1
|
Abstract
Sleeping sickness is a neglected tropical disease caused by Trypanosoma brucei parasites, affecting the poorest communities in sub-Saharan Africa. The great efforts done by the scientific community, local governments, and non-governmental organizations (NGOs) via active patients' screening, vector control, and introduction of improved treatment regimens have significantly contributed to the reduction of human African trypanosomiasis (HAT) incidence during the last 15 years. Consequently, the WHO has announced the objective of HAT elimination as a public health problem by 2020. Studies at both parasite and host levels have improved our understanding of the parasite biology and the mechanisms of parasite interaction with its mammalian host. In this review, the impact that 'omics studies have had on sleeping sickness by revealing novel properties of parasite's subcellular organelles are summarized, by highlighting changes induced in the host during the infection and by proposing potential disease markers and therapeutic targets.
Collapse
Affiliation(s)
- Natalia Tiberti
- Translational Biomarker Group, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
2
|
Luciani M, Di Febo T, Orsini M, Krasteva I, Cattaneo A, Podaliri Vulpiani M, Di Pancrazio C, Bachi A, Tittarelli M. Trypanosoma equiperdum Low Molecular Weight Proteins As Candidates for Specific Serological Diagnosis of Dourine. Front Vet Sci 2018; 5:40. [PMID: 29556505 PMCID: PMC5844913 DOI: 10.3389/fvets.2018.00040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/19/2018] [Indexed: 11/25/2022] Open
Abstract
The diagnosis of dourine can be difficult because the clinical signs of this disease in horses are similar to those of surra, caused by Trypanosoma evansi. Moreover, T. equiperdum and T. evansi are closely related and, so far, they cannot be distinguished using serological tests. In a previous work, the T. equiperdum protein pattern recognized by antibodies from dourine-infected horses and the humoral immune response kinetics were investigated by immunoblotting assay; a total of 20 sera from naturally and experimentally infected horses and from healthy animals were tested. Immunoblotting analysis showed that antibodies from infected horses specifically bind T. equiperdum low molecular weight proteins (from 16 to 35 kDa), which are not recognized by antibodies from uninfected horses. In this work, we tested other 615 sera (7 from naturally infected horses and 608 sera from healthy horses and donkeys): results confirmed the data obtained previously. In addition, six SDS-PAGE bands with molecular weight ranging from 10 to 37 kDa were analyzed by mass spectrometry, in order to identify immunogenic proteins that could be used as biomarkers for the diagnosis of dourine. A total of 167 proteins were identified. Among them, 37 were found unique for T. equiperdum. Twenty-four of them could represent possible candidate diagnostic antigens for the development of serological tests specific for T. equiperdum.
Collapse
Affiliation(s)
- Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Tiziana Di Febo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Massimiliano Orsini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | | | | | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Angela Bachi
- Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| |
Collapse
|
3
|
Kumar J, Chaudhury A, Yadav SC. Comparative evaluation of recombinant HSP70 (N & C-terminal) fragments in the detection of equine trypanosomosis. Vet Parasitol 2016; 223:77-87. [PMID: 27198781 DOI: 10.1016/j.vetpar.2016.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/02/2016] [Accepted: 04/16/2016] [Indexed: 11/29/2022]
Abstract
Trypanosomosis (Surra) is an economically important disease caused by Trypanosoma evansi which is an extracellular parasite present in the plasma, tissues and other body fluids of a wide range of hosts including domesticated animals. Currently, serological reports are based on detection of antibodies by ELISA using whole cell lysate (WCL) antigen, which has a limitation of persistence of anti-trypanosomal antibodies after successful treatment of the disease. Moreover, it has some ethical issues also like requirement of mice for in vivo maintenance of parasite for preparing the antigen. Therefore, in the present study, an attempt was made to evaluate the in vitro production of recombinant heat shock protein 70 (HSP70) for detection of antibodies in experimentally infected ponies. The amino acid sequence analysis of HSP70 revealed that N-terminal region of the protein was highly conserved while the C-terminal region was most divergent. The four different regions of HSP70 protein viz. HSP-1, HSP-2, HSP-3 and HSP-4 were cloned and expressed, among which HSP-1 (N-terminal region) & HSP-2 (C-terminal region) were truncated while HSP-3 & HSP-4 were complete C-terminal proteins. The recombinant fragments were probed with sequentially pooled experimental serum samples where antibodies were detected in these fragments from 10(th) day post infection till the termination of the experiment. Further, these recombinant fragments were also comparatively evaluated with WCL antigen in ELISA using experimental as well as field serum samples. It was observed that after successful treatment of infected ponies, there was a sharp fall in antibodies (within 90 days) when tested with recombinant HSP's fragments, while antibodies persisted even after 469 days when tested against WCL antigen. The sensitivity and specificity of all HSP70 fragments were also estimated from field serum samples with reference to WCL antigen ELISA. The HSP-1 showed minimum sensitivity (41.03%) among all the recombinant fragments. Among the C-terminal fragments, maximum sensitivity was observed with the HSP-2 (61.54%) while minimum was observed with HSP-4 (48.72%). The specificity increases for recombinant fragments from N-terminal to C-terminal region of protein and maximum specificity was observed with HSP-4 fragment (91.3%).
Collapse
Affiliation(s)
- Jaideep Kumar
- Department of Bio & Nano Technology, Bio & Nano Technology Centre, Guru Jambheshwar University of Science and Technology, Hisar-125001, Haryana, India; National Research Centre on Equines, Sirsa Road, Hisar-125001, Haryana, India
| | - A Chaudhury
- Department of Bio & Nano Technology, Bio & Nano Technology Centre, Guru Jambheshwar University of Science and Technology, Hisar-125001, Haryana, India
| | - S C Yadav
- National Research Centre on Equines, Sirsa Road, Hisar-125001, Haryana, India.
| |
Collapse
|
4
|
Kumar J, Chaudhury A, Bera BC, Kumar R, Kumar R, Tatu U, Yadav SC. Production and preliminary evaluation of Trypanosoma evansi HSP70 for antibody detection in Equids. Acta Parasitol 2015; 60:727-34. [PMID: 26408598 DOI: 10.1515/ap-2015-0104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 05/28/2015] [Indexed: 11/15/2022]
Abstract
The present immuno-diagnostic method using soluble antigens from whole cell lysate antigen for trypanosomosis have certain inherent problems like lack of standardized and reproducible antigens, as well as ethical issues due to in vivo production, that could be alleviated by in vitro production. In the present study we have identified heat shock protein 70 (HSP70) from T. evansi proteome. The nucleotide sequence of T. evansi HSP70 was 2116 bp, which encodes 690 amino acid residues. The phylogenetic analysis of T. evansi HSP70 showed that T. evansi occurred within Trypanosoma clade and is most closely related to T. brucei brucei and T. brucei gambiense, whereas T. congolense HSP70 laid in separate clade. The two partial HSP70 sequences (HSP-1 from N-terminal region and HSP-2 from C-terminal region) were expressed and evaluated as diagnostic antigens using experimentally infected equine serum samples. Both recombinant proteins detected antibody in immunoblot using serum samples from experimental infected donkeys with T. evansi. Recombinant HSP-2 showed comparable antibody response to Whole cell lysate (WCL) antigen in immunoblot and ELISA. The initial results indicated that HSP70 has potential to detect the T. evansi infection and needs further validation on large set of equine serum samples.
Collapse
|
5
|
Burger A, Ludewig MH, Boshoff A. Investigating the Chaperone Properties of a Novel Heat Shock Protein, Hsp70.c, from Trypanosoma brucei. J Parasitol Res 2014; 2014:172582. [PMID: 24707395 PMCID: PMC3953656 DOI: 10.1155/2014/172582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/23/2013] [Accepted: 01/09/2014] [Indexed: 02/06/2023] Open
Abstract
The neglected tropical disease, African Trypanosomiasis, is fatal and has a crippling impact on economic development. Heat shock protein 70 (Hsp70) is an important molecular chaperone that is expressed in response to stress and Hsp40 acts as its co-chaperone. These proteins play a wide range of roles in the cell and they are required to assist the parasite as it moves from a cold blooded insect vector to a warm blooded mammalian host. A novel cytosolic Hsp70, from Trypanosoma brucei, TbHsp70.c, contains an acidic substrate binding domain and lacks the C-terminal EEVD motif. The ability of a cytosolic Hsp40 from Trypanosoma brucei J protein 2, Tbj2, to function as a co-chaperone of TbHsp70.c was investigated. The main objective was to functionally characterize TbHsp70.c to further expand our knowledge of parasite biology. TbHsp70.c and Tbj2 were heterologously expressed and purified and both proteins displayed the ability to suppress aggregation of thermolabile MDH and chemically denatured rhodanese. ATPase assays revealed a 2.8-fold stimulation of the ATPase activity of TbHsp70.c by Tbj2. TbHsp70.c and Tbj2 both demonstrated chaperone activity and Tbj2 functions as a co-chaperone of TbHsp70.c. In vivo heat stress experiments indicated upregulation of the expression levels of TbHsp70.c.
Collapse
Affiliation(s)
- Adélle Burger
- Biomedical and Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| | - Michael H. Ludewig
- Biomedical and Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| | - Aileen Boshoff
- Biomedical and Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa
| |
Collapse
|
6
|
Holzmuller P, Grébaut P, Semballa S, Gonzatti MI, Geiger A. Proteomics: a new way to improve human African trypanosomiasis diagnosis? Expert Rev Proteomics 2014; 10:289-301. [DOI: 10.1586/epr.13.14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Identification of Trypanosome proteins in plasma from African sleeping sickness patients infected with T. b. rhodesiense. PLoS One 2013; 8:e71463. [PMID: 23951171 PMCID: PMC3738533 DOI: 10.1371/journal.pone.0071463] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022] Open
Abstract
Control of human African sleeping sickness, caused by subspecies of the protozoan parasite Trypanosoma brucei, is based on preventing transmission by elimination of the tsetse vector and by active diagnostic screening and treatment of infected patients. To identify trypanosome proteins that have potential as biomarkers for detection and monitoring of African sleeping sickness, we have used a ‘deep-mining” proteomics approach to identify trypanosome proteins in human plasma. Abundant human plasma proteins were removed by immunodepletion. Depleted plasma samples were then digested to peptides with trypsin, fractionated by basic reversed phase and each fraction analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This sample processing and analysis method enabled identification of low levels of trypanosome proteins in pooled plasma from late stage sleeping sickness patients infected with Trypanosoma brucei rhodesiense. A total of 254 trypanosome proteins were confidently identified. Many of the parasite proteins identified were of unknown function, although metabolic enzymes, chaperones, proteases and ubiquitin-related/acting proteins were found. This approach to the identification of conserved, soluble trypanosome proteins in human plasma offers a possible route to improved disease diagnosis and monitoring, since these molecules are potential biomarkers for the development of a new generation of antigen-detection assays. The combined immuno-depletion/mass spectrometric approach can be applied to a variety of infectious diseases for unbiased biomarker identification.
Collapse
|
8
|
Sullivan L, Wall SJ, Carrington M, Ferguson MAJ. Proteomic selection of immunodiagnostic antigens for human African trypanosomiasis and generation of a prototype lateral flow immunodiagnostic device. PLoS Negl Trop Dis 2013; 7:e2087. [PMID: 23469310 PMCID: PMC3584999 DOI: 10.1371/journal.pntd.0002087] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/17/2013] [Indexed: 11/30/2022] Open
Abstract
Background The diagnosis of Human African Trypanosomiasis relies mainly on the Card Agglutination Test for Trypanosomiasis (CATT). While this test is successful, it is acknowledged that there may be room for improvement. Our aim was to develop a prototype lateral flow test based on the detection of antibodies to trypanosome antigens. Methodology/Principal Findings We took a non-biased approach to identify potential immunodiagnostic parasite protein antigens. The IgG fractions from the sera from Trypanosoma brucei gambiense infected and control patients were isolated using protein-G affinity chromatography and then immobilized on Sepharose beads. The IgG-beads were incubated with detergent lysates of trypanosomes and those proteins that bound were identified by mass spectrometry-based proteomic methods. This approach provided a list of twenty-four trypanosome proteins that selectively bound to the infection IgG fraction and that might, therefore, be considered as immunodiagnostic antigens. We selected four antigens from this list (ISG64, ISG65, ISG75 and GRESAG4) and performed protein expression trials in E. coli with twelve constructs. Seven soluble recombinant protein products (three for ISG64, two for ISG65 and one each for ISG75 and GRESAG4) were obtained and assessed for their immunodiagnostic potential by ELISA using individual and/or pooled patient sera. The ISG65 and ISG64 construct ELISAs performed well with respect to detecting T. b. gambiense infections, though less well for detecting T. b. rhodesiense infections, and the best performing ISG65 construct was used to develop a prototype lateral flow diagnostic device. Conclusions/Significance Using a panel of eighty randomized T. b. gambiense infection and control sera, the prototype showed reasonable sensitivity (88%) and specificity (93%) using visual readout in detecting T. b. gambiense infections. These results provide encouragement to further develop and optimize the lateral flow device for clinical use. Human African Trypanosomiasis is caused by infection with Trypanosoma brucei gambiense or T. b. rhodesiense. Preliminary diagnosis of T. b. gambiense infection relies mainly on a Card Agglutination Test for Trypanosomiasis (CATT), which has acknowledged limitations. New approaches are needed, first to identify new diagnostic antigens and, second, to find a more suitable platform for field-based immunodiagnostic tests. We took an unbiased approach to identify candidate diagnostic antigens by asking which parasite proteins bind to the antibodies of infected patients and not to the antibodies of uninfected patients. From this list of twenty-four candidate antigens, we selected four and from these we selected the one that worked the best in conventional immunodiagnostic tests. This antigen, ISG65, was used to make lateral flow devices, where a small sample of patient serum is added to a pad and thirty minutes later infection can be inferred by simple optical read out. This simple prototype device works as well as the CATT test and may be developed and optimized for clinical use in the field.
Collapse
Affiliation(s)
- Lauren Sullivan
- College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
9
|
Translation of human African trypanosomiasis biomarkers towards field application. TRANSLATIONAL PROTEOMICS 2013. [DOI: 10.1016/j.trprot.2013.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
10
|
Migchelsen SJ, Büscher P, Hoepelman AI, Schallig HD, Adams ER. Human African trypanosomiasis: a review of non-endemic cases in the past 20 years. Int J Infect Dis 2011; 15:e517-24. [DOI: 10.1016/j.ijid.2011.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 03/10/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022] Open
|