1
|
Belge G, Dumlupinar C, Nestler T, Klemke M, Törzsök P, Trenti E, Pichler R, Loidl W, Che Y, Hiester A, Matthies C, Pichler M, Paffenholz P, Kluth L, Wenzel M, Sommer J, Heinzelbecker J, Schriefer P, Winter A, Zengerling F, Kramer MW, Lengert M, Frey J, Heidenreich A, Wülfing C, Radtke A, Dieckmann KP. Detection of Recurrence through microRNA-371a-3p Serum Levels in a Follow-up of Stage I Testicular Germ Cell Tumors in the DRKS-00019223 Study. Clin Cancer Res 2024; 30:404-412. [PMID: 37967143 PMCID: PMC10792362 DOI: 10.1158/1078-0432.ccr-23-0730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
PURPOSE Surveillance of clinical stage I (CSI) testicular germ cell tumors (GCT) is hampered by low sensitivity and specificity of current biomarkers for detecting relapses. This study evaluated if serum levels of microRNA371a-3p (M371 test) can: (i) Accurately detect relapses, (ii) detect relapses earlier than conventional technology, and (iii) if elevated postoperative M371 levels may predict relapse. EXPERIMENTAL DESIGN In a multicentric setting, 258 patients with testicular CSI GCT were prospectively followed by surveillance for a median time of 18 months with serial measurements of serum M371 levels, in addition to standard diagnostic techniques. Diagnostic characteristics of M371 for detecting relapses were calculated using ROC curve analysis. RESULTS Thirty-nine patients recurred (15.1%), all with elevated M371 levels; eight without relapse had elevations, too. The test revealed the following characteristics: area under the ROC curve of 0.993, sensitivity 100%, specificity 96.3%, positive predictive value 83%, negative predictive value 100%. Earlier relapse detection with the test was found in 28%, with non-significant median time gain to diagnosis. Postoperative M371 levels did not predict future relapse. CONCLUSIONS The sensitivity and specificity of the M371 test for detecting relapses in CSI GCTs are much superior to those of conventional diagnostics. However, post-orchiectomy M371 levels are not predictive of relapse, and there is no significant earlier relapse detection with the test. In all, there is clear evidence for the utility of the M371 test for relapse detection suggesting it may soon be ready for implementation into routine follow-up schedules for patients with testicular GCT.
Collapse
Affiliation(s)
- Gazanfer Belge
- Department of Tumor Genetics, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Cansu Dumlupinar
- Department of Tumor Genetics, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Tim Nestler
- Department of Urology, Bundeswehrzentralkrankenhaus Koblenz, Koblenz, Germany
| | - Markus Klemke
- Department of Tumor Genetics, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Peter Törzsök
- Department of Urology and Andrology, Paracelsus Medical University, Salzburg University Hospital, Salzburg, Austria
| | | | - Renate Pichler
- Department of Urology, University Hospital Innsbruck, Innsbruck, Austria
| | - Wolfgang Loidl
- Ordensklinikum Barmherzige Schwestern, Department Urology, Linz, Austria
| | - Yue Che
- Department of Urology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andreas Hiester
- Department of Urology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Cord Matthies
- Department of Urology, Bundeswehrkrankenhaus Hamburg, Hamburg, Germany
| | - Martin Pichler
- Research Unit of Non-Coding RNA, Division of Oncology, Medical University of Graz, Graz, Austria
| | - Pia Paffenholz
- Department of Urology, University Hospital Cologne, Cologne, Germany
| | - Luis Kluth
- Department of Urology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Mike Wenzel
- Department of Urology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Jörg Sommer
- Department of Urology, St. Franziskus Krankenhaus Lohne, Lohne, Germany
| | - Julia Heinzelbecker
- Saarland University Medical Centre and Saarland University, Department of Urology, Homburg, Germany
| | | | - Alexander Winter
- Department of Urology, University Hospital Oldenburg, Oldenburg, Germany
| | | | - Mario Wolfgang Kramer
- Department of Urology, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Marie Lengert
- Department of Tumor Genetics, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Jana Frey
- miRdetect GmbH, Bremerhaven, Germany
| | - Axel Heidenreich
- Department of Urology, University Hospital Cologne, Cologne, Germany
| | | | | | | |
Collapse
|
2
|
Ware AP, Satyamoorthy K, Paul B. Integrated multiomics analysis of chromosome 19 miRNA cluster in bladder cancer. Funct Integr Genomics 2023; 23:266. [PMID: 37542643 PMCID: PMC10404189 DOI: 10.1007/s10142-023-01191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
With 46 microRNAs (miRNAs) embedded tandemly over a distance of ~100 kb, chromosome 19 microRNA cluster (C19MC) is the largest miRNA cluster in the human genome. The C19MC is transcribed from a long noncoding genomic region and is usually expressed simultaneously at a higher level. Hence, we performed an integrative multiomics data analysis to examine C19MC regulation, expression patterns, and their impact on bladder cancer (BCa). We found that 43 members of C19MC were highly expressed in BCa. However, its co-localization with recurrent copy number variation (CNV) gain was not statistically significant to implicate its upregulation. It has been reported that C19MC expression is regulated by a well-established CpG island situated 17.6 kb upstream of the transcription start site, but we found that CpG probes at this island were hypomethylated, which was not statistically significant in the BCa cohort. In addition, the promoter region of C19MC is strongly regulated by a group of seven transcription factors (NR2F6, SREBF1, TBP, GATA3, GABPB1, ETV4, and ZNF444) and five chromatin modifiers (SMC3, KDMA1, EZH2, RAD21, and CHD7). Interestingly, these 12 genes were found to be overexpressed in BCa patients. Further, C19MC targeted 42 tumor suppressor (TS) genes that were downregulated, of which 15 were significantly correlated with patient survival. Our findings suggest that transcription factors and chromatin modifiers at the promoter region may regulate C19MC overexpression. The upregulated C19MC members, transcription regulators, and TS genes can be further exploited as potential diagnostic and prognostic indicators as well as for therapeutic management of BCa.
Collapse
Affiliation(s)
- Akshay Pramod Ware
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Manjushree Nagar, Sattur, Dharwad, Karnataka, 580009, India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Maraghechi P, Aponte MTS, Ecker A, Lázár B, Tóth R, Szabadi NT, Gócza E. Pluripotency-Associated microRNAs in Early Vertebrate Embryos and Stem Cells. Genes (Basel) 2023; 14:1434. [PMID: 37510338 PMCID: PMC10379376 DOI: 10.3390/genes14071434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNA molecules, regulate a wide range of critical biological processes, such as proliferation, cell cycle progression, differentiation, survival, and apoptosis, in many cell types. The regulatory functions of miRNAs in embryogenesis and stem cell properties have been extensively investigated since the early years of miRNA discovery. In this review, we will compare and discuss the impact of stem-cell-specific miRNA clusters on the maintenance and regulation of early embryonic development, pluripotency, and self-renewal of embryonic stem cells, particularly in vertebrates.
Collapse
Affiliation(s)
- Pouneh Maraghechi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Maria Teresa Salinas Aponte
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - András Ecker
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Bence Lázár
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
- National Centre for Biodiversity and Gene Conservation, Institute for Farm Animal Gene Conservation (NBGK-HGI), Isaszegi str. 200, 2100 Gödöllő, Hungary
| | - Roland Tóth
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Nikolett Tokodyné Szabadi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| | - Elen Gócza
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences; Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Szent-Györgyi Albert str. 4, 2100 Gödöllő, Hungary
| |
Collapse
|
4
|
Omeljaniuk WJ, Laudański P, Miltyk W. The role of miRNA molecules in the miscarriage process. Biol Reprod 2023; 109:29-44. [PMID: 37104617 PMCID: PMC10492520 DOI: 10.1093/biolre/ioad047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
The etiology and pathogenesis of miscarriage, which is the most common pregnancy complication, have not been fully elucidated. There is a constant search for new screening biomarkers that would allow for the early diagnosis of disorders associated with pregnancy pathology. The profiling of microRNA expression is a promising research area, which can help establish the predictive factors for pregnancy diseases. Molecules of microRNAs are involved in several processes crucial for the development and functioning of the body. These processes include cell division and differentiation, programmed cell death, blood vessel formation or tumorigenesis, and the response to oxidative stress. The microRNAs affect the number of individual proteins in the body due to their ability to regulate gene expression at the post-transcriptional level, ensuring the normal course of many cellular processes. Based on the scientific facts available, this paper presents a compendium on the role of microRNA molecules in the miscarriage process. The expression of potential microRNA molecules as early minimally invasive diagnostic biomarkers may be evaluated as early as the first weeks of pregnancy and may constitute a monitoring factor in the individual clinical care of women in early pregnancy, especially after the first miscarriage. To summarize, the described scientific data set a new direction of research in the development of preventive care and prognostic monitoring of the course of pregnancy.
Collapse
Affiliation(s)
| | - Piotr Laudański
- Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, Warsaw, Poland
- Women’s Health Research Institute, Calisia University, Kalisz, Poland
- OVIklinika Infertility Center, Warsaw, Poland
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
5
|
Boyero L, Noguera-Uclés JF, Castillo-Peña A, Salinas A, Sánchez-Gastaldo A, Alonso M, Benedetti JC, Bernabé-Caro R, Paz-Ares L, Molina-Pinelo S. Aberrant Methylation of the Imprinted C19MC and MIR371-3 Clusters in Patients with Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15051466. [PMID: 36900258 PMCID: PMC10000578 DOI: 10.3390/cancers15051466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Epigenetic mechanisms have emerged as an important contributor to tumor development through the modulation of gene expression. Our objective was to identify the methylation profile of the imprinted C19MC and MIR371-3 clusters in patients with non-small cell lung cancer (NSCLC) and to find their potential target genes, as well as to study their prognostic role. DNA methylation status was analyzed in a NSCLC patient cohort (n = 47) and compared with a control cohort including COPD patients and non-COPD subjects (n = 23) using the Illumina Infinium Human Methylation 450 BeadChip. Hypomethylation of miRNAs located on chromosome 19q13.42 was found to be specific for tumor tissue. We then identified the target mRNA-miRNA regulatory network for the components of the C19MC and MIR371-3 clusters using the miRTargetLink 2.0 Human tool. The correlations of miRNA-target mRNA expression from primary lung tumors were analyzed using the CancerMIRNome tool. From those negative correlations identified, we found that a lower expression of 5 of the target genes (FOXF2, KLF13, MICA, TCEAL1 and TGFBR2) was significantly associated with poor overall survival. Taken together, this study demonstrates that the imprinted C19MC and MIR371-3 miRNA clusters undergo polycistronic epigenetic regulation leading to deregulation of important and common target genes with potential prognostic value in lung cancer.
