1
|
The RD2 Pathogenicity Island Modifies the Disease Potential of the Group A Streptococcus. Infect Immun 2021; 89:e0072220. [PMID: 33820819 DOI: 10.1128/iai.00722-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Serotype M28 isolates of the group A Streptococcus (GAS; Streptococcus pyogenes) are nonrandomly associated with cases of puerperal sepsis, a potentially life-threatening infection that can occur in women following childbirth. Previously, we discovered that the 36.3-kb RD2 pathogenicity island, which is present in serotype M28 isolates but lacking from most other isolates, promotes the ability of M28 GAS to colonize the female reproductive tract. Here, we performed a gain-of-function study in which we introduced RD2 into representative serotype M1, M49, and M59 isolates and assessed the phenotypic consequences of RD2 acquisition. All RD2-containing derivatives colonized a higher percentage of mice, and at higher CFU levels, than did the parental isolates in a mouse vaginal colonization model. However, for two additional phenotypes, survival in heparinized whole human blood and adherence to two human vaginal epithelial cell lines, there were serotype-specific differences from RD2 acquisition. Using transcriptomic comparisons, we identified that such differences may be a consequence of RD2 altering the abundance of transcripts from select core genome genes along serotype-specific lines. Our study is the first that interrogates RD2 function in GAS serotypes other than M28 isolates, shedding light on variability in the phenotypic consequences of RD2 acquisition and informing on why this mobile genetic element is not ubiquitous in the GAS population.
Collapse
|
2
|
Abstract
Global gene expression analyses in bacteria have undergone a dramatic transformation. Prior to the development of high-throughput sequencing technologies, real-time PCR or microarray studies were the mainstay of assessing differences in gene expression in bacteria. Real-time PCR remains a critical tool for targeted gene expression analyses. However, microarray studies have given way to the plethora of advantages in RNA sequencing (RNA-seq) for the determination of global gene expression (i.e., transcriptome). Increased accessibility to high-throughput sequencing and user-friendly bioinformatics data analysis software have made RNA-seq technology use more widespread. Here, we provide comprehensive methods to perform RNA sequencing of Streptococcus pyogenes strains grown in vitro in standard laboratory media, including cell growth, RNA extraction, ribosomal RNA depletion, and library construction. Considerations for library sequencing and data analysis are also provided.
Collapse
Affiliation(s)
- Misú Sanson
- Division of Infectious Diseases, Department of Pediatrics, Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Anthony R Flores
- Division of Infectious Diseases, Department of Pediatrics, Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, USA.
| |
Collapse
|
3
|
Ichikawa D, Jwa SC, Seto T, Tarumoto N, Haga Y, Kohno K, Okagaki R, Ishihara O, Kamei Y. Successful treatment of severe acute respiratory distress syndrome due to Group A streptococcus induced toxic shock syndrome in the third trimester of pregnancy-effectiveness of venoarterial extracorporeal membrane oxygenation: A case report. J Obstet Gynaecol Res 2019; 46:167-172. [PMID: 31595595 DOI: 10.1111/jog.14138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022]
Abstract
We report a case of Group A streptococcal infection-induced toxic shock syndrome (GAS-TSS) with severe acute respiratory distress syndrome (ARDS), successfully treated with venoarterial extracorporeal membrane oxygenation (V-A ECMO). A 31-year-old woman was transferred due to high fever, continuous uterine contractions and fetal bradycardia at 31 weeks of gestation. She was in a shock status on arrival, and as fetal heart beat disappeared, we canceled the cesarean section and took priority in maternal rescue. At 21 h after the admission, pulseless ventricular tachycardia occurred, and V-A ECMO was introduced after defibrillation, which dramatically improved her respiratory and circulatory conditions. On the 3rd day, GAS was isolated from blood culture. The patient was freed from V-A ECMO on the 5th day and was discharged on the 25th day without permanent impairment. V-A ECMO should be considered as an effective therapeutic option against ARDS and circulation failure in GAS-TSS during pregnancy.
Collapse
Affiliation(s)
- Daisuke Ichikawa
- Department of Obstetrics and Gynecology, Saitama Medical University, Saitama, Japan
| | - Seung Chik Jwa
- Department of Obstetrics and Gynecology, Saitama Medical University, Saitama, Japan
| | - Takeru Seto
- Department of Nephrology, Saitama Medical University, Saitama, Japan
| | - Norihito Tarumoto
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan
| | - Yoshiyuki Haga
- Department of Intensive Care Medicine, Saitama Medical University, Saitama, Japan
| | - Koji Kohno
- Department of Cardiovascular Surgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Ryugo Okagaki
- Department of Obstetrics and Gynecology, Saitama Medical University, Saitama, Japan
| | - Osamu Ishihara
- Department of Obstetrics and Gynecology, Saitama Medical University, Saitama, Japan
| | - Yoshimasa Kamei
- Department of Obstetrics and Gynecology, Saitama Medical University, Saitama, Japan
| |
Collapse
|
4
|
Buckley SJ, Timms P, Davies MR, McMillan DJ. In silico characterisation of the two-component system regulators of Streptococcus pyogenes. PLoS One 2018; 13:e0199163. [PMID: 29927994 PMCID: PMC6013163 DOI: 10.1371/journal.pone.0199163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/02/2018] [Indexed: 12/14/2022] Open
Abstract
Bacteria respond to environmental changes through the co-ordinated regulation of gene expression, often mediated by two-component regulatory systems (TCS). Group A Streptococcus (GAS), a bacterium which infects multiple human body sites and causes multiple diseases, possesses up to 14 TCS. In this study we examined genetic variation in the coding sequences and non-coding DNA upstream of these TCS as a method for evaluating relationships between different GAS emm-types, and potential associations with GAS disease. Twelve of the 14 TCS were present in 90% of the genomes examined. The length of the intergenic regions (IGRs) upstream of TCS coding regions varied from 39 to 345 nucleotides, with an average nucleotide diversity of 0.0064. Overall, IGR allelic variation was generally conserved with an emm-type. Subsequent phylogenetic analysis of concatenated sequences based on all TCS IGR sequences grouped genomes of the same emm-type together. However grouping with emm-pattern and emm-cluster-types was much weaker, suggesting epidemiological and functional properties associated with the latter are not due to evolutionary relatedness of emm-types. All emm5, emm6 and most of the emm18 genomes, all historically considered rheumatogenic emm-types clustered together, suggesting a shared evolutionary history. However emm1, emm3 and several emm18 genomes did not cluster within this group. These latter emm18 isolates were epidemiologically distinct from other emm18 genomes in study, providing evidence for local variation. emm-types associated with invasive disease or nephritogenicity also did not cluster together. Considering the TCS coding sequences (cds), correlation with emm-type was weaker than for the IGRs, and no strong correlation with disease was observed. Deletion of the malate transporter, maeP, was identified that serves as a putative marker for the emm89.0 subtype, which has been implicated in invasive outbreaks. A recombination-related, subclade-forming DNA motif was identified in the putative receiver domain of the Spy1556 response regulator that correlated with throat-associated emm-pattern-type A-C strains.
Collapse
Affiliation(s)
- Sean J. Buckley
- Inflammation and Healing Biomedical Research Cluster, and School of Health and Sports Sciences, Faculty of Science, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Peter Timms
- Inflammation and Healing Biomedical Research Cluster, and School of Health and Sports Sciences, Faculty of Science, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mark R. Davies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - David J. McMillan
- Inflammation and Healing Biomedical Research Cluster, and School of Health and Sports Sciences, Faculty of Science, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
5
|
Group A streptococci infection. A systematic clinical review exemplified by cases from an obstetric department. Eur J Obstet Gynecol Reprod Biol 2017; 215:33-40. [DOI: 10.1016/j.ejogrb.2017.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/08/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022]
|
6
|
Willenborg J, Goethe R. Metabolic traits of pathogenic streptococci. FEBS Lett 2016; 590:3905-3919. [PMID: 27442496 DOI: 10.1002/1873-3468.12317] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
Invasive and noninvasive diseases caused by facultative pathogenic streptococci depend on their equipment with virulence factors and on their ability to sense and adapt to changing nutrients in different host environments. The knowledge of the principal metabolic mechanisms which allow these bacteria to recognize and utilize nutrients in host habitats is a prerequisite for our understanding of streptococcal pathogenicity and the development of novel control strategies. This review aims to summarize and compare the central carbohydrate metabolic and amino acid biosynthetic pathways of a selected group of streptococcal species, all belonging to the naso-oropharyngeal microbiome in humans and/or animals. We also discuss the urgent need of comprehensive metabolomics approaches for a better understanding of the streptococcal metabolism during host-pathogen interaction.
Collapse
Affiliation(s)
- Jörg Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Germany
| |
Collapse
|
7
|
Abstract
There has been an increasing incidence worldwide of invasive group A streptococcal disease in pregnancy and the puerperal period over the past 30 years. Group A Streptococcus (GAS) was identified as the major cause of maternal morbidity and mortality from sepsis before the identification that hand washing techniques could prevent the transmission of the bacteria. Hand washing remains the cornerstone of prevention as transmission can occur directly from an asymptomatic colonized healthcare provider, other patients, or a community-acquired source. Pregnancy and the puerperal period are associated with significant maternal physiologic changes that must be identified and clarified to identify signs and symptoms of GAS so that treatment can be initiated at the earliest moment. Treatment of group A streptococcal sepsis follows the guidelines developed under the Surviving Sepsis Campaign model. Maternal outcomes are improved by identifying risk factors and working with the perinatal team to implement rapid intervention. Even with prompt treatment of invasive group A Streptococcus, it remains the most common cause of infection that results in severe maternal morbidity and death in the world.
Collapse
|
8
|
Keller NA, Guan X, Wiczulis A, Burcher P. Unexplained persistent postpartum palpitations and tachycardia due to Group A Streptococcus. BMC Res Notes 2015; 8:731. [PMID: 26619910 PMCID: PMC4666222 DOI: 10.1186/s13104-015-1739-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/24/2015] [Indexed: 11/26/2022] Open
Abstract
Background Group A Streptococcus is one of the most morbid infections in modern obstetric practice. Pregnant women are known to have a 20-fold increased risk of invasive Group A Streptococcus with greatest risk in the first 4 days postpartum. The overwhelming majority of these infections will present with fever, uterine tenderness, or vaginal discharge. A much smaller subset may present to the Emergency Room after initial hospital discharge with much less obvious symptoms. In our case, persistent palpitations with unexplained tachycardia led to improper diagnosis in multiple Emergency Rooms. Case presentation A 37 year-old Caucasian female presents with four post-partum days of unexplained sinus tachycardia and absence of fever, uterine tenderness, or vaginal discharge, which elicits an extensive cardiac and pulmonary workup in multiple Emergency Rooms. Consequent late diagnosis of invasive Group A Streptococcus infection lead to significantly increased morbidity including toxic shock syndrome, acute renal failure, total abdominal hysterectomy and bilateral salpingo-oophorectomy, multiple laparotomies, fasciotomy, intubation, continuous renal replacement therapy, and extensive hospital course and recovery. Conclusion Persistent palpitations with unexplained tachycardia in the post-partum patient in the Emergency Room setting is a potential early warning of Group A Streptococcus infection. Even in the absence of reported clinical fever, uterine tenderness, or vaginal discharge, an early speculum and pelvic exam, with or without consultation with the obstetrics service, is prudent due to the potentially high morbidity or even fatality of Group A Streptococcus infection.
Collapse
Affiliation(s)
- Nathan A Keller
- Department of Obstetrics and Gynecology, Albany Medical Center, 16 New Scotland Avenue, Second Floor, MC-74, Albany, NY, 12208, USA.
| | - Xin Guan
- Albany Medical College, 43 New Scotland Avenue, Albany, NY, 12208, USA.
| | - Alicia Wiczulis
- Department of Obstetrics and Gynecology, Albany Medical Center, 16 New Scotland Avenue, Second Floor, MC-74, Albany, NY, 12208, USA.
| | - Paul Burcher
- Department of Obstetrics and Gynecology, Albany Medical Center, 16 New Scotland Avenue, Second Floor, MC-74, Albany, NY, 12208, USA.
| |
Collapse
|
9
|
Abstract
Ignaz Semmelweiss made one of the most important contributions to modern medicine when he instituted handwashing in an obstetric clinic in Austria in 1847, decreasing mortality there from more than 10% to 2%. Unfortunately, puerperal sepsis remains a leading cause of maternal mortality throughout the world. Group A streptococcus (GAS), Streptococcus pyogenes, is an organism associated with high rates of morbidity and mortality from puerperal infections. When associated with sepsis, known as streptococcal toxic shock syndrome, mortality rates approach 30-50%. Group A streptococcus can cause invasive infections in the form of endometritis, necrotizing fasciitis, or streptococcal toxic shock syndrome. The clinical presentation of women with puerperal GAS infections is often atypical with extremes of temperature, unusual and vague pain, and pain in extremities. Toxin production by the organism may allow GAS to spread across tissue planes and cause necrosis while evading containment by the maternal immune system in the form of a discrete abscess. Endometrial aspiration in addition to blood cultures may be a useful rapid diagnostic tool. Imaging may appear normal and should not dissuade the clinician from aggressive management. When suspected, invasive GAS infections should be treated emergently with fluid resuscitation, antibiotic administration, and source control. The optimal antibiotic regimen contains penicillin and clindamycin. Source control may require extensive wound or vulvar debridement, hysterectomy, or a combination of these, which may be life-saving. The benefit of immunoglobulins in management of puerperal GAS infections is unclear.
Collapse
|
10
|
Hamilton SM, Stevens DL, Bryant AE. Pregnancy-related group a streptococcal infections: temporal relationships between bacterial acquisition, infection onset, clinical findings, and outcome. Clin Infect Dis 2013; 57:870-6. [PMID: 23645851 DOI: 10.1093/cid/cit282] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Puerperal sepsis caused by group A Streptococcus (GAS) remains an important cause of maternal and infant mortality worldwide, including countries with modern antibiotic regimens, intensive care measures and infection control practices. To provide insights into the genesis of modern GAS puerperal sepsis, we reviewed the published cases and case series from 1974 to 2009, specifically seeking relationships between the likely source of pathogen acquisition, clinical signs, and symptoms at infection onset and patient outcomes that could provide clues for early diagnosis. Results suggest that the pathogenesis of pregnancy-related GAS infections in modern times is complex and not simply the result of exposure to GAS in the hospital setting. Additional research is needed to further explore the source of GAS, the specific M types involved, and the pathogenesis of these pregnancy-related infections to generate novel preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Stephanie M Hamilton
- Infectious Diseases Section, Veterans Affairs Medical Center, 500 West Fort St, Boise, ID 83702, USA
| | | | | |
Collapse
|
11
|
Verhaegh SJC, Flores AR, van Belkum A, Musser JM, Hays JP. Differential virulence gene expression of group A Streptococcus serotype M3 in response to co-culture with Moraxella catarrhalis. PLoS One 2013; 8:e62549. [PMID: 23626831 PMCID: PMC3633897 DOI: 10.1371/journal.pone.0062549] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 03/22/2013] [Indexed: 01/27/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus, GAS) and Moraxella catarrhalis are important colonizers and (opportunistic) pathogens of the human respiratory tract. However, current knowledge regarding colonization and pathogenic potential of these two pathogens is based on work involving single bacterial species, even though the interplay between respiratory bacterial species is increasingly important in niche occupation and the development of disease. Therefore, to further define and understand polymicrobial species interactions, we investigated whether gene expression (and hence virulence potential) of GAS would be affected upon co-culture with M. catarrhalis. For co-culture experiments, GAS and M. catarrhalis were cultured in Todd-Hewitt broth supplemented with 0.2% yeast extract (THY) at 37°C with 5% CO2 aeration. Each strain was grown in triplicate so that triplicate experiments could be performed. Bacterial RNA was isolated, cDNA synthesized, and microarray transcriptome expression analysis performed. We observed significantly increased (≥4-fold) expression for genes playing a role in GAS virulence such as hyaluronan synthase (hasA), streptococcal mitogenic exotoxin Z (smeZ) and IgG endopeptidase (ideS). In contrast, significantly decreased (≥4-fold) expression was observed in genes involved in energy metabolism and in 12 conserved GAS two-component regulatory systems. This study provides the first evidence that M. catarrhalis increases GAS virulence gene expression during co-culture, and again shows the importance of polymicrobial infections in directing bacterial virulence.
Collapse
Affiliation(s)
- Suzanne J C Verhaegh
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
12
|
Analysis of a Streptococcus pyogenes puerperal sepsis cluster by use of whole-genome sequencing. J Clin Microbiol 2012; 50:2224-8. [PMID: 22518858 DOI: 10.1128/jcm.00675-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Between June and November 2010, a concerning rise in the number of cases of puerperal sepsis, a postpartum pelvic bacterial infection contracted by women after childbirth, was observed in the New South Wales, Australia, hospital system. Group A streptococcus (GAS; Streptococcus pyogenes) isolates PS001 to PS011 were recovered from nine patients. Pulsed-field gel electrophoresis and emm sequence typing revealed that GAS of emm1.40, emm75.0, emm77.0, emm89.0, and emm89.9 were each recovered from a single patient, ruling out a single source of infection. However, emm28.8 GAS were recovered from four different patients. To investigate the relatedness of these emm28 isolates, whole-genome sequencing was undertaken and the genome sequences were compared to the genome sequence of the emm28.4 reference strain, MGAS6180. A total of 186 single nucleotide polymorphisms were identified, for which the phylogenetic reconstruction indicated an outbreak of a polyclonal nature. While two isolates collected from different hospitals were not closely related, isolates from two puerperal sepsis patients from the same hospital were indistinguishable, suggesting patient-to-patient transmission or infection from a common source. The results of this study indicate that traditional typing protocols, such as pulsed-field gel electrophoresis, may not be sensitive enough to allow fine epidemiological discrimination of closely related bacterial isolates. Whole-genome sequencing presents a valid alternative that allows accurate fine-scale epidemiological investigation of bacterial infectious disease.
Collapse
|
13
|
Kloosterman TG, Kuipers OP. Regulation of arginine acquisition and virulence gene expression in the human pathogen Streptococcus pneumoniae by transcription regulators ArgR1 and AhrC. J Biol Chem 2011; 286:44594-605. [PMID: 22084243 DOI: 10.1074/jbc.m111.295832] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In this study, we investigated for the first time the transcriptional response of the human pathogen Streptococcus pneumoniae to fluctuating concentrations of arginine, an essential amino acid for this bacterium. By means of DNA microarray analyses, several operons and genes were found, the expression of which was affected by the concentration of arginine in the medium. Five of the identified operons were demonstrated to be directly repressed in the presence of high arginine concentrations via the concerted action of the ArgR-type regulators ArgR1 and AhrC. These ArgR1/AhrC targets encompass the putative amino acid transport genes artPQ, abpA, abpB, and aapA; the arginine biosynthetic genes argGH; and the virulence genes aliB and lmB/adcAII-phtD encoding an oligopeptide-binding lipoprotein and cell surface Zn(2+)-scavenging units, respectively. In addition, the data indicate that three of the amino acid transport genes encode an arginine ATP-binding cassette transporter unit required for efficient growth during arginine limitation. Instead of regulating arginine biosynthetic and catabolic genes as has been reported for other Gram-positive bacteria, our findings suggest that the physiological function of ArgR1/AhrC in S. pneumoniae is to ensure optimal uptake of arginine from the surrounding milieu.
Collapse
Affiliation(s)
- Tomas G Kloosterman
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
14
|
Ichikawa M, Minami M, Isaka M, Tatsuno I, Hasegawa T. Analysis of two-component sensor proteins involved in the response to acid stimuli in Streptococcus pyogenes. MICROBIOLOGY-SGM 2011; 157:3187-3194. [PMID: 21873405 DOI: 10.1099/mic.0.050534-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The virulence of Streptococcus pyogenes depends on proteins that are produced by this bacterium. The production of virulence proteins depends on environmental factors, and two-component regulatory systems are considered to be involved in sensing these factors. One of the environmental factors is acid stimuli. We established knockout strains in all speculated two-component regulatory sensor proteins of the M1 clinical strain of S. pyogenes and examined their relevance to acid stimuli. The parental strain and its derived knockout strains were cultured in a medium adjusted to pH 7.6 or 6.0, and their growth in broth was compared. The spy1622 sensor knockout strain showed significant growth reduction compared with the parental strain in broth at pH 6.0, suggesting that the Spy1622 two-component sensor protein is involved in sensing acid stimuli. To further examine the role of the Spy1622 two-component sensor protein in virulence, blood bactericidal assays and mouse infection model experiments were performed. We found that the spy1622 knockout strain was less virulent than the parental strain, which suggests that the Spy1622 two-component sensor protein could play an important role in virulence.
Collapse
Affiliation(s)
- Mariko Ichikawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Masaaki Minami
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Masanori Isaka
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Ichiro Tatsuno
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Tadao Hasegawa
- Department of Bacteriology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
15
|
de Greeff A, Wisselink HJ, de Bree FM, Schultsz C, Baums CG, Thi HN, Stockhofe-Zurwieden N, Smith HE. Genetic diversity of Streptococcus suis isolates as determined by comparative genome hybridization. BMC Microbiol 2011; 11:161. [PMID: 21736719 PMCID: PMC3142484 DOI: 10.1186/1471-2180-11-161] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 07/07/2011] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus suis is a zoonotic pathogen that causes infections in young piglets. S. suis is a heterogeneous species. Thirty-three different capsular serotypes have been described, that differ in virulence between as well as within serotypes. Results In this study, the correlation between gene content, serotype, phenotype and virulence among 55 S. suis strains was studied using Comparative Genome Hybridization (CGH). Clustering of CGH data divided S. suis isolates into two clusters, A and B. Cluster A isolates could be discriminated from cluster B isolates based on the protein expression of extracellular factor (EF). Cluster A contained serotype 1 and 2 isolates that were correlated with virulence. Cluster B mainly contained serotype 7 and 9 isolates. Genetic similarity was observed between serotype 7 and serotype 2 isolates that do not express muramidase released protein (MRP) and EF (MRP-EF-), suggesting these isolates originated from a common founder. Profiles of 25 putative virulence-associated genes of S. suis were determined among the 55 isolates. Presence of all 25 genes was shown for cluster A isolates, whereas cluster B isolates lacked one or more putative virulence genes. Divergence of S. suis isolates was further studied based on the presence of 39 regions of difference. Conservation of genes was evaluated by the definition of a core genome that contained 78% of all ORFs in P1/7. Conclusions In conclusion, we show that CGH is a valuable method to study distribution of genes or gene clusters among isolates in detail, yielding information on genetic similarity, and virulence traits of S. suis isolates.
Collapse
Affiliation(s)
- Astrid de Greeff
- Infection Biology, Central Veterinary Institute of Wageningen UR (University & Research Centre), Edelhertweg 15, Lelystad, 8219 PH, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
LaSarre B, Federle MJ. Regulation and consequence of serine catabolism in Streptococcus pyogenes. J Bacteriol 2011; 193:2002-12. [PMID: 21317320 PMCID: PMC3133027 DOI: 10.1128/jb.01516-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/07/2011] [Indexed: 11/20/2022] Open
Abstract
The Gram-positive bacterium Streptococcus pyogenes (also called group A Streptococcus [GAS]), is found strictly in humans and is capable of causing a wide variety of infections. Here we demonstrate that serine catabolism in GAS is controlled by the transcriptional regulator Spy49_0126c. We have designated this regulator SerR (for serine catabolism regulator). Microarray and transcriptional reporter data show that SerR acts as a transcriptional repressor of multiple operons, including sloR and sdhBA. Purified recombinant SerR binds to the promoters of both sloR and sdhB, demonstrating that this regulation is direct. Deletion of serR results in a lower culture yield of the mutant than of the wild type when the strains are grown in defined medium unless additional serine is provided, suggesting that regulation of serine metabolism is important for maximizing bacterial growth. Deletion of sloR or sdhB in the ΔserR mutant background restores growth to wild-type levels, suggesting that both operons have roles in serine catabolism. While reports have linked sloR function to streptolysin O expression, transport experiments with radiolabeled l-serine reveal that the sloR operon is required for rapid acquisition of serine, suggesting a novel role for this operon in amino acid metabolism.
Collapse
Affiliation(s)
- Breah LaSarre
- Department of Microbiology and Immunology, College of Medicine
| | - Michael J. Federle
- Department of Microbiology and Immunology, College of Medicine
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
17
|
A proteomic investigation of Streptococcus agalactiae reveals that human serum induces the C protein β antigen and arginine deiminase. Microbes Infect 2011; 13:757-60. [PMID: 21458589 DOI: 10.1016/j.micinf.2011.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/18/2011] [Accepted: 03/24/2011] [Indexed: 11/22/2022]
Abstract
Streptococcus agalactiae is a major neonatal pathogen. Disease progression is characterised by bacterial adaptation from commensal maternal vaginal colonisation to environments associated with neonatal disease, including exposure to blood. To explore this adaptation in vitro, we have used proteomics to identify proteins differentially expressed following growth on Todd Hewitt agar in the presence or absence of 10% v/v human serum. Twelve differentially expressed proteins were identified. Notably, the C protein β antigen and arginine deiminase proteins were upregulated following growth in the presence of human serum, consistent with previous studies implicating these two proteins in the pathogenesis of S. agalactiae disease.
Collapse
|