medical University, Kunming, Yunnan, China
| | - Rongping Zhang
- Department of Pharmaceutical Chemistry, Kunming Medical University, Kunming, Yunnan, China
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Haiyan Wang
- Department of Statistics, Kansas State University, Manhattan, Kansas, United States of America
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail: (LC); (ZY)
| | - Zhaoqing Yang
- Department of Parasitology, Kunming Medical University, Kunming, Yunnan, China
- * E-mail: (LC); (ZY)
| |
Collapse
|
19
|
Pillai DR, Lau R, Khairnar K, Lepore R, Via A, Staines HM, Krishna S. Artemether resistance in vitro is linked to mutations in PfATP6 that also interact with mutations in PfMDR1 in travellers returning with Plasmodium falciparum infections. Malar J 2012; 11:131. [PMID: 22540925 PMCID: PMC3422158 DOI: 10.1186/1475-2875-11-131] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/27/2012] [Indexed: 11/28/2022] Open
Abstract
Background Monitoring resistance phenotypes for Plasmodium falciparum, using in vitro growth assays, and relating findings to parasite genotype has proved particularly challenging for the study of resistance to artemisinins. Methods Plasmodium falciparum isolates cultured from 28 returning travellers diagnosed with malaria were assessed for sensitivity to artemisinin, artemether, dihydroartemisinin and artesunate and findings related to mutations in pfatp6 and pfmdr1. Results Resistance to artemether in vitro was significantly associated with a pfatp6 haplotype encoding two amino acid substitutions (pfatp6 A623E and S769N; (mean IC50 (95% CI) values of 8.2 (5.7 – 10.7) for A623/S769 versus 623E/769 N 13.5 (9.8 – 17.3) nM with a mean increase of 65%; p = 0.012). Increased copy number of pfmdr1 was not itself associated with increased IC50 values for artemether, but when interactions between the pfatp6 haplotype and increased copy number of pfmdr1 were examined together, a highly significant association was noted with IC50 values for artemether (mean IC50 (95% CI) values of 8.7 (5.9 – 11.6) versus 16.3 (10.7 – 21.8) nM with a mean increase of 87%; p = 0.0068). Previously described SNPs in pfmdr1 are also associated with differences in sensitivity to some artemisinins. Conclusions These findings were further explored in molecular modelling experiments that suggest mutations in pfatp6 are unlikely to affect differential binding of artemisinins at their proposed site, whereas there may be differences in such binding associated with mutations in pfmdr1. Implications for a hypothesis that artemisinin resistance may be exacerbated by interactions between PfATP6 and PfMDR1 and for epidemiological studies to monitor emerging resistance are discussed.
Collapse
Affiliation(s)
- Dylan R Pillai
- Centre for Infection and Immunity, Division of Clinical Sciences, St, George's, University of London, London SW17 0RE, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Plattner H, Sehring IM, Mohamed IK, Miranda K, De Souza W, Billington R, Genazzani A, Ladenburger EM. Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium, Tetrahymena) vs. parasitic Apicomplexa (Plasmodium, Toxoplasma). Cell Calcium 2012; 51:351-82. [PMID: 22387010 DOI: 10.1016/j.ceca.2012.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 12/20/2022]
Abstract
The importance of Ca2+-signaling for many subcellular processes is well established in higher eukaryotes, whereas information about protozoa is restricted. Recent genome analyses have stimulated such work also with Alveolates, such as ciliates (Paramecium, Tetrahymena) and their pathogenic close relatives, the Apicomplexa (Plasmodium, Toxoplasma). Here we compare Ca2+ signaling in the two closely related groups. Acidic Ca2+ stores have been characterized in detail in Apicomplexa, but hardly in ciliates. Two-pore channels engaged in Ca2+-release from acidic stores in higher eukaryotes have not been stingently characterized in either group. Both groups are endowed with plasma membrane- and endoplasmic reticulum-type Ca2+-ATPases (PMCA, SERCA), respectively. Only recently was it possible to identify in Paramecium a number of homologs of ryanodine and inositol 1,3,4-trisphosphate receptors (RyR, IP3R) and to localize them to widely different organelles participating in vesicle trafficking. For Apicomplexa, physiological experiments suggest the presence of related channels although their identity remains elusive. In Paramecium, IP3Rs are constitutively active in the contractile vacuole complex; RyR-related channels in alveolar sacs are activated during exocytosis stimulation, whereas in the parasites the homologous structure (inner membrane complex) may no longer function as a Ca2+ store. Scrutinized comparison of the two closely related protozoan phyla may stimulate further work and elucidate adaptation to parasitic life. See also "Conclusions" section.