Collapse
Affiliation(s)
- Laura Boyero
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| | | | - Alejandro Castillo-Peña
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| | - Ana Salinas
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, Universidad de Sevilla, 41013 Seville, Spain
| | - Amparo Sánchez-Gastaldo
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, Universidad de Sevilla, 41013 Seville, Spain
- Medical Oncology Department, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Miriam Alonso
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, Universidad de Sevilla, 41013 Seville, Spain
- Medical Oncology Department, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Johana Cristina Benedetti
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, Universidad de Sevilla, 41013 Seville, Spain
- Medical Oncology Department, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Reyes Bernabé-Caro
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, Universidad de Sevilla, 41013 Seville, Spain
- Medical Oncology Department, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain
| | - Luis Paz-Ares
- H12O Lung Cancer Clinical Research Unit, Health Research Institute Hospital 12 de Octubre (imas12), 28029 Madrid, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), 28029 Madrid, Spain
- Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
- MD Anderson, 28033 Madrid, Spain
| | - Sonia Molina-Pinelo
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, Universidad de Sevilla, 41013 Seville, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
6
|
Repaci A, Salituro N, Vicennati V, Monari F, Cavicchi O, de Biase D, Ciarrocchi A, Acquaviva G, De Leo A, Gruppioni E, Pagotto U, Tallini G. Unexpected Widespread Bone Metastases from a BRAF K601N Mutated Follicular Thyroid Carcinoma within a Previously Resected Multinodular Goiter. Endocr Pathol 2022; 33:519-524. [PMID: 34843063 DOI: 10.1007/s12022-021-09698-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 02/05/2023]
Abstract
Follicular thyroid carcinoma (FTC) represents the second most common malignant thyroid neoplasm after papillary carcinoma (PTC). FTC is characterized by the tendency to metastasize to distant sites such as bone and lung. In the last 20 years, the understanding of the molecular pathology of thyroid tumors has greatly improved. Uncommon BRAF non-V600E mutations have been identified and are generally believed to associate with follicular patterned tumors of low malignant potential, particularly non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTPs) (i.e., non-invasive encapsulated follicular variant PTC). We here report for the first time widespread bone metastases from a BRAF K601N mutated follicular tumor.
Collapse
Affiliation(s)
- Andrea Repaci
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy.
| | - Nicola Salituro
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Valentina Vicennati
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Fabio Monari
- Radiotherapy Unit, Policlinico Di Sant'Orsola, University of Bologna, Bologna, Italy
| | - Ottavio Cavicchi
- Department of Otolaryngology, Policlinico Di Sant'Orsola, University of Bologna, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology (FaBit), Molecular Diagnostic Unit, University of Bologna, Azienda USL Di Bologna, Bologna, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Giorgia Acquaviva
- Department of Experimental, Diagnostic and Specialty Medicine, Anatomic Pathology - Molecular Diagnostic Unit, University of Bologna, Azienda USL Di Bologna, Bologna, Italy
| | - Antonio De Leo
- Department of Experimental, Diagnostic and Specialty Medicine, Anatomic Pathology - Molecular Diagnostic Unit, University of Bologna, Azienda USL Di Bologna, Bologna, Italy
| | - Elisa Gruppioni
- Department of Pathology, Azienda Ospedaliero-Universitaria Di Bologna IRCCS Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Uberto Pagotto
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, Anatomic Pathology - Molecular Diagnostic Unit, University of Bologna, Azienda USL Di Bologna, Bologna, Italy
| |
Collapse
|
7
|
Jaszczuk I, Winkler I, Koczkodaj D, Skrzypczak M, Filip A. The Role of Cluster C19MC in Pre-Eclampsia Development. Int J Mol Sci 2022; 23:ijms232213836. [PMID: 36430313 PMCID: PMC9699419 DOI: 10.3390/ijms232213836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Pre-eclampsia is a placenta-related complication occurring in 2-10% of all pregnancies. miRNAs are a group of non-coding RNAs regulating gene expression. There is evidence that C19MC miRNAs are involved in the development of the placenta. Deregulation of chromosome 19 microRNA cluster (C19MC) miRNAs expression leads to impaired cell differentiation, abnormal trophoblast invasion and pathological angiogenesis, which can lead to the development of pre-eclampsia. Information was obtained through a review of articles available in PubMed Medline. Articles on the role of the C19MC miRNA in the development of pre-eclampsia published in 2009-2022 were analyzed. This review article summarizes the current data on the role of the C19MC miRNA in the development of pre-eclampsia. They indicate a significant increase in the expression of most C19MC miRNAs in placental tissue and a high level of circulating fractions in serum and plasma, both in the first and/or third trimester in women with PE. Only for miR-525-5p, low levels of plasma expression were noted in the first trimester, and in the placenta in the third trimester. The search for molecular factors indicating the development of pre-eclampsia before the onset of clinical symptoms seems to be a promising diagnostic route. Identifying women at risk of developing pre-eclampsia at the pre-symptomatic stage would avoid serious complications in both mothers and fetuses. We believe that miRNAs belonging to cluster C19MC could be promising biomarkers of pre-eclampsia development.
Collapse
Affiliation(s)
- Ilona Jaszczuk
- Department of Cancer Genetics with Cytogenetic Laboratory, Medical University of Lublin, Radziwillowska Street 11, 20-080 Lublin, Poland
| | - Izabela Winkler
- Second Department of Gynecological Oncology, St. John’s Center of Oncology of the Lublin Region, Jaczewski Street 7, 20-090 Lublin, Poland
- Correspondence:
| | - Dorota Koczkodaj
- Department of Cancer Genetics with Cytogenetic Laboratory, Medical University of Lublin, Radziwillowska Street 11, 20-080 Lublin, Poland
| | - Maciej Skrzypczak
- Second Department of Gynecology, Lublin Medical University, Jaczewski Street 8, 20-954 Lublin, Poland
| | - Agata Filip
- Department of Cancer Genetics with Cytogenetic Laboratory, Medical University of Lublin, Radziwillowska Street 11, 20-080 Lublin, Poland
| |
Collapse
|
8
|
Ware AP, Kabekkodu SP, Chawla A, Paul B, Satyamoorthy K. Diagnostic and prognostic potential clustered miRNAs in bladder cancer. 3 Biotech 2022; 12:173. [PMID: 35845108 PMCID: PMC9279521 DOI: 10.1007/s13205-022-03225-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/18/2022] [Indexed: 12/13/2022] Open
Abstract
At specific genomic loci, miRNAs are in clusters and their association with copy number variations (CNVs) may exhibit abnormal expression in several cancers. Hence, the current study aims to understand the expression of miRNA clusters residing within CNVs and the regulation of their target genes in bladder cancer. To achieve this, we used extensive bioinformatics resources and performed an integrated analysis of recurrent CNVs, clustered miRNA expression, gene expression, and drug–gene interaction datasets. The study identified nine upregulated miRNA clusters that are residing on CNV gain regions and three miRNA clusters (hsa-mir-200c/mir-141, hsa-mir-216a/mir-217, and hsa-mir-15b/mir-16-2) are correlated with patient survival. These clustered miRNAs targeted 89 genes that were downregulated in bladder cancer. Moreover, network and gene enrichment analysis displayed 10 hub genes (CCND2, ETS1, FGF2, FN1, JAK2, JUN, KDR, NOTCH1, PTEN, and ZEB1) which have significant potential for diagnosis and prognosis of bladder cancer patients. Interestingly, hsa-mir-200c/mir-141 and hsa-mir-15b/mir-16-2 cluster candidates showed significant differences in their expression in stage-specific manner during cancer progression. Downregulation of NOTCH1 by hsa-mir-200c/mir-141 may also sensitize tumors to methotrexate thus suggesting potential chemotherapeutic options for bladder cancer subjects. To overcome some computational challenges and reduce the complexity in multistep big data analysis, we developed an automated pipeline called CmiRClustFinder v1.0 (https://github.com/msls-bioinfo/CmiRClustFinder_v1.0), which can perform integrated data analysis of 35 TCGA cancer types.
Collapse
Affiliation(s)
- Akshay Pramod Ware
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Arun Chawla
- Department of Urology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
| |
Collapse
|
9
|
Nicu AT, Medar C, Chifiriuc MC, Gradisteanu Pircalabioru G, Burlibasa L. Epigenetics and Testicular Cancer: Bridging the Gap Between Fundamental Biology and Patient Care. Front Cell Dev Biol 2022; 10:861995. [PMID: 35465311 PMCID: PMC9023878 DOI: 10.3389/fcell.2022.861995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 11/15/2022] Open
Abstract
Testicular cancer is the most common solid tumor affecting young males. Most testicular cancers are testicular germ cell tumors (TGCTs), which are divided into seminomas (SGCTs) and non-seminomatous testicular germ cell tumors (NSGCTs). During their development, primordial germ cells (PGCs) undergo epigenetic modifications and any disturbances in their pattern might lead to cancer development. The present study provides a comprehensive review of the epigenetic mechanisms–DNA methylation, histone post-translational modifications, bivalent marks, non-coding RNA–associated with TGCT susceptibility, initiation, progression and response to chemotherapy. Another important purpose of this review is to highlight the recent investigations regarding the identification and development of epigenetic biomarkers as powerful tools for the diagnostic, prognostic and especially for epigenetic-based therapy.
Collapse
Affiliation(s)
- Alina-Teodora Nicu
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Genetics, University of Bucharest, Bucharest, Romania
| | - Cosmin Medar
- University of Medicine and Pharmacy “Carol Davila”, Clinical Hospital “Prof. dr Theodor Burghele”, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Research Institute of University of Bucharest (ICUB), Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Romanian Academy, Bucharest, Romania
| | | | - Liliana Burlibasa
- Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Genetics, University of Bucharest, Bucharest, Romania
| |
Collapse
|
10
|
Parathyroid Tumors: Molecular Signatures. Int J Mol Sci 2021; 22:ijms222011206. [PMID: 34681865 PMCID: PMC8540444 DOI: 10.3390/ijms222011206] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
Parathyroid tumors are rare endocrine neoplasms affecting 0.1–0.3% of the general population, including benign parathyroid adenomas (PAs; about 98% of cases), intermediate atypical parathyroid adenomas (aPAs; 1.2–1.3% of cases) and malignant metastatic parathyroid carcinomas (PCs; less than 1% of cases). These tumors are characterized by a variable spectrum of clinical phenotypes and an elevated cellular, histological and molecular heterogeneity that make it difficult to pre-operatively distinguish PAs, aPAs and PCs. Thorough knowledge of genetic, epigenetic, and molecular signatures, which characterize different parathyroid tumor subtypes and drive different tumorigeneses, is a key step to identify potential diagnostic biomarkers able to distinguish among different parathyroid neoplastic types, as well as provide novel therapeutic targets and strategies for these rare neoplasms, which are still a clinical and therapeutic challenge. Here, we review the current knowledge on gene mutations and epigenetic changes that have been associated with the development of different clinical types of parathyroid tumors, both in familial and sporadic forms of these endocrine neoplasms.
Collapse
|
11
|
Divisato G, Piscitelli S, Elia M, Cascone E, Parisi S. MicroRNAs and Stem-like Properties: The Complex Regulation Underlying Stemness Maintenance and Cancer Development. Biomolecules 2021; 11:biom11081074. [PMID: 34439740 PMCID: PMC8393604 DOI: 10.3390/biom11081074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Embryonic stem cells (ESCs) have the extraordinary properties to indefinitely proliferate and self-renew in culture to produce different cell progeny through differentiation. This latter process recapitulates embryonic development and requires rounds of the epithelial-mesenchymal transition (EMT). EMT is characterized by the loss of the epithelial features and the acquisition of the typical phenotype of the mesenchymal cells. In pathological conditions, EMT can confer stemness or stem-like phenotypes, playing a role in the tumorigenic process. Cancer stem cells (CSCs) represent a subpopulation, found in the tumor tissues, with stem-like properties such as uncontrolled proliferation, self-renewal, and ability to differentiate into different cell types. ESCs and CSCs share numerous features (pluripotency, self-renewal, expression of stemness genes, and acquisition of epithelial-mesenchymal features), and most of them are under the control of microRNAs (miRNAs). These small molecules have relevant roles during both embryogenesis and cancer development. The aim of this review was to recapitulate molecular mechanisms shared by ESCs and CSCs, with a special focus on the recently identified classes of microRNAs (noncanonical miRNAs, mirtrons, isomiRs, and competitive endogenous miRNAs) and their complex functions during embryogenesis and cancer development.
