1
|
Siwik D, Gajewska M, Karoń K, Pluta K, Wondołkowski M, Wilimski R, Szarpak Ł, Filipiak KJ, Gąsecka A. Pleiotropic Effects of Acetylsalicylic Acid after Coronary Artery Bypass Grafting-Beyond Platelet Inhibition. J Clin Med 2021; 10:2317. [PMID: 34073241 PMCID: PMC8198192 DOI: 10.3390/jcm10112317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/05/2023] Open
Abstract
Acetylsalicylic acid (ASA) is one of the most frequently used medications worldwide. Yet, the main indications for ASA are the atherosclerosis-based cardiovascular diseases, including coronary artery disease (CAD). Despite the increasing number of percutaneous procedures to treat CAD, coronary artery bypass grafting (CABG) remains the treatment of choice in patients with multivessel CAD and intermediate or high anatomical lesion complexity. Taking into account that CABG is a potent activator of inflammation, ASA is an important part in the postoperative therapy, not only due to ASA antiplatelet action, but also as an anti-inflammatory agent. Additional benefits of ASA after CABG include anticancerogenic, hypotensive, antiproliferative, anti-osteoporotic, and neuroprotective effects, which are especially important in patients after CABG, prone to hypertension, graft occlusion, atherosclerosis progression, and cognitive impairment. Here, we discuss the pleiotropic effects of ASA after CABG and provide insights into the mechanisms underlying the benefits of treatment with ASA, beyond platelet inhibition. Since some of ASA pleiotropic effects seem to increase the risk of bleeding, it could be considered a starting point to investigate whether the increase of the intensity of the treatment with ASA after CABG is beneficial for the CABG group of patients.
Collapse
Affiliation(s)
- Dominika Siwik
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (D.S.); (M.G.); (K.K.); (K.P.); (K.J.F.)
| | - Magdalena Gajewska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (D.S.); (M.G.); (K.K.); (K.P.); (K.J.F.)
| | - Katarzyna Karoń
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (D.S.); (M.G.); (K.K.); (K.P.); (K.J.F.)
| | - Kinga Pluta
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (D.S.); (M.G.); (K.K.); (K.P.); (K.J.F.)
| | - Mateusz Wondołkowski
- Department of Cardiac Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.W.); (R.W.)
| | - Radosław Wilimski
- Department of Cardiac Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.W.); (R.W.)
| | - Łukasz Szarpak
- Bialystok Oncology Center, 15-027 Bialystok, Poland;
- Maria Sklodowska-Curie Medical Academy in Warsaw, 00-001 Warsaw, Poland
| | - Krzysztof J. Filipiak
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (D.S.); (M.G.); (K.K.); (K.P.); (K.J.F.)
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (D.S.); (M.G.); (K.K.); (K.P.); (K.J.F.)
| |
Collapse
|
2
|
El-Yazbi AF, Eid AH, El-Mas MM. Cardiovascular and renal interactions between cyclosporine and NSAIDs: Underlying mechanisms and clinical relevance. Pharmacol Res 2018; 129:251-261. [DOI: 10.1016/j.phrs.2017.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
|
3
|
Lai JB, Qiu CF, Chen CX, Chen MY, Chen J, Guan XD, Ouyang B. Inhibition of c-Jun N-terminal Kinase