Collapse
Affiliation(s)
- H Plattner
- Department of Biology, University of Konstanz, P.O. Box 5560, 78457 Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lack of association of the S769N mutation in Plasmodium falciparum SERCA (PfATP6) with resistance to artemisinins. Antimicrob Agents Chemother 2012; 56:2546-52. [PMID: 22354307 DOI: 10.1128/aac.05943-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recent emergence of artemisinin (ART) resistance in Plasmodium falciparum in western Cambodia, manifested as delayed parasite clearance, is a big threat to the long-term efficacy of this family of antimalarial drugs. Among the multiple candidate genes associated with ART resistance in P. falciparum, the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase PfATP6 has been postulated as a specific target of ARTs. The PfATP6 gene harbors multiple single-nucleotide polymorphisms in field parasite populations, and S769N has been associated with decreased sensitivity to artemether in parasite populations from French Guiana. In this study, we used an allelic exchange strategy to engineer parasite lines carrying the S769N mutations in P. falciparum strain 3D7 and evaluated whether introduction of this mutation modulated parasite sensitivity to ART derivatives. Using three transgenic lines carrying the 769N mutation and two transgenic lines carrying the wild-type 769S as controls, we found that S769N did not affect PfATP6 gene expression. We compared the sensitivities of these parasite lines to three ART derivatives, artemether, artesunate, and dihydroartemisinin, in 18 biological experiments and detected no significant effect of the S769N mutation on parasite response to these ART derivatives. This study provides further evidence for the lack of association of PfATP6 with ART resistance.
Collapse
|
22
|
Harris C, Morlais I, Churcher TS, Awono-Ambene P, Gouagna LC, Dabire RK, Fontenille D, Cohuet A. Plasmodium falciparum produce lower infection intensities in local versus foreign Anopheles gambiae populations. PLoS One 2012; 7:e30849. [PMID: 22292059 PMCID: PMC3266902 DOI: 10.1371/journal.pone.0030849] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 12/28/2011] [Indexed: 12/12/2022] Open
Abstract
Both Plasmodium falciparum and Anopheles gambiae show great diversity in Africa, in their own genetic makeup and population dynamics. The genetics of the individual mosquito and parasite are known to play a role in determining the outcome of infection in the vector, but whether differences in infection phenotype vary between populations remains to be investigated. Here we established two A. gambiae s.s. M molecular form colonies from Cameroon and Burkina Faso, representing a local and a foreign population for each of the geographical sites. Experimental infections of both colonies were conducted in Cameroon and Burkina Faso using local wild P. falciparum, giving a sympatric and allopatric vector-parasite combination in each site. Infection phenotype was determined in terms of oocyst prevalence and intensity for at least nine infections for each vector-parasite combination. Sympatric infections were found to produce 25% fewer oocysts per midgut than allopatric infections, while prevalence was not affected by local/foreign interactions. The reduction in oocyst numbers in sympatric couples may be the result of evolutionary processes where the mosquito populations have locally adapted to their parasite populations. Future research on vector-parasite interactions must take into account the geographic scale of adaptation revealed here by conducting experiments in natural sympatric populations to give epidemiologically meaningful results.
Collapse
Affiliation(s)
- Caroline Harris
- Institut de Recherche pour le Développement, UMR 224 Maladies Infectieuses et Vecteurs: écologie, génétique, évolution et contrôle, Montpellier, France
| | - Isabelle Morlais
- Institut de Recherche pour le Développement, UMR 224 Maladies Infectieuses et Vecteurs: écologie, génétique, évolution et contrôle, Montpellier, France
- Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement, IRD-OCEAC, Yaoundé, Cameroon
| | - Thomas S. Churcher
- Department of Infectious Disease Epidemiology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement, IRD-OCEAC, Yaoundé, Cameroon
| | - Louis Clement Gouagna
- Institut de Recherche pour le Développement, UMR 224 Maladies Infectieuses et Vecteurs: écologie, génétique, évolution et contrôle, Montpellier, France
- Institut de Recherche en Sciences de la Santé, Bobo Dioulasso, Burkina Faso
| | - Roch K. Dabire
- Institut de Recherche en Sciences de la Santé, Bobo Dioulasso, Burkina Faso
| | - Didier Fontenille
- Institut de Recherche pour le Développement, UMR 224 Maladies Infectieuses et Vecteurs: écologie, génétique, évolution et contrôle, Montpellier, France
| | - Anna Cohuet
- Institut de Recherche pour le Développement, UMR 224 Maladies Infectieuses et Vecteurs: écologie, génétique, évolution et contrôle, Montpellier, France
- Institut de Recherche en Sciences de la Santé, Bobo Dioulasso, Burkina Faso
- * E-mail:
| |
Collapse
|
23
|
Protein-based signatures of functional evolution in Plasmodium falciparum. BMC Evol Biol 2011; 11:257. [PMID: 21917172 PMCID: PMC3197514 DOI: 10.1186/1471-2148-11-257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 09/14/2011] [Indexed: 02/06/2023] Open
Abstract
Background It has been known for over a decade that Plasmodium falciparum proteins are enriched in non-globular domains of unknown function. The potential for these regions of protein sequence to undergo high levels of genetic drift provides a fundamental challenge to attempts to identify the molecular basis of adaptive change in malaria parasites. Results Evolutionary comparisons were undertaken using a set of forty P. falciparum metabolic enzyme genes, both within the hominid malaria clade (P. reichenowi) and across the genus (P. chabaudi). All genes contained coding elements highly conserved across the genus, but there were also a large number of regions of weakly or non-aligning coding sequence. These displayed remarkable levels of non-synonymous fixed differences within the hominid malaria clade indicating near complete release from purifying selection (dN/dS ratio at residues non-aligning across genus: 0.64, dN/dS ratio at residues identical across genus: 0.03). Regions of low conservation also possessed high levels of hydrophilicity, a marker of non-globularity. The propensity for such regions to act as potent sources of non-synonymous genetic drift within extant P. falciparum isolates was confirmed at chromosomal regions containing genes known to mediate drug resistance in field isolates, where 150 of 153 amino acid variants were located in poorly conserved regions. In contrast, all 22 amino acid variants associated with drug resistance were restricted to highly conserved regions. Additional mutations associated with laboratory-selected drug resistance, such as those in PfATPase4 selected by spiroindolone, were similarly restricted while mutations in another calcium ATPase (PfSERCA, a gene proposed to mediate artemisinin resistance) that reach significant frequencies in field isolates were located exclusively in poorly conserved regions consistent with genetic drift. Conclusion Coding sequences of malaria parasites contain prospectively definable domains subject to neutral or nearly neutral evolution on a scale that appears unrivalled in biology. This distinct evolutionary landscape has potential to confound analytical methods developed for other genera. Against this tide of genetic drift, polymorphisms mediating functional change stand out to such an extent that evolutionary context provides a useful signal for identifying the molecular basis of drug resistance in malaria parasites, a finding that is of relevance to both genome-wide and candidate gene studies in this genus.
Collapse
|
24
|
Increased pfmdr1 copy number and sequence polymorphisms in Plasmodium falciparum isolates from Sudanese malaria patients treated with artemether-lumefantrine. Antimicrob Agents Chemother 2011; 55:5408-11. [PMID: 21896916 DOI: 10.1128/aac.05102-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular markers for surveillance of Plasmodium falciparum resistance to current antimalarials are sorely needed. A 28-day efficacy study of artemether-lumefantrine in eastern Sudan identified 5 treatment failures among 100 evaluable patients; 9 further individuals were parasite positive by PCR during follow-up. Polymorphisms in pfatpase6 and pfmdr1 were evaluated by DNA sequencing. One individual carried parasites with a novel pfmdr1 polymorphism (F1044L). pfmdr1 gene amplification in parasites prior to treatment occurred in three individuals who had recurrent infection during follow-up.
Collapse
|
25
|
Kwansa-Bentum B, Ayi I, Suzuki T, Otchere J, Kumagai T, Anyan WK, Osei JHN, Asahi H, Ofori MF, Akao N, Wilson MD, Boakye DA, Ohta N. Plasmodium falciparum isolates from southern Ghana exhibit polymorphisms in the SERCA-type PfATPase6 though sensitive to artesunate in vitro. Malar J 2011; 10:187. [PMID: 21745377 PMCID: PMC3146903 DOI: 10.1186/1475-2875-10-187] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In 2005, Ghana replaced chloroquine with artemisinin-based combination therapy as the first-line treatment for uncomplicated malaria. The aim of this work was to determine for the first time, polymorphisms in the putative pfATPase6 and pftctp, pfmdr1, pfcrt genes in Ghanaian isolates, particularly at a time when there is no report on artemisinin resistance in malaria parasites from Ghana. The sensitivity of parasite isolates to anti-malaria drugs were also evaluated for a possible association with polymorphisms in these genes. METHODS The prevalence of point mutations in the above Plasmodium falciparum genes were assessed from filter-paper blood blot samples by DNA sequencing. In vitro drug sensitivity test was carried out on some of the blood samples from volunteers visiting hospitals/clinics in southern Ghana using a modified version of the standard WHO Mark III micro-test. RESULTS All successfully tested parasite isolates were sensitive to artesunate; while 19.4%, 29.0% and 51.6% were resistant to quinine, amodiaquine and chloroquine respectively. The geometric mean of IC50 value for artesunate was 0.73 nM (95% CI, 0.38-1.08), amodiaquine 30.69 nM (95% CI, 14.18-47.20) and chloroquine 58.73 nM (95% CI, 38.08-79.38). Twenty point mutations were observed in pfATPase6 gene, with no L263E and S769N. All mutations found were low in frequency, except D639G which was observed in about half of the isolates but was not associated with artesunate response (p = 0.42). The pftctp gene is highly conserved as no mutation was observed, while CVIET which is chloroquine-resistant genotype at codon 72-76 of the pfcrt gene was identified in about half of the isolates; this was consistent with chloroquine IC50 values (p = 0.001). Mutations were present in pfmdr1 gene but were not associated with artemisinin response (p = 1.00). CONCLUSION The pfATPase6 gene is highly polymorphic with D639G appearing to be fixed in Ghanaian isolates. These may just be spontaneous mutations as all parasite isolates that were tested displayed satisfactory in vitro response to artesunate. However, there is no improvement in susceptibility of the parasites to chloroquine five years after its proscription.
Collapse
Affiliation(s)
- Bethel Kwansa-Bentum
- Section of Environmental Parasitology, Department of International Health Development, Tokyo Medical and Dental University, 5-45 Yushima 1-chome, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Ding XC, Beck HP, Raso G. Plasmodium sensitivity to artemisinins: magic bullets hit elusive targets. Trends Parasitol 2010; 27:73-81. [PMID: 21169061 DOI: 10.1016/j.pt.2010.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/14/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
Artemisinins are efficacious antimalarial drugs widely employed as first-line treatment in endemic countries under the form of combined therapies. Different molecular modes of action have been postulated to explain the parasiticidal effect of these compounds; however, none has been unequivocally accepted, and their physiological relevance is still questioned. Similarly, no definite genetic determinant of Plasmodium sensitivity to artemisinins has been identified so far. A better understanding of the mode of action of artemisinins and the genetic basis of laboratory-induced or field-observed altered susceptibility is crucial for malaria control. In this review different models of artemisinins' molecular action are briefly presented, focusing on recent advances, and the evidence of potential association between various gene polymorphisms and artemisinin resistance is comprehensively reviewed.
Collapse
Affiliation(s)
- Xavier C Ding
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire.
| | | | | |
Collapse
|
28
|
Gama BE, de Oliveira NKA, de Souza JM, Santos F, de Carvalho LJM, Melo YFC, Rosenthal PJ, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Brazilian Plasmodium falciparum isolates: investigation of candidate polymorphisms for artemisinin resistance before introduction of artemisinin-based combination therapy. Malar J 2010; 9:355. [PMID: 21143867 PMCID: PMC3017535 DOI: 10.1186/1475-2875-9-355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 12/08/2010] [Indexed: 12/02/2022] Open
Abstract
Background This study was performed to better understand the genetic diversity of known polymorphisms in pfatpase6 and pfmdr1 genes before the introduction of ACT in Brazil, in order to get a genotypic snapshot of Plasmodium falciparum parasites that may be used as baseline reference for future studies. Methods Parasites from P. falciparum samples collected in 2002, 2004 and 2006-2007 were genotyped using PCR and DNA sequencing at codons 86, 130, 184, 1034, 1042, 1109 and 1246 for pfmdr1 gene, and 243, 263, 402, 431, 623, 630, 639, 683, 716, 776, 769 and 771 for pfatpase6 gene. Results A pfmdr1 haplotype NEF/CDVY was found in 97% of the samples. In the case of pfatpase6, four haplotypes, wild-type (37%), 630 S (35%), 402 V (5%) and double-mutant 630 S + 402 V (23%), were detected. Conclusion Although some polymorphism in pfmdr1 and pfatpase6 were verified, no reported haplotypes in both genes that may mediate altered response to ACT was detected before the introduction of this therapy in Brazil. Thus, the haplotypes herein described can be very useful as a baseline reference of P. falciparum populations without ACT drug pressure.
Collapse
Affiliation(s)
- Bianca E Gama
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro (RJ), Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Krishna S, Pulcini S, Fatih F, Staines H. Artemisinins and the biological basis for the PfATP6/SERCA hypothesis. Trends Parasitol 2010; 26:517-23. [DOI: 10.1016/j.pt.2010.06.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 11/28/2022]
|
30
|
Spontaneous mutations in the Plasmodium falciparum sarcoplasmic/ endoplasmic reticulum Ca2+-ATPase (PfATP6) gene among geographically widespread parasite populations unexposed to artemisinin-based combination therapies. Antimicrob Agents Chemother 2010; 55:94-100. [PMID: 20956593 DOI: 10.1128/aac.01156-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent reports on the decline of the efficacy of artemisinin-based combination therapies (ACTs) indicate a serious threat to malaria control. The endoplasmic/sarcoplasmic reticulum Ca(2+)-ATPase ortholog of Plasmodium falciparum (PfSERCA) has been suggested to be the target of artemisinin and its derivatives. It is assumed that continuous artemisinin pressure will affect polymorphism of the PfSERCA gene (serca) if the protein is the target. Here, we investigated the polymorphism of serca in parasite populations unexposed to ACTs to obtain baseline information for the study of potential artemisinin-driven selection of resistant parasites. Analysis of 656 full-length sequences from 13 parasite populations in Africa, Asia, Oceania, and South America revealed 64 single nucleotide polymorphisms (SNPs), of which 43 were newly identified and 38 resulted in amino acid substitutions. No isolates showed L263E and S769N substitutions, which were reportedly associated with artemisinin resistance. Among the four continents, the number of SNPs was highest in Africa. In Africa, Asia, and Oceania, common SNPs, or those with a minor allele frequency of ≥0.05, were less prevalent, with most SNPs noted to be continent specific, whereas in South America, common SNPs were highly prevalent and often shared with those in Africa. Of 50 amino acid haplotypes observed, only one haplotype (3D7 sequence) was seen in all four continents (64%). Forty-eight haplotypes had frequencies of less than 5%, and 40 haplotypes were continent specific. The geographical difference in the diversity and distribution of serca SNPs and haplotypes lays the groundwork for assessing whether some artemisinin resistance-associated mutations and haplotypes are selected by ACTs.
Collapse
|
31
|
Na-Bangchang K, Ruengweerayut R, Mahamad P, Ruengweerayut K, Chaijaroenkul W. Declining in efficacy of a three-day combination regimen of mefloquine-artesunate in a multi-drug resistance area along the Thai-Myanmar border. Malar J 2010; 9:273. [PMID: 20929590 PMCID: PMC2959072 DOI: 10.1186/1475-2875-9-273] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 10/08/2010] [Indexed: 11/10/2022] Open
Abstract
Background Declining in clinical efficacy of artesunate-mefloquine combination has been documented in areas along the eastern border (Thai-Cambodian) of Thailand. In the present study, the clinical efficacy of the three-day combination regimen of artesunate-mefloquine as first-line treatment for acute uncomplicated falciparum malaria in Thailand was monitored in an area along the western border (Thai-Myanmar) of the country. Methods A total of 150 Burmese patients (85 males and 65 females) aged between 16 and 50 years who were attending the Mae Tao clinic, Mae-Sot, Tak Province, and presenting with symptomatic acute uncomplicated Plasmodium falciparum malaria were included into the study. Patients were treated initially (day 0) with 4 mg/kg body weight artesunate and 15 mg/kg body weight mefloquine. The dose regimen on day 2 was 4 mg/kg body weight artesunate and 10 mg/kg body weight mefloquine. On day 3, artesunate at the dose of 4 mg/kg body weight was given with 0.6 mg/kg body weight primaquine. Whole blood mefloquine and plasma artesunate and dihydroartemisinin (active plasma metabolite of artesunate) concentrations following treatment were determined by high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LCMS), respectively. Results Thirty-four cases had recrudescence during days 7 and 42. Five and 5 cases, respectively had reinfection with P. falciparum and reappearance of Plasmodium vivax in their peripheral blood during follow-up. The Kaplan-Meier estimate of the 42-and 28-day efficacy rates of this combination regimen were 72.58% (95% CI: 63.20-79.07%) and 83.06 (95% CI 76.14-94.40%), respectively. Parasite clearance time (PCT) and fever clearance time (FCT) were significantly prolonged in patients with treatment failure compared with those with sensitive response [median (95% CI) values for PCT 32.0 (20.0-48.0) vs 24.0 (14.0-32.0) hr and FCT 30.0 (22.0-42.0) vs 26.0 (18.0-36.0) hr; p < 0.005]. Whole blood mefloquine concentrations on days 1, 7 and 14 in patients with sensitive and recrudescence response were comparable. Although plasma concentration of dihydroartemisinin at 1 hour of treatment was significantly lower in patients with recrudescence compared with sensitive response [mean (95% CI) 456 (215-875) vs 525 (452-599) ng/ml; p < 0.001], the proportion of patients with recrudescence who had relatively low (compared with the lower limit of 95% CI defined in the sensitive group) was significantly smaller than that of the sensitive group. Conclusions Although pharmacokinetic (ethnic-related) factors including resistance of P. falciparum to mefloquine contribute to some treatment failure following treatment with a three-day combination regimen of artesunate-mefloquine, results suggest that artesunate resistance may be emerging at the Thai-Myanmar border.
Collapse
|
32
|
Eshetu T, Berens-Riha N, Fekadu S, Tadesse Z, Gürkov R, Hölscher M, Löscher T, Miranda IB. Different mutation patterns of Plasmodium falciparum among patients in Jimma University Hospital, Ethiopia. Malar J 2010; 9:226. [PMID: 20691106 PMCID: PMC2922303 DOI: 10.1186/1475-2875-9-226] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 08/07/2010] [Indexed: 11/16/2022] Open
Abstract
Background The emergence of drug resistance is a major problem in malaria control. Combination of molecular genotyping and characterization of mutations or single nucleotide polymorphisms (SNPs) correlated with drug resistance can provide information for subsequent surveillance of existing and developing drug resistance patterns. The introduction of artemether/lumefantrine (AL) as first-line treatment, never used before in Ethiopia, allowed the collection of baseline data of molecular polymorphisms before a selection due to AL could occur. Method 97 patients with uncomplicated falciparum malaria were recruited from April to June 2006 and treated with either AL, quinine (Q) or atovaquone/proguanil (AP) in Jimma University Hospital, Ethiopia. Mutations or SNPs associated with resistance to these drugs were analysed by RFLP (pfdhfr, pfmdr1) and sequencing of the target genes (pfcytb, pfserca ). Results SNPs previously reported to be associated with resistance to the study drugs were identified in recrudescent and treatment sensitive isolates. A total of seven recrudescences were obtained. The pfmdr1 N86Y mutation was found in 84.5% of isolates. The triple mutation 51I,59R,108N of the pfdhfr gene occured in high frequency (83.3%) but no pfcytb mutation was detected. Sequencing showed a variety of previously described and new mutations in the pfserca gene. Conclusion The prevalence of mutations was in accordance with the expected patterns considering recent drug regimens. The broad introduction of AL and the cessation of former drug regimens might probably change the current distribution of polymorphisms, possibly leading to decreased sensitivity to AL in future. Continuous surveillance of molecular patterns in this region is, therefore, recommended.
Collapse
Affiliation(s)
- Teferi Eshetu
- Department of Infectious Diseases and Tropical Medicine, Ludwig Maximilians University, Leopoldstrasse 5, München, Germany
| | | | | | | | | | | | | | | |
Collapse
|