Collapse
|
12
|
Jinesh GG, Napoli M, Smallin MT, Davis A, Ackerman HD, Raulji P, Montey N, Flores ER, Brohl AS. Mutant p53s and chromosome 19 microRNA cluster overexpression regulate cancer testis antigen expression and cellular transformation in hepatocellular carcinoma. Sci Rep 2021; 11:12673. [PMID: 34135394 PMCID: PMC8209049 DOI: 10.1038/s41598-021-91924-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
A subset of hepatocellular carcinoma (HCC) overexpresses the chromosome 19 miRNA cluster (C19MC) and is associated with an undifferentiated phenotype marked by overexpression of cancer testis antigens (CTAs) including anti-apoptotic melanoma-A antigens (MAGEAs). However, the regulation of C19MC miRNA and MAGEA expression in HCCs are not understood. Here we show that, C19MC overexpression is tightly linked to a sub-set of HCCs with transcription-incompetent p53. Using next-generation and Sanger sequencing we found that, p53 in Hep3B cells is impaired by TP53-FXR2 fusion, and that overexpression of the C19MC miRNA-520G in Hep3B cells promotes the expression of MAGEA-3, 6 and 12 mRNAs. Furthermore, overexpression of p53-R175H and p53-R273H mutants promote miR-520G and MAGEA RNA expression and cellular transformation. Moreover, IFN-γ co-operates with miR-520G to promote MAGEA expression. On the other hand, metals such as nickel and zinc promote miR-526B but not miR-520G, to result in the suppression of MAGEA mRNA expression, and evoke cell death through mitochondrial membrane depolarization. Therefore our study demonstrates that a MAGEA-promoting network involving miR-520G, p53-defects and IFN-γ that govern cellular transformation and cell survival pathways, but MAGEA expression and survival are counteracted by nickel and zinc combination.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA. .,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.
| | - Marco Napoli
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Marian T Smallin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Andrew Davis
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Hayley D Ackerman
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Payal Raulji
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Nicole Montey
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Elsa R Flores
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA. .,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
13
|
Gottlieb A, Flor I, Nimzyk R, Burchardt L, Helmke B, Langenbuch M, Spiekermann M, Feidicker S, Bullerdiek J. The expression of miRNA encoded by C19MC and miR-371-3 strongly varies among individual placentas but does not differ between spontaneous and induced abortions. PROTOPLASMA 2021; 258:209-218. [PMID: 33034783 PMCID: PMC7782366 DOI: 10.1007/s00709-020-01548-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
miRNAs of the largest human miRNA gene cluster at all, i.e., C19MC, are almost exclusively expressed in the placenta. Nevertheless, only little is known about the interindividual variation of their expression and even about possible influence of gestational age, conflicting data is reported as well as for miRNAs of the much smaller miR-371-3 cluster. Our present study aims at the analyses of the expression of miRNAs from both clusters at different times of pregnancy, possible differences between placenta samples obtained from spontaneous or induced abortions in the first trimester, and the possible variation of miRNA expression at different sites within same placentas. miR-371a-3p, miR-372-3p, miR-373-3p, miR-517a-3p, and miR-520c-3p were quantified in 85 samples and miR-371a-3p was quantified in maternal serum samples taken immediately before delivery. While for miRNA-517a-3p and miR-520c-3p the expression increased with increasing gestational age, the present study revealed strong interindividual differences in the expression of miR-371-3 in full-term placental tissue as well as for miRNAs of the C19MC cluster, where the levels differed to a much lesser extent than for the former microRNAs. Also, strong interindividual differences were noted between the serum samples but differences related to the site of the placenta where the sample has been taken from were excluded. For neither of the data from placental tissue, the study revealed differences between the spontaneous and induced abortion group. Thus, the differences do not in general seem to be related to first trimester abortion. It remains to be elucidated whether or not they affect other prenatal processes.
Collapse
Affiliation(s)
- Andrea Gottlieb
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany
| | - Inga Flor
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany
| | - Rolf Nimzyk
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany
| | - Lars Burchardt
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany
| | - Burkhard Helmke
- Institute for Pathology, Elbe Clinic Stade-Buxtehude, Bremervörder Strasse 111, 21682, Stade, Germany
| | - Marc Langenbuch
- Clinic of Gynecology and Obstetrics, Helios Clinic, Altenwalder Chaussee 10, 27474, Cuxhaven, Germany
| | - Meike Spiekermann
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany
| | - Susanne Feidicker
- Department of Gynecology and Obstetrics, Evang. Diakonie-Hospital, Gröpelinger Heerstrasse 406-408, 28239, Bremen, Germany
- Department of Obstetrics and Gynecology, University Hospital Frankfurt, Theodor-Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Jörn Bullerdiek
- Center of Human Genetics, University of Bremen, Leobener Strasse 2, 28359, Bremen, Germany.
- Institute for Medical Genetics, University of Rostock, University Medicine, Ernst-Heydemann-Strasse 8, 18057, Rostock, Germany.
| |
Collapse
|
14
|
Lin SC, Wu HL, Yeh LY, Yang CC, Kao SY, Chang KW. Activation of the miR-371/372/373 miRNA Cluster Enhances Oncogenicity and Drug Resistance in Oral Carcinoma Cells. Int J Mol Sci 2020; 21:ijms21249442. [PMID: 33322437 PMCID: PMC7764723 DOI: 10.3390/ijms21249442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is among the leading causes of cancer-associated deaths worldwide. Family members in miR-371/372/373 miRNA cluster, which is localized at human chromosome 19q13.4, are co-expressed in both human stem cells and malignancies. The individual miRNA in this cluster are also involved in modulating the pathogenesis of malignancies as either oncogenes or suppressors. The 19q13 region is frequently gained in head and neck cancers. High expression of miR-372 and miR-373 are survival predictors for OSCC. However, the role of the miR-371/372/373 cluster in oral carcinogenesis remains to be fully investigated. We use the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 system to establish OSCC cell subclones that had the miR-371/372/373 cluster deleted. In addition, further subclones were established that had the promoter of this cluster deleted. Concordant silencing in SAS cells of miR-371/372/373 decreased oncogenic potential, increased cisplatin sensitivity, activated p53, and upregulated the expression of Bad and DKK1. We also employed the CRISPR/dCas9 synergistic activation mediator system, which allowed robust transcriptional activation of the whole miR-371/372/373 cistron. Upregulation of endogenous miR-371/372/372 expression increased both oncogenicity and drug resistance. These were accompanied by a slight activation of AKT, β-catenin, and Src. This study identifies the oncogenic role of the miR-371/372/373 cluster in OSCC. Using CRISPR based strategy can be a powerful paradigm that will provide mechanistic insights into miRNA cluster functionality, which will also likely help the development of targeting options for malignancies.
Collapse
Affiliation(s)
- Shu-Chun Lin
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsiao-Li Wu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
| | - Li-Yin Yeh
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
| | - Cheng-Chieh Yang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Shou-Yen Kao
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan; (S.-C.L.); (H.-L.W.); (L.-Y.Y.); (C.-C.Y.); (S.-Y.K.)
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Correspondence: ; Fax: +886-2-28264053
| |
Collapse
|
15
|
Abstract
Thymomas and thymic carcinomas (TCs) are neoplasms of thymic epithelial cells. Thymomas exhibit a low mutational burden and a few recurrently mutated genes. The most frequent missense mutation p.(Leu404His) affects the general transcription factor IIi (GTF2I) and is specific for thymic epithelial tumors (TETs). The clinically indolent types A and AB thymomas express the miRNA cluster C19MC. This miRNA cluster known to be the largest in the human genome, is-with expression otherwise restricted mostly to embryonal tissue-silenced in the more aggressive type B thymomas and TCs. Thymomas associated with the autoimmune disease myasthenia gravis (MG) exhibit more frequent gene copy number changes and an increased expression of proteins homologous to molecules that are targets for autoantibodies. TCs, however, display a higher mutational burden, with frequent mutations of TP53 and epigenetic regulatory genes and loss of CDKN2A. The knowledge of molecular alterations in TETs fosters the understanding of their pathogenesis and provides guidance for further studies that may lead to the development of targeted therapies.
Collapse
Affiliation(s)
| | - Leonhard Müllauer
- Institute of Pathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Addo KA, Palakodety N, Hartwell HJ, Tingare A, Fry RC. Placental microRNAs: Responders to environmental chemicals and mediators of pathophysiology of the human placenta. Toxicol Rep 2020; 7:1046-1056. [PMID: 32913718 PMCID: PMC7472806 DOI: 10.1016/j.toxrep.2020.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/02/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are epigenetic modifiers that play an important role in the regulation of the expression of genes across the genome. miRNAs are expressed in the placenta as well as other organs, and are involved in several biological processes including the regulation of trophoblast differentiation, migration, invasion, proliferation, apoptosis, angiogenesis and cellular metabolism. Related to their role in disease process, miRNAs have been shown to be differentially expressed between normal placentas and placentas obtained from women with pregnancy/health complications such as preeclampsia, gestational diabetes mellitus, and obesity. This dysregulation indicates that miRNAs in the placenta likely play important roles in the pathogenesis of diseases during pregnancy. Furthermore, miRNAs in the placenta are susceptible to altered expression in relation to exposure to environmental toxicants. With relevance to the placenta, the dysregulation of miRNAs in both placenta and blood has been associated with maternal exposures to several toxicants. In this review, we provide a summary of miRNAs that have been assessed in the context of human pregnancy-related diseases and in relation to exposure to environmental toxicants in the placenta. Where data are available, miRNAs are discussed in their context as biomarkers of exposure and/or disease, with comparisons made across-tissue types, and conservation across studies detailed.
Collapse
Affiliation(s)
- Kezia A. Addo
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Niharika Palakodety
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Hadley J. Hartwell
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Aishani Tingare
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C. Fry
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Regulation of MYO18B mRNA by a network of C19MC miRNA-520G, IFN-γ, CEBPB, p53 and bFGF in hepatocellular carcinoma. Sci Rep 2020; 10:12371. [PMID: 32704163 PMCID: PMC7378193 DOI: 10.1038/s41598-020-69179-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
MYO18B has been proposed to contribute to the progression of hepatocellular carcinoma (HCC). However, the signals that govern MYO18B transcription are not known. Here we show that, a network of C19MC miRNA-520G, IFN-γ, CEBPB and p53 transcriptional-defects promote MYO18B mRNA expression in HCCs. IFN-γ by itself suppresses MYO18B transcription, but promotes it when miRNA-520G is stably overexpressed. Similarly, CEBPB-liver-enriched activator protein (LAP) isoform overexpression suppresses MYO18B transcription but promotes transcription when the cells are treated with IFN-γ. Furthermore, miR-520G together with mutant-p53 promotes MYO18B transcription. Conversely, bFGF suppresses MYO18B mRNA irrespective of CEBPB, miR-520G overexpression or IFN-γ treatment. Finally high MYO18B expression reflects poor prognosis while high MYL5 or MYO1B expression reflects better survival of HCC patients. Thus, we identified a network of positive and negative regulators of MYO18B mRNA expression which reflects the survival of HCC patients.
Collapse
|
18
|
Setty BA, Jinesh GG, Arnold M, Pettersson F, Cheng CH, Cen L, Yoder SJ, Teer JK, Flores ER, Reed DR, Brohl AS. The genomic landscape of undifferentiated embryonal sarcoma of the liver is typified by C19MC structural rearrangement and overexpression combined with TP53 mutation or loss. PLoS Genet 2020; 16:e1008642. [PMID: 32310940 PMCID: PMC7192511 DOI: 10.1371/journal.pgen.1008642] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 04/30/2020] [Accepted: 01/31/2020] [Indexed: 12/30/2022] Open
Abstract
Undifferentiated embryonal sarcoma of the liver (UESL) is a rare and aggressive malignancy. Though the molecular underpinnings of this cancer have been largely unexplored, recurrent chromosomal breakpoints affecting a noncoding region on chr19q13, which includes the chromosome 19 microRNA cluster (C19MC), have been reported in several cases. We performed comprehensive molecular profiling on samples from 14 patients diagnosed with UESL. Congruent with prior reports, we identified structural variants in chr19q13 in 10 of 13 evaluable tumors. From whole transcriptome sequencing, we observed striking expressional activity of the entire C19MC region. Concordantly, in 7 of 7 samples undergoing miRNAseq, we observed hyperexpression of the miRNAs within this cluster to levels >100 fold compared to matched normal tissue or a non-C19MC amplified cancer cell line. Concurrent TP53 mutation or copy number loss was identified in all evaluable tumors with evidence of C19MC overexpression. We find that C19MC miRNAs exhibit significant negative correlation to TP53 regulatory miRNAs and K-Ras regulatory miRNAs. Using RNA-seq we identified that pathways relevant to cellular differentiation as well as mRNA translation machinery are transcriptionally enriched in UESL. In summary, utilizing a combination of next-generation sequencing and high-density arrays we identify the combination of C19MC hyperexpression via chromosomal structural event with TP53 mutation or loss as highly recurrent genomic features of UESL.
Collapse
Affiliation(s)
- Bhuvana A. Setty
- Division of Hematology/Oncology/BMT, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University Wexner Medical Center Columbus, Ohio, United States of America
| | - Goodwin G. Jinesh
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center, Florida, United States of America
| | - Michael Arnold
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States of America
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
| | - Fredrik Pettersson
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Chia-Ho Cheng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Ling Cen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Sean J. Yoder
- Molecular Genomics Core Facility, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Jamie K. Teer
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Elsa R. Flores
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Damon R. Reed
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center, Florida, United States of America
- Adolescent and Young Adult Program, Moffitt Cancer Center, Tampa, Florida, United States of America
- Sarcoma Department, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Andrew S. Brohl
- Chemical Biology and Molecular Medicine Program, Moffitt Cancer Center, Florida, United States of America
- Sarcoma Department, Moffitt Cancer Center, Tampa, Florida, United States of America
| |
Collapse
|
19
|
Van Meter EN, Onyango JA, Teske KA. A review of currently identified small molecule modulators of microRNA function. Eur J Med Chem 2020; 188:112008. [DOI: 10.1016/j.ejmech.2019.112008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/06/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
|
20
|
microRNA: The Impact on Cancer Stemness and Therapeutic Resistance. Cells 2019; 9:cells9010008. [PMID: 31861404 PMCID: PMC7016867 DOI: 10.3390/cells9010008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer ranks as the second leading cause of death worldwide, causing a large social and economic burden. However, most anti-cancer treatments face the problems of tumor recurrence and metastasis. Therefore, finding an effective cure for cancer needs to be solved urgently. Recently, the discovery of cancer stem cells (CSCs) provides a new orientation for cancer research and therapy. CSCs share main characteristics with stem cells and are able to generate an entire tumor. Besides, CSCs usually escape from current anti-cancer therapies, which is partly responsible for tumor recurrence and poor prognosis. microRNAs (miRNAs) belong to small noncoding RNA and regulate gene post-transcriptional expression. The dysregulation of miRNAs leads to plenty of diseases, including cancer. The aberrant miRNA expression in CSCs enhances stemness maintenance. In this review, we summarize the role of miRNAs on CSCs in the eight most common cancers, hoping to bridge the research of miRNAs and CSCs with clinical applications. We found that miRNAs can act as tumor promoter or suppressor. The dysregulation of miRNAs enhances cell stemness and contributes to tumor metastasis and therapeutic resistance via the formation of feedback loops and constitutive activation of carcinogenic signaling pathways. More importantly, some miRNAs may be potential targets for diagnosis, prognosis, and cancer treatments.
Collapse
|
21
|
Sin-Chan P, Mumal I, Suwal T, Ho B, Fan X, Singh I, Du Y, Lu M, Patel N, Torchia J, Popovski D, Fouladi M, Guilhamon P, Hansford JR, Leary S, Hoffman LM, Mulcahy Levy JM, Lassaletta A, Solano-Paez P, Rivas E, Reddy A, Gillespie GY, Gupta N, Van Meter TE, Nakamura H, Wong TT, Ra YS, Kim SK, Massimi L, Grundy RG, Fangusaro J, Johnston D, Chan J, Lafay-Cousin L, Hwang EI, Wang Y, Catchpoole D, Michaud J, Ellezam B, Ramanujachar R, Lindsay H, Taylor MD, Hawkins CE, Bouffet E, Jabado N, Singh SK, Kleinman CL, Barsyte-Lovejoy D, Li XN, Dirks PB, Lin CY, Mack SC, Rich JN, Huang A. A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. Cancer Cell 2019; 36:51-67.e7. [PMID: 31287992 DOI: 10.1016/j.ccell.2019.06.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/26/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
Embryonal tumors with multilayered rosettes (ETMRs) are highly lethal infant brain cancers with characteristic amplification of Chr19q13.41 miRNA cluster (C19MC) and enrichment of pluripotency factor LIN28A. Here we investigated C19MC oncogenic mechanisms and discovered a C19MC-LIN28A-MYCN circuit fueled by multiple complex regulatory loops including an MYCN core transcriptional network and super-enhancers resulting from long-range MYCN DNA interactions and C19MC gene fusions. Our data show that this powerful oncogenic circuit, which entraps an early neural lineage network, is potently abrogated by bromodomain inhibitor JQ1, leading to ETMR cell death.
Collapse
MESH Headings
- Biomarkers, Tumor
- Brain Neoplasms/diagnosis
- Brain Neoplasms/etiology
- Brain Neoplasms/therapy
- Cell Cycle/genetics
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 19
- Chromosomes, Human, Pair 2
- DNA Copy Number Variations
- Enhancer Elements, Genetic
- Epigenesis, Genetic
- Gene Expression Regulation
- Gene Regulatory Networks
- Genetic Association Studies
- Genetic Predisposition to Disease
- Humans
- MicroRNAs/genetics
- Models, Biological
- Multigene Family
- N-Myc Proto-Oncogene Protein/genetics
- Neoplasms, Germ Cell and Embryonal/diagnosis
- Neoplasms, Germ Cell and Embryonal/etiology
- Neoplasms, Germ Cell and Embryonal/therapy
- Oncogenes
- RNA-Binding Proteins/genetics
Collapse
Affiliation(s)
- Patrick Sin-Chan
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Iqra Mumal
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Tannu Suwal
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Ben Ho
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Xiaolian Fan
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Irtisha Singh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuchen Du
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Mei Lu
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Neilket Patel
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Jonathon Torchia
- Princess Margaret Cancer Center-OICR Translational Genomics Laboratory, Ontario Institute for Cancer Research, Toronto, ON M5G0A3, Canada
| | - Dean Popovski
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Maryam Fouladi
- Division of Oncology, Department of Cancer and Blood Diseases, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA
| | - Paul Guilhamon
- Developmental and Stem Cell Biology Program and Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Jordan R Hansford
- Children's Cancer Centre, Royal Children's Hospital, Murdoch Children's Research Institute, Department of Pediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Sarah Leary
- Department of Hematology-Oncology, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Lindsey M Hoffman
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jean M Mulcahy Levy
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Alvaro Lassaletta
- Pediatric Hematology and Oncology Department, Hospital Infantil Universitario Niño Jesús, Madrid 28009, Spain
| | - Palma Solano-Paez
- Department of Pediatric Oncology, Hospital Infantil Virgen del Rocio, Seville 41013, Spain
| | - Eloy Rivas
- Department of Pathology, Neuropathology Division, Hospital Universitario Virgen del Rocio, Seville 41013, Spain
| | - Alyssa Reddy
- University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham AL 35294, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, CA 94143-0112, USA
| | - Timothy E Van Meter
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298-0631, USA
| | - Hideo Nakamura
- Department of Neurosurgery, Kurume University, Fukuoka 830-0011, Japan
| | - Tai-Tong Wong
- Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Young-Shin Ra
- Department of Neurosurgery, Asan Medical Center, Seoul 138-736, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 03080, Korea
| | - Luca Massimi
- Department of Neurosurgery, Fondazione Policlinico A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Richard G Grundy
- Children's Brain Tumor Research Centre, Queen's Medical Centre University of Nottingham, Nottingham NG72UH, UK
| | - Jason Fangusaro
- Department of Pediatric Hematology and Oncology at Children's Healthcare of Atlanta and the Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Donna Johnston
- Division of Hematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, ON K1H8L1, Canada
| | - Jennifer Chan
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB T2N1N4, Canada
| | - Lucie Lafay-Cousin
- Department of Pediatric Oncology, Alberta Children's Hospital, Calgary, AB T3B6A8, Canada
| | - Eugene I Hwang
- Center for Cancer and Blood Disorders, Children's National Medical Center, Washington, DC 20010, USA
| | - Yin Wang
- Department of Neuropathology Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Daniel Catchpoole
- The Tumor Bank, Children's Cancer Research Unit, Kids Research, the Children's Hospital at Westmead, Westmead, NSW 2145, Australia
| | - Jean Michaud
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Benjamin Ellezam
- Department of Pathology, CHU Sainte-Justine Research Center, Université de Montréal, Montréal, QC H3T1C5, Canada
| | - Ramya Ramanujachar
- Paediatric Haematology and Oncology, Southampton Children's Hospital, Southampton SO166YD, UK
| | - Holly Lindsay
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Michael D Taylor
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Neurosurgery, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Cynthia E Hawkins
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada; Department of Pathology, The Hospital for Sick Children, Toronto, ON M5G1X8, Canada
| | - Eric Bouffet
- Division of Hematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON M5G0A4, Canada
| | - Nada Jabado
- Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC H3A0C7, Canada
| | - Sheila K Singh
- McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S4K1, Canada
| | - Claudia L Kleinman
- Departments of Pediatrics and Human Genetics, McGill University, Montréal, QC H3A0C7, Canada
| | | | - Xiao-Nan Li
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Peter B Dirks
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada; Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Neurosurgery, Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen C Mack
- Department of Pediatrics, Division of Hematology and Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jeremy N Rich
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, CA 92093, USA
| | - Annie Huang
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada; Division of Hematology-Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON M5G0A4, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G1L7, Canada.
| |
Collapse
|
22
|
Hromadnikova I, Dvorakova L, Kotlabova K, Krofta L. The Prediction of Gestational Hypertension, Preeclampsia and Fetal Growth Restriction via the First Trimester Screening of Plasma Exosomal C19MC microRNAs. Int J Mol Sci 2019; 20:ijms20122972. [PMID: 31216670 PMCID: PMC6627682 DOI: 10.3390/ijms20122972] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of the study was to verify if quantification of placental specific C19MC microRNAs in plasma exosomes would be able to differentiate during the early stages of gestation between patients subsequently developing pregnancy-related complications and women with the normal course of gestation and if this differentiation would lead to the improvement of the diagnostical potential. The retrospective study on singleton Caucasian pregnancies was performed within 6/2011-2/2019. The case control study, nested in a cohort, involved women that later developed GH (n = 57), PE (n = 43), FGR (n = 63), and 102 controls. Maternal plasma exosome profiling was performed with the selection of C19MC microRNAs with diagnostical potential only (miR-516b-5p, miR-517-5p, miR-518b, miR-520a-5p, miR-520h, and miR-525-5p) using real-time RT-PCR. The down-regulation of miR-517-5p, miR-520a-5p, and miR-525-5p was observed in patients with later occurrence of GH and PE. Maternal plasma exosomal profiling of selected C19MC microRNAs also revealed a novel down-regulated biomarker during the first trimester of gestation (miR-520a-5p) for women destinated to develop FGR. First trimester circulating plasma exosomes possess the identical C19MC microRNA expression profile as placental tissues derived from patients with GH, PE and FGR after labor. The predictive accuracy of first trimester C19MC microRNA screening (miR-517-5p, miR-520a-5p, and miR-525-5p) for the diagnosis of GH and PE was significantly higher in the case of expression profiling of maternal plasma exosomes compared to expression profiling of the whole maternal plasma samples.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic.
| | - Lenka Dvorakova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic.
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic.
| | - Ladislav Krofta
- Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, 14700 Prague, Czech Republic.
| |
Collapse
|
23
|
Vo DD, Becquart C, Tran TPA, Di Giorgio A, Darfeuille F, Staedel C, Duca M. Building of neomycin-nucleobase-amino acid conjugates for the inhibition of oncogenic miRNAs biogenesis. Org Biomol Chem 2019; 16:6262-6274. [PMID: 30116813 DOI: 10.1039/c8ob01858h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are a recently discovered category of small RNA molecules that regulate gene expression at the post-transcriptional level. Accumulating evidence indicates that miRNAs are aberrantly expressed in a variety of human cancers, thus being oncogenic. The inhibition of oncogenic miRNAs (defined as the blocking of miRNAs' production or function) would find application in the therapy of different types of cancer in which these miRNAs are implicated. In this work, we describe the design and synthesis of new small-molecule RNA ligands with the aim of inhibiting Dicer-mediated processing of oncogenic miRNAs. One of the synthesized compound (4b) composed of the aminoglycoside neomycin conjugated to an artificial nucleobase and to amino acid histidine is able to selectively decrease miR-372 levels in gastric adenocarcinoma (AGS) cells and to restore the expression of the target LATS2 protein. This activity led to the inhibition of proliferation of these cells. The study of the interactions of 4b with pre-miR-372 allowed for the elucidation of the molecular mechanism of the conjugate, thus leading to new perspectives for the design of future inhibitors.
Collapse
Affiliation(s)
- Duc Duy Vo
- Université Côte d'Azur, CNRS, Institute of Chemistry of Nice (ICN), Nice, France.
| | | | | | | | | | | | | |
Collapse
|
24
|
Guo H, Ji F, Zhao X, Yang X, He J, Huang L, Zhang Y. MicroRNA-371a-3p promotes progression of gastric cancer by targeting TOB1. Cancer Lett 2019; 443:179-188. [DOI: 10.1016/j.canlet.2018.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
|
25
|
Chromosome 19 miRNA cluster and CEBPB expression specifically mark and potentially drive triple negative breast cancers. PLoS One 2018; 13:e0206008. [PMID: 30335837 PMCID: PMC6193703 DOI: 10.1371/journal.pone.0206008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancers (TNBCs) are known to express low PGR, ESR1, and ERBB2, and high KRT5, KRT14, and KRT17. However, the reasons behind the increased expressions of KRT5, KRT14, KRT17 and decreased expressions of PGR, ESR1, and ERBB2 in TNBCs are not fully understood. Here we show that, expression of chromosome 19 miRNA cluster (C19MC) specifically marks human TNBCs. Low REST and high CEBPB correlate with expression of C19MC, KRT5, KRT14, and KRT17 and enhancers of these genes/cluster are regulated by CEBPB and REST binding sites. The C19MC miRNAs in turn can potentially target REST to offer a positive feedback loop, and might target PGR, ESR1, ERBB2, GATA3, SCUBE2, TFF3 mRNAs to contribute towards TNBC phenotype. Thus our study demonstrates that C19MC miRNA expression marks TNBCs and that C19MC miRNAs and CEBPB might together determine the TNBC marker expression pattern.
Collapse
|
26
|
Abstract
Research on stem cells is one of the fastest growing areas of regenerative medicine that paves the way for a comprehensive solution to cell therapy. Today, stem cells are precious assets for generating different types of cells derived from either natural embryonic stem (ES) cells or induced pluripotent stem (iPS) cells. The iPS technology can revolutionize the future of clinics by offering personalized medicine, which will provide the future treatment for curing untreatable diseases. Although iPS cell therapy is now at its infancy, promising research has motivated scientists to pursue this therapeutic approach. In this article, we provide information regarding similarities and differences between ES and iPS cells, and focus on the non-integrating methods of iPS generation via RNA molecules, especially microRNAs with an emphasis on the elucidation of their role and importance in pluripotency.
Collapse
Affiliation(s)
- Abbas Beh-Pajooh
- REBIRTH-Group Translational Hepatology and Stem Cell Biology, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tobias Cantz
- REBIRTH-Group Translational Hepatology and Stem Cell Biology, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
27
|
Vidal DO, Ramão A, Pinheiro DG, Muys BR, Lorenzi JCC, de Pádua Alves C, Zanette DL, de Molfetta GA, Duarte G, Silva WA. Highly expressed placental miRNAs control key biological processes in human cancer cell lines. Oncotarget 2018; 9:23554-23563. [PMID: 29805755 PMCID: PMC5955126 DOI: 10.18632/oncotarget.25264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/24/2018] [Indexed: 12/31/2022] Open
Abstract
Despite being a healthy tissue, the constituent cells of the placenta, share similar characteristics with tumor cells, such as increased cell growth, migration, and invasion. However, while these processes are stochastic and uncontrolled in cancer cells, in placenta they are precisely controlled. Since miRNAs have been reported to regulate genes that control the molecular mechanisms necessary for the development of both human placenta and cancer, we addressed for miRNAs highly expressed in the placenta that could be involved in tumorigenesis. Here, we assessed the miRNA profile in placenta samples using microarray analysis. The results showed that miR-451 and miR-720, highly expressed placental miRNAs, presented very low or undetectable expression in cancer cell lines compared to the normal placenta and healthy tissues. Additionally, transfection of miR-451 or miR-720 mimics in choriocarcinoma cell line (JEG3) and colorectal adenocarcinoma cell line (HT-29) resulted in impaired cell proliferation, decreased cell migration and invasion and reduced ability of colony formation. These findings provide evidence that placenta may work as an alternative model to identify novel miRNAs involved in pathways controlling tumorigenesis.
Collapse
Affiliation(s)
- Daniel Onofre Vidal
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Anelisa Ramão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Daniel Guariz Pinheiro
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Bruna Rodrigues Muys
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Julio Cesar Cetrulo Lorenzi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Cleidson de Pádua Alves
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Dalila Luciola Zanette
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Greice Andreotti de Molfetta
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Geraldo Duarte
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Wilson Araújo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil.,Center for Medical Genomics (HCFMRP/USP), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Integrative Systems Biology (CISBi-NAP/USP), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
28
|
Mong EF, Akat KM, Canfield J, Lockhart J, VanWye J, Matar A, Tsibris JCM, Wu JK, Tuschl T, Totary-Jain H. Modulation of LIN28B/Let-7 Signaling by Propranolol Contributes to Infantile Hemangioma Involution. Arterioscler Thromb Vasc Biol 2018; 38:1321-1332. [PMID: 29724816 DOI: 10.1161/atvbaha.118.310908] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/18/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Infantile hemangiomas (IHs) are the most common benign vascular neoplasms of infancy, characterized by a rapid growth phase followed by a spontaneous involution, or triggered by propranolol treatment by poorly understood mechanisms. LIN28/let-7 axis plays a central role in the regulation of stem cell self-renewal and tumorigenesis. However, the role of LIN28B/let-7 signaling in IH pathogenesis has not yet been elucidated. APPROACH AND RESULTS LIN28B is highly expressed in proliferative IH and is less expressed in involuted and in propranolol-treated IH samples as measured by immunofluorescence staining and quantitative RT-PCR. Small RNA sequencing analysis of IH samples revealed a decrease in microRNAs that target LIN28B, including let-7, and an increase in microRNAs in the mir-498(46) cistron. Overexpression of LIN28B in HEK293 cells induced the expression of miR-516b in the mir-498(46) cistron. Propranolol treatment of induced pluripotent stem cells, which express mir-498(46) endogenously, reduced the expression of both LIN28B and mir-498(46) and increased the expression of let-7. Furthermore, propranolol treatment reduced the proliferation of induced pluripotent stem cells and induced epithelial-mesenchymal transition. CONCLUSIONS This work uncovers the role of the LIN28B/let-7 switch in IH pathogenesis and provides a novel mechanism by which propranolol induces IH involution. Furthermore, it provides therapeutic implications for cancers in which the LIN28/let-7 pathway is imbalanced.
Collapse
Affiliation(s)
- Ezinne Francess Mong
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Kemal Marc Akat
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York (K.M.A., T.T.)
| | - John Canfield
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - John Lockhart
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Jeffrey VanWye
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Andrew Matar
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - John C M Tsibris
- Department of Obstetrics and Gynecology (J.C.M.T.), Morsani College of Medicine, University of South Florida, Tampa
| | - June K Wu
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York (J.K.W.)
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York (K.M.A., T.T.)
| | - Hana Totary-Jain
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| |
Collapse
|
29
|
Identification of microRNA signature in the progression of gestational trophoblastic disease. Cell Death Dis 2018; 9:94. [PMID: 29367697 PMCID: PMC5833456 DOI: 10.1038/s41419-017-0108-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
Abstract
Gestational trophoblastic disease (GTD) encompasses a range of trophoblast-derived disorders. The most common type of GTD is hydatidiform mole (HM). Some of HMs can further develop into malignant gestational trophoblastic neoplasia (GTN). Aberrant expression of microRNA (miRNA) is widely reported to be involved in the initiation and progression of cancers. MiRNA expression profile also has been proved to be the useful signature for diagnosis, staging, prognosis, and response to chemotherapy. Till now, the profile of miRNA in the progression of GTD has not been determined. In this study, a total of 34 GTN and 60 complete HMs (CHM) trophoblastic tissues were collected. By miRNA array screening and qRT-PCR validating, six miRNAs, including miR-370-3p, -371a-5p, -518a-3p, -519d-3p, -520a-3p, and -934, were identified to be differentially expressed in GTN vs. CHM. Functional analyses further proved that miR-371a-5p and miR-518a-3p promoted proliferation, migration, and invasion of choriocarcinoma cells. Moreover, we demonstrated that miR-371a-5p was negatively related to protein levels of its predictive target genes BCCIP, SOX2, and BNIP3L, while miR-518a-3p was negatively related to MST1 and EFNA4. For the first time, we proved that miR-371a-5p and miR-518a-3p directly targeted to 3′-UTR regions of BCCIP and MST1, respectively. Additionally, we found that miR-371a-5p and miR-518a-3p regulated diverse pathways related to tumorigenesis and metastasis in choriocarcinoma cells. The results presented here may offer new clues to the progression of GTD and may provide diagnostic biomarkers for GTN.
Collapse
|
30
|
Vaira V, Verdelli C, Forno I, Corbetta S. MicroRNAs in parathyroid physiopathology. Mol Cell Endocrinol 2017; 456:9-15. [PMID: 27816765 DOI: 10.1016/j.mce.2016.10.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/30/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022]
Abstract
Parathyroid glands regulate calcium homeostasis through synthesis and secretion of parathormone (PTH). They sense the extracellular calcium concentration through the G-protein coupled calcium sensing receptor (CASR) and release PTH in order to preserve calcium concentration in the physiological range. Tumors of the parathyroid glands are common endocrine neoplasia associated with primary or secondary/tertiary hyperparathyroidisms. Small non-coding RNAs are regulators of gene expression able to modulate hormone synthesis, hormone release and endocrine cell proliferation. In this scenario, microRNA (miRNA) expression profiles have been investigated in parathyroid tumors, while miRNAs are involved in hypocalcemia and uremia-induced PTH release from normal parathyroid cells. Here we reviewed data about the role of miRNAs in the regulation of: 1) PTH synthesis and secretion; 2) CASR expression; 3) parathyroid cell tumorigenesis. Though studies about miRNAs in parathyroid gland pathophysiology are limited, they contribute in elucidating regulatory pathways involved in PTH release and parathyroid cell tumorigenesis.
Collapse
Affiliation(s)
- V Vaira
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - C Verdelli
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - I Forno
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S Corbetta
- Endocrinology Service, Department of Biomedical Sciences for Health, University of Milan, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| |
Collapse
|
31
|
Hua KT, Hong JB, Sheen YS, Huang HY, Huang YL, Chen JS, Liao YH. miR-519d Promotes Melanoma Progression by Downregulating EphA4. Cancer Res 2017; 78:216-229. [PMID: 29093007 DOI: 10.1158/0008-5472.can-17-1933] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/08/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that there is a unique cell subpopulation in melanoma that can form nonadherent melanospheres in serum-free stem cell medium, mimicking aggressive malignancy. Using melanospheres as a model to investigate progression mechanisms, we found that miR-519d overexpression was sufficient to promote cell proliferation, migration, invasion, and adhesion in vitro and lung metastatic capability in vivo The cell adhesion receptor EphA4 was determined to be a direct target of miR-519d. Forced expression of EphA4 reversed the effects of miR-519d overexpression, whereas silencing of EphA4 phenocopied the effect of miR-519d. Malignant progression phenotypes were also affected at the level of epithelial-to-mesenchymal transition and the ERK1/2 signaling pathway inversely affected by miR-519d or EphA4 expression. In clinical specimens of metastatic melanoma, we observed significant upregulation of miR-519d and downregulation of EphA4, in the latter case correlated inversely with overall survival. Taken together, our results suggest a significant functional role for miR-519d in determining EphA4 expression and melanoma progression.Significance: These results suggest a significant role for miR-519d in determining expression of a pivotal cell adhesion molecule that may impact risks of malignant progression in many cancers. Cancer Res; 78(1); 216-29. ©2017 AACR.
Collapse
Affiliation(s)
- Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jin-Bong Hong
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Shuan Sheen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-Yi Huang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ling Huang
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jau-Shiuh Chen
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
32
|
Molecular Profiling and Significance of Circulating Tumor Cell Based Genetic Signatures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:143-167. [PMID: 28560673 DOI: 10.1007/978-3-319-55947-6_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer kills by metastasizing beyond the primary site. Early detection, surgical intervention and other treatments have improved the survival rates of patients with cancer, however, once metastasis occurs, responses to conventional therapies become significantly less effective, and this remains the leading cause of death. Circulating tumor cells (CTCs) are tumor cells that have preferentially disseminated from the primary tumor mass into the hematological system, and are en route to favorable distant sites where if they survive, can develop into metastases. They may be the earliest detectable cells with metastatic ability, and are gaining increasing attention because of their prognostic value in many types of cancers including breast, prostate, colon and lung. Recent technological advances have removed barriers that previously hindered the detection and isolation of these rare cells from blood, and have exponentially improved the genetic resolution at which we can characterize signatures that define CTCs. Some of the most significant observations from such examinations are described here. Firstly, aberrations that were thought to be unique to CTCs are detected at subclonal frequencies within primary tumors with measurable heterogeneity, indicating pre-existing genetic signatures for metastasis. Secondly, these subclonal events are enriched in CTCs and metastases, pointing towards the selection of a more 'fit' component of tumor cells with survival advantages. Lastly, this component of cancer cells may also be the chemoresistant portion that escapes systemic treatment, or acquires resistance during progression of the disease. The future of cancer management may include a standardized method of measuring intratumor heterogeneity of the primary as well as matched CTCs. This will help identify and target rare aberrations within primary tumors that make them more adept to disseminate, and also to monitor the development of treatment resistant subclones as cancer progresses.
Collapse
|
33
|
Uncovering robust patterns of microRNA co-expression across cancers using Bayesian Relevance Networks. PLoS One 2017; 12:e0183103. [PMID: 28817636 PMCID: PMC5560700 DOI: 10.1371/journal.pone.0183103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/19/2017] [Indexed: 01/17/2023] Open
Abstract
Co-expression networks have long been used as a tool for investigating the molecular circuitry governing biological systems. However, most algorithms for constructing co-expression networks were developed in the microarray era, before high-throughput sequencing-with its unique statistical properties-became the norm for expression measurement. Here we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning about expression levels to account for the differing levels of uncertainty in expression measurements between highly- and lowly-expressed entities, and between samples with different sequencing depths. It combines data from groups of samples (e.g., replicates) to estimate group expression levels and confidence ranges. It then computes uncertainty-moderated estimates of cross-group correlations between entities, and uses permutation testing to assess their statistical significance. Using large scale miRNA data from The Cancer Genome Atlas, we show that our Bayesian update of the classical Relevance Networks algorithm provides improved reproducibility in co-expression estimates and lower false discovery rates in the resulting co-expression networks. Software is available at www.perkinslab.ca.
Collapse
|
34
|
Yuan K, Ai WB, Wan LY, Tan X, Wu JF. The miR-290-295 cluster as multi-faceted players in mouse embryonic stem cells. Cell Biosci 2017; 7:38. [PMID: 28794853 PMCID: PMC5547456 DOI: 10.1186/s13578-017-0166-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/01/2017] [Indexed: 01/04/2023] Open
Abstract
Increasing evidence indicates that embryonic stem cell specific microRNAs (miRNAs) play an essential role in the early development of embryo. Among them, the miR-290-295 cluster is the most highly expressed in the mouse embryonic stem cells and involved in various biological processes. In this paper, we reviewed the research progress of the function of the miR-290-295 cluster in embryonic stem cells. The miR-290-295 cluster is involved in regulating embryonic stem cell pluripotency maintenance, self-renewal, and reprogramming somatic cells to an embryonic stem cell-like state. Moreover, the miR-290-295 cluster has a latent pro-survival function in embryonic stem cells and involved in tumourigenesis and senescence with a great significance. Elucidating the interaction between the miR-290-295 cluster and other modes of gene regulation will provide us new ideas on the biology of pluripotent stem cells. In the near future, the broad prospects of the miRNA cluster will be shown in the stem cell field, such as altering cell identities with high efficiency through the transient introduction of tissue-specific miRNA cluster.
Collapse
Affiliation(s)
- Kai Yuan
- Institute of Organ Fibrosis and Targeted Drug Delivery, Medical College, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China
| | - Wen-Bing Ai
- The Yiling Hospital of Yichang, 31 Donghu Road, Yi Ling District, Yichang, 443100 Hubei China
| | - Lin-Yan Wan
- Institute of Organ Fibrosis and Targeted Drug Delivery, Medical College, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China.,The RenMin Hospital, China Three Gorges University, 31 Huti Subdistrict, Xi Ling District, Yichang, 443000 Hubei China
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China
| | - Jiang-Feng Wu
- Institute of Organ Fibrosis and Targeted Drug Delivery, Medical College, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang, 443002 China
| |
Collapse
|
35
|
Hromadnikova I, Kotlabova K, Ivankova K, Krofta L. Expression profile of C19MC microRNAs in placental tissue of patients with preterm prelabor rupture of membranes and spontaneous preterm birth. Mol Med Rep 2017; 16:3849-3862. [PMID: 28731129 PMCID: PMC5646962 DOI: 10.3892/mmr.2017.7067] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
The aim of the study was to demonstrate that preterm birth (PTB) is associated with altered C19MC microRNA expression profile in placental tissues. Gene expression of 15 placental specific microRNAs (miR-512-5p, miR-515-5p, miR-516-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-519e-5p, miR-520a-5p, miR-520h, miR-524-5p, miR-525-5p, miR-526a and miR-526b-5p) was compared between groups: 34 spontaneous PTB, 108 preterm prelabor rupture of membranes (PPROM) and 20 term in labor pregnancies. Correlation between variables including relative microRNA quantification in placental tissues and the gestational age at delivery, white blood cell (WBC) count at admission and serum levels of C-reactive protein at admission in patients with PPROM and PTB was determined. Expression profile of microRNAs was different between PPROM and term in labor pregnancies, PTB and term in labor pregnancies, and between gestational age-matched PPROM and PTB groups. When compared with term in labor pregnancies, while C19MC microRNAs showed a downregulation in PPROM pregnancies (miR-525-5p), in PTB pregnancies C19MC microRNAs were upregulated (miR-515-5p, miR-516-5p, miR-518b, miR-518f-5p, miR-519a, miR-519e-5p, miR-520a-5p, miR-520h, and miR-526b-5p) or showed a trend to upregulation (miR-519d and miR-526a). In comparison to PTB pregnancies, the PPROM group demonstrated a significant portion of downregulated C19MC microRNAs (miR-516-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-519e-5p, miR-520a-5p, miR-520h, miR-525-5p, miR-526a and miR-526b-5p). In the group of PPROM pregnancies, a weak negative correlation between the gestational age at delivery and microRNA gene expression in placental tissue for all examined C19MC microRNAs was observed. PTB pregnancies showed a positive correlation (miR-512-5p, miR-515-5p, miR-519e-5p) or a trend to positive correlation (miR-516-5p, miR-518b, miR-520h) between particular C19MC microRNAs and maternal WBC count at admission. Our study demonstrates that upregulation of C19MC microRNAs is a characteristic phenomenon of PTB. PPROM pregnancies have a tendency to produce lower levels of miR-525-5p. All examined C19MC microRNAs displayed decreased expression with advancing gestational age in PPROM group.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 100 00 Prague 10, Czech Republic
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, 100 00 Prague 10, Czech Republic
| | - Katarina Ivankova
- Institute for The Care of Mother and Child, Third Faculty of Medicine, Charles University, 100 00 Prague 10, Czech Republic
| | - Ladislav Krofta
- Institute for The Care of Mother and Child, Third Faculty of Medicine, Charles University, 100 00 Prague 10, Czech Republic
| |
Collapse
|
36
|
Hromadnikova I, Kotlabova K, Krofta L, Hron F. Follow-up of gestational trophoblastic disease/neoplasia via quantification of circulating nucleic acids of placental origin using C19MC microRNAs, hypermethylated RASSF1A, and SRY sequences. Tumour Biol 2017; 39:1010428317697548. [PMID: 28381180 DOI: 10.1177/1010428317697548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aim of the study was to evaluate the effectiveness of placental-specific markers, extracellular fetal DNA (sex-determining region Y and hypermethylated RASSF1A sequences) and circulating C19MC microRNAs (miR-516-5p, miR-517-5p, miR-518b, miR-520a-5p, miR-520h, miR-525, and miR-526a) for the diagnosis and consecutive follow-up of gestational trophoblastic disease/neoplasia. Increased levels of extracellular fetal DNA and C19MC microRNAs were detected in patients with active disease when compared with the period when the patients reached remission of the disease. The positive correlation between plasma levels of hypermethylated RASSF1A sequence, C19MC microRNAs, and human chorionic gonadotropin serum levels was found. MiR-520a-5p had the best performance to detect patients with active disease (a positive predictive value of 100% at a null false positive ratio (FPR)). MiR-516-5p and miR-525 were able to diagnose 100% of women with active disease at the FPR 3.9%/7.7%. The overall predictive capacity of single miR-526a (81.8% at null FPR), miR-517-5p (90.9% at 15.4% FPR), miR-518b (100% at 38.5% FPR), and miR-520h (90.9% at 26.9% FPR) biomarkers to detect active disease cases was slightly lower. Transient increase in C19MC microRNA plasma levels after the first cycle of chemotherapy indicated the decay of placental trophoblast residual tissue. The increased levels of extracellular fetal DNA and placental-specific C19MC microRNAs are associated with gestational trophoblastic disease/neoplasia. Screening of extracellular placental-specific biomarkers may represent an additional option to identify a significant proportion of women with active disease and to monitor the therapy response. Non-invasive follow-up of the decomposing residual tissue in the form of extracellular nucleic acids of placental origin packed into apoptotic bodies derived from placental trophoblasts is available.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- 1 Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Kotlabova
- 1 Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ladislav Krofta
- 2 Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filip Hron
- 2 Institute for the Care of the Mother and Child, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
37
|
First trimester screening of circulating C19MC microRNAs and the evaluation of their potential to predict the onset of preeclampsia and IUGR. PLoS One 2017; 12:e0171756. [PMID: 28182660 PMCID: PMC5300267 DOI: 10.1371/journal.pone.0171756] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/25/2017] [Indexed: 12/17/2022] Open
Abstract
Objectives A nested case control study of a longitudinal cohort comparing pregnant women enrolled at 10 to 13 gestational weeks was carried out to evaluate risk assessment for preeclampsia and IUGR based on circulating placental specific C19MC microRNAs in early pregnancy. Methods The expression of placental specific C19MC microRNAs (miR-516b-5p, miR-517-5p, miR-518b, miR-520a-5p, miR-520h, and miR-525-5p) was determined in plasma samples from pregnancies that subsequently developed preeclampsia (n = 21), IUGR (n = 18), and 58 normal pregnancies using real-time PCR and comparative Ct method relative to synthetic Caenorhabditis elegans microRNA (cel-miR-39). Results Circulating C19MC microRNAs were up-regulated (miR-517-5p, p = 0.005; miR-518b, p = 0.013; miR-520h, p = 0.021) or showed a trend toward up-regulation in patients destined to develop preeclampsia (miR-520a-5p, p = 0.067; miR-525-5p, p = 0.073). MiR-517-5p had the best predictive performance for preeclampsia with a sensitivity of 42.9%, a specificity of 86.2%, a PPV of 52.9% and a NPV of 80.6%. The combination of all examined circulating C19MC microRNAs had no advantage over using only the miR-517-5p biomarker to predict the occurrence of preeclampsia (a sensitivity of 20.6%, a specificity of 90.8%, a PPV of 44.8%, and a NPV of 76.0%). Conclusions Up-regulation of miR-517-5p, miR-518b and miR-520h was associated with a risk of later development of preeclampsia. First trimester screening of extracellular miR-517-5p identified a proportion of women with subsequent preeclampsia. No circulating C19MC microRNA biomarkers were identified that could predict later occurrence of IUGR.
Collapse
|
38
|
Abstract
MicroRNA (miRNA) are negative regulators of gene expression and subsequent protein production. This method of action translates into regulatory control over cellular processes, including development, signaling, metabolism, and apoptosis. A broad range of miRNA are shown to have abnormal expressions in thyroid cancers which could explain the pathology of tumor oncogenesis and disease progression. A review is conducted of the current research on miRNA dysregulation in thyroid cancers, including papillary thyroid carcinoma (PTC), follicular thyroid carcinoma (FTC), anaplastic thyroid cancer (ATC), and medullary thyroid carcinoma (MTC). Dysregulated miRNA and their associated regulatory pathways are identified and their oncogenic and pathological significance are discussed.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/genetics
- Adenocarcinoma, Follicular/pathology
- Animals
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- MicroRNAs/genetics
- Thyroid Cancer, Papillary
- Thyroid Carcinoma, Anaplastic/genetics
- Thyroid Carcinoma, Anaplastic/pathology
- Thyroid Gland/metabolism
- Thyroid Gland/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
Collapse
Affiliation(s)
- Gaohong Zhu
- Department of Nuclear Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China.
| | - Lijun Xie
- Department of Nuclear Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Daniel Miller
- School of Computing, University of South Alabama, Mobile, AL, 36688, USA
| |
Collapse
|
39
|
Molecular Profiling of Thymoma and Thymic Carcinoma: Genetic Differences and Potential Novel Therapeutic Targets. Pathol Oncol Res 2016; 23:551-564. [PMID: 27844328 PMCID: PMC5487866 DOI: 10.1007/s12253-016-0144-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 10/26/2016] [Indexed: 01/30/2023]
Abstract
Thymoma and thymic carcinoma are thymic epithelial tumors (TETs). We performed a molecular profiling to investigate the pathogenesis of TETs and identify novel targets for therapy. We analyzed 37 thymomas (18 type A, 19 type B3) and 35 thymic carcinomas. The sequencing of 50 genes detected nonsynonymous mutations in 16 carcinomas affecting ALK, ATM, CDKN2A, ERBB4, FGFR3, KIT, NRAS and TP53. Only two B3 thymomas had a mutation in noncoding regions of the SMARCB1 and STK11 gene respectively. Three type A thymomas harbored a nonsynonymous HRAS mutation. Fluorescence in situ hybridization detected in 38 % of carcinomas a CDKN2A, in 32 % a TP53 and in 8 % an ATM gene deletion, whereas only one B3 thymoma exhibited a CDKNA deletion, and none of the type A thymomas showed a gene loss. Sequencing of the total miRNA pool of 5 type A thymomas and 5 thymic carcinomas identified the C19MC miRNA cluster as highly expressed in type A thymomas, but completely silenced in thymic carcinomas. Furthermore, the miRNA cluster C14MC was downregulated in thymic carcinomas. Among non-clustered miRNAs, the upregulation of miR-21, miR-9-3 and miR-375 and the downregulation of miR-34b, miR-34c, miR-130a and miR-195 in thymic carcinomas were most significant. The expression of ALK, HER2, HER3, MET, phospho-mTOR, p16INK4A, PDGFRA, PDGFRB, PD-L1, PTEN and ROS1 was investigated by immunohistochemistry. PDGFRA was increased in thymic carcinomas and PD-L1 in B3 thymomas and thymic carcinomas. In summary, our results reveal genetic differences between thymomas and thymic carcinomas and suggest potential novel targets for therapy.
Collapse
|
40
|
Xie L, Sadovsky Y. The function of miR-519d in cell migration, invasion, and proliferation suggests a role in early placentation. Placenta 2016; 48:34-37. [PMID: 27871470 DOI: 10.1016/j.placenta.2016.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/26/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022]
Abstract
The processes of proliferation, migration, and invasion of extravillous trophoblasts are critical for placental implantation and early development, and directly influence pregnancy outcome. Dysregulation of these processes has been associated with placental dysfunction, implicated in clinical conditions such as preeclampsia and placental accreta. Among diverse microRNA (miRNA) species that are expressed in placental trophoblasts, members of the chromosome 19 miRNA cluster (C19MC) stand out in their nearly exclusive expression in the placenta. Recent research on the function of C19MC miRNAs in normal cell physiology and during tumorigenesis identified one C19MC member, miR-519d, as a regulator of cell migration, invasion, and interaction with the extracellular matrix. In this review, we focus on the function of miR-519d in placental trophoblasts, where miR-519d regulates cell migration and invasion, and its aberrant expression is associated with preeclampsia. In cancer, the function of miR-519d as an oncomiR or a tumor-suppressor is dependent upon the tumor type. Further research on the biological function and regulation of miR-519d may illuminate previously unknown mechanisms that control cell migration and invasion.
Collapse
Affiliation(s)
- Lan Xie
- Medical Systems Biology Research Center, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing 100084, China
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of OBGYN and Reproductive Sciences, University of Pittsburgh, PA 15213, USA.
| |
Collapse
|
41
|
microRNAs with AAGUGC seed motif constitute an integral part of an oncogenic signaling network. Oncogene 2016; 36:731-745. [PMID: 27477696 PMCID: PMC5311252 DOI: 10.1038/onc.2016.242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/20/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
microRNA (miRNA) dysregulation is a common feature of cancer cells, but the complex roles of miRNAs in cancer are not fully elucidated. Here, we used functional genomics to identify oncogenic miRNAs in non-small cell lung cancer and evaluate their impact on response to epidermal growth factor (EGFR)-targeting therapy. Our data demonstrate that miRNAs with an AAGUGC motif in their seed sequence increase both cancer cell proliferation and sensitivity to EGFR inhibitors. Global transcriptomics, proteomics and target prediction resulted in the identification of several tumor suppressors involved in the G1/S transition as AAGUGC-miRNA targets. The clinical implications of our findings were evaluated by analysis of AAGUGC-miRNA expression in multiple cancer types, supporting the link between this miRNA seed family, their tumor suppressor targets and cancer cell proliferation. In conclusion, we propose the AAGUGC seed motif as an oncomotif and that oncomotif-miRNAs promote cancer cell proliferation. These findings have potential therapeutic implications, especially in selecting patients for EGFR-targeting therapy.
Collapse
|
42
|
Lewis A, Lee JY, Donaldson AV, Natanek SA, Vaidyanathan S, Man WDC, Hopkinson NS, Sayer AA, Patel HP, Cooper C, Syddall H, Polkey MI, Kemp PR. Increased expression of H19/miR-675 is associated with a low fat-free mass index in patients with COPD. J Cachexia Sarcopenia Muscle 2016; 7:330-44. [PMID: 27239417 PMCID: PMC4863928 DOI: 10.1002/jcsm.12078] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 06/17/2015] [Accepted: 09/10/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Loss of muscle mass and strength is a significant comorbidity in patients with chronic obstructive pulmonary disease (COPD) that limits their quality of life and has prognostic implications but does not affect everyone equally. To identify mechanisms that may contribute to the susceptibility to a low muscle mass, we investigated microRNA (miRNA) expression, methylation status, and regeneration in quadriceps muscle from COPD patients and the effect of miRNAs on myoblast proliferation in vitro. The relationships of miRNA expression with muscle mass and strength was also determined in a group of healthy older men. METHODS We identified miRNAs associated with a low fat-free mass (FFM) phenotype in a small group of patients with COPD using a PCR screen of 750 miRNAs. The expression of two differentially expressed miRNAs (miR-675 and miR-519a) was determined in an expanded group of COPD patients and their associations with FFM and strength identified. The association of these miRNAs with FFM and strength was also explored in a group of healthy community-dwelling older men. As the expression of the miRNAs associated with FFM could be regulated by methylation, the relative methylation of the H19 ICR was determined. Furthermore, the proportion of myofibres with centralized nuclei, as a marker of muscle regeneration, in the muscle of COPD patients was identified by immunofluorescence. RESULTS Imprinted miRNAs (miR-675 and from a cluster, C19MC which includes miR-519a) were differentially expressed in the quadriceps of patients with a low fat-free mass index (FFMI) compared to those with a normal FFMI. In larger cohorts, miR-675 and its host gene (H19) were higher in patients with a low FFMI and strength. The association of miR-519a expression with FFMI was present in male patients with severe COPD. Similar associations of miR expression with lean mass and strength were not observed in healthy community dwelling older men participating in the Hertfordshire Sarcopenia Study. Relative methylation of the H19 ICR was reduced in COPD patients with muscle weakness but was not associated with FFM. In vitro, miR-675 inhibited myoblast proliferation and patients with a low FFMI had fewer centralized nuclei suggesting miR-675 represses regeneration. CONCLUSIONS The data suggest that increased expression of miR-675/H19 and altered methylation of the H19 imprinting control region are associated with a low FFMI in patients with COPD but not in healthy community dwelling older men suggesting that epigenetic control of this loci may contribute to a susceptibility to a low FFMI.
Collapse
Affiliation(s)
- Amy Lewis
- Molecular Medicine Section National Heart and Lung Institute, Imperial College South Kensington Campus London SW7 2AZ UK
| | - Jen Y Lee
- Molecular Medicine Section National Heart and Lung Institute, Imperial College South Kensington Campus London SW7 2AZ UK
| | - Anna V Donaldson
- Molecular Medicine Section National Heart and Lung Institute, Imperial College South Kensington Campus London SW7 2AZ UK; National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London London SW3 6NP UK
| | - S Amanda Natanek
- Molecular Medicine Section National Heart and Lung Institute, Imperial College South Kensington Campus London SW7 2AZ UK; National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London London SW3 6NP UK
| | - Srividya Vaidyanathan
- Molecular Medicine Section National Heart and Lung Institute, Imperial College South Kensington Campus London SW7 2AZ UK
| | - William D-C Man
- National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London London SW3 6NP UK
| | - Nicholas S Hopkinson
- National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London London SW3 6NP UK
| | - Avan A Sayer
- MRC Lifecourse Epidemiology Unit University of Southampton, Southampton General Hospital Southampton SO16 6YD UK
| | - Harnish P Patel
- MRC Lifecourse Epidemiology Unit University of Southampton, Southampton General Hospital Southampton SO16 6YD UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit University of Southampton, Southampton General Hospital Southampton SO16 6YD UK
| | - Holly Syddall
- MRC Lifecourse Epidemiology Unit University of Southampton, Southampton General Hospital Southampton SO16 6YD UK
| | - Michael I Polkey
- National Institute for Health Research Respiratory Biomedical Research Unit at Royal Brompton and Harefield NHS Foundation Trust and Imperial College London London SW3 6NP UK
| | - Paul R Kemp
- Molecular Medicine Section National Heart and Lung Institute, Imperial College South Kensington Campus London SW7 2AZ UK
| |
Collapse
|
43
|
|
44
|
A large microRNA cluster on chromosome 19 is a transcriptional hallmark of WHO type A and AB thymomas. Br J Cancer 2016; 114:477-84. [PMID: 26766736 PMCID: PMC4815766 DOI: 10.1038/bjc.2015.425] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 12/24/2022] Open
Abstract
Background: Thymomas are one of the most rarely diagnosed malignancies. To better understand its biology and to identify therapeutic targets, we performed next-generation RNA sequencing. Methods: The RNA was sequenced from 13 thymic malignancies and 3 normal thymus glands. Validation of microRNA expression was performed on a separate set of 35 thymic malignancies. For cell-based studies, a thymoma cell line was used. Results: Hierarchical clustering revealed 100% concordance between gene expression clusters and WHO subtype. A substantial differentiator was a large microRNA cluster on chr19q13.42 that was significantly overexpressed in all A and AB tumours and whose expression was virtually absent in the other thymomas and normal tissues. Overexpression of this microRNA cluster activates the PI3K/AKT/mTOR pathway. Treatment of a thymoma AB cell line with a panel of PI3K/AKT/mTOR inhibitors resulted in marked reduction of cell viability. Conclusions: A large microRNA cluster on chr19q13.42 is a transcriptional hallmark of type A and AB thymomas. Furthermore, this cluster activates the PI3K pathway, suggesting the possible exploration of PI3K inhibitors in patients with these subtypes of tumour. This work has led to the initiation of a phase II clinical trial of PI3K inhibition in relapsed or refractory thymomas (http://clinicaltrials.gov/ct2/show/NCT02220855).
Collapse
|
45
|
Zhang Y, Zhao FJ, Chen LL, Wang LQ, Nephew KP, Wu YL, Zhang S. MiR-373 targeting of the Rab22a oncogene suppresses tumor invasion and metastasis in ovarian cancer. Oncotarget 2015; 5:12291-303. [PMID: 25460499 PMCID: PMC4323008 DOI: 10.18632/oncotarget.2577] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022] Open
Abstract
Metastasis is major cause of mortality in patients with ovarian cancer. MiR-373 has been shown to play pivotal roles in tumorigenesis and metastasis; however, a role for miR-373 in ovarian cancer has not been investigated. In this study, we show that the miR-373 expression is down-regulated in human epithelial ovarian cancer (EOC) and inversely correlated with clinical stage and histological grade. Ectopic overexpression of miR-373 in human EOC cells suppressed cell invasion in vitro and metastasis in vivo, and the epithelial–mesenchymal transition process. Silencing the expression of miR-373 resulted in an increased migration and invasion of EOC cells. Using integrated bioinformatics analysis, gene expression arrays, and luciferase assay, we identified Rab22a as a direct and functional target of miR-373 in EOC cells. Expression levels of miR-373 were inversely correlated with Rab22a protein levels in human EOC tissues. Rab22a knockdown inhibited invasion and migration of EOC cells, increased E-cadherin expression, and suppressed the expression of N-cadherin. Moreover, overexpression of Rab22a abrogated miR-373-induced invasion and migration of EOC cells. Taken together, these results demonstrate that miR-373 suppresses EOC invasion and metastasis by directly targeting Rab22a gene, a new potential therapeutic target in EOC.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Obstetrics and Gynecology, RenJi Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| | - Fu-Jun Zhao
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao-Tong University, Shanghai, 200080, China
| | - Li-Lan Chen
- Department of Obstetrics and Gynecology, RenJi Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| | - Luo-Qiao Wang
- Department of Obstetrics and Gynecology, RenJi Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| | - Kenneth P Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Ying-Li Wu
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200025, China
| | - Shu Zhang
- Department of Obstetrics and Gynecology, RenJi Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, China
| |
Collapse
|
46
|
Mouillet JF, Ouyang Y, Coyne CB, Sadovsky Y. MicroRNAs in placental health and disease. Am J Obstet Gynecol 2015; 213:S163-72. [PMID: 26428496 DOI: 10.1016/j.ajog.2015.05.057] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/15/2015] [Accepted: 05/26/2015] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) constitute a large family of small noncoding RNAs that are encoded by the genomes of most organisms. They regulate gene expression through posttranscriptional mechanisms to attenuate protein output in various genetic networks. The discovery of miRNAs has transformed our understanding of gene regulation and sparked intense efforts intended to harness their potential as diagnostic markers and therapeutic tools. Over the last decade, a flurry of studies has shed light on placental miRNAs but has also raised many questions regarding the scope of their biologic action. Moreover, the recognition that miRNAs of placental origin are released continually in the maternal circulation throughout pregnancy suggested that circulating miRNAs might serve as biomarkers for placental function during pregnancy. Although this generated much enthusiasm, recently recognized challenges have delayed the application of miRNA-based biomarkers and therapeutics in clinical practice. In this review, we summarize key findings in the field and discuss current knowledge related to miRNAs in the context of placental biology.
Collapse
|
47
|
Lycoudi A, Mavreli D, Mavrou A, Papantoniou N, Kolialexi A. miRNAs in pregnancy-related complications. Expert Rev Mol Diagn 2015; 15:999-1010. [PMID: 26051307 DOI: 10.1586/14737159.2015.1053468] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) constitute a highly conserved class of small non-coding RNAs, involved in post-transcriptional regulation processes by modifying the expression of specific mRNAs. During placental development, cell differentiation, adhesion, migration, apoptosis and angiogenesis are regulated by specific miRNAs and aberrant expression has been associated with the pathogenesis of pregnancy-related complications. Recent studies focusing on placental and maternal peripheral blood miRNA profiling showed different expression between normal and complicated pregnancies, providing valuable information about the pathophysiological role of miRNAs and identifying potential biomarkers for monitoring pregnancy complications. This review summarizes the current knowledge in the field and presents the possible use of miRNAs as biomarkers for early detection and monitoring of these complications.
Collapse
|
48
|
Wei F, Cao C, Xu X, Wang J. Diverse functions of miR-373 in cancer. J Transl Med 2015; 13:162. [PMID: 25990556 PMCID: PMC4490662 DOI: 10.1186/s12967-015-0523-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 05/06/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally. They are involved in almost all cellular processes, and many have been described as potential oncogenes or tumor suppressors. MicroRNA-373 (miR-373), which was first identified as a human embryonic stem cell (ESC)-specific miRNA, is suggested to be implicated in the regulation of cell proliferation, apoptosis, senescence, migration and invasion, as well as DNA damage repair following hypoxia stress. Deregulation of miR-373 has been demonstrated in a number of cancers, whether it acts as an oncogene or a tumor suppressor, however, seems to be context dependent. In this review, we focus on the diverse functions of miR-373 and its implication in cancers.
Collapse
Affiliation(s)
- Furong Wei
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 18877 Jingshi Road, 250062, Jinan, Shandong, People's Republic of China.
| | - Chuanhua Cao
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| | - Xiaoqun Xu
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 18877 Jingshi Road, 250062, Jinan, Shandong, People's Republic of China.
| | - Junfu Wang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, 18877 Jingshi Road, 250062, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
49
|
MicroRNAs als Mediatoren des embryomaternalen Dialogs. GYNAKOLOGISCHE ENDOKRINOLOGIE 2015. [DOI: 10.1007/s10304-015-0011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Keller RB, El Demellawy D, Quaglia A, Finegold M, Kapur RP. Methylation status of the chromosome arm 19q MicroRNA cluster in sporadic and androgenetic-Biparental mosaicism-associated hepatic mesenchymal hamartoma. Pediatr Dev Pathol 2015; 18:218-27. [PMID: 25751191 DOI: 10.2350/15-01-1600-oa.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The C19MC gene on chromosome band 19q13.4 encodes a cluster of 46 microRNAs; those microRNAs are normally only expressed from the paternal allele and in the placenta. Placental expression correlates with selective demethylation of the paternal C19MC promoter, in contrast to methylation of both maternal and paternal alleles in nonplacental tissues. Prior investigations demonstrated "ectopic" activation of this gene in most hepatic mesenchymal hamartomas, including sporadic tumors and others with androgenetic-biparental mosaicism (subset of cells are diploid, but contain only paternally derived chromosomes). In the present investigation of C19MC promoter methylation status in a series of 14 mesenchymal hamartomas, a demethylated allele was identified in 6 tumors, including all 4 with androgenetic-biparental mosaicism. Conversely, only methylated alleles were cloned from sporadic hamartomas, including 3 tumors with chromosomal rearrangements thought likely to activate C19MC expression independent of the native promoter. In conjunction with published data, the findings suggest multiple molecular mechanisms for C19MC activation in hepatic mesenchymal hamartoma, including the existence of a normal placental imprinting pattern in mesenchymal cells in a subset of cases. Some or all of the latter hamartomas may result from placental "grafting," a hypothesis supported by endothelial expression of the placental vascular marker, glucose transporter-1, in 1 of the 6 cases with a demethylated allele.
Collapse
Affiliation(s)
- Rachel B. Keller
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Dina El Demellawy
- Pathology and Laboratory Medicine, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Alberto Quaglia
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Milton Finegold
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Raj P. Kapur
- Department of Pathology, University of Washington, Seattle, WA, USA
- Department of Laboratories, Seattle Children's Hospital, Seattle, WA, USA
| |
Collapse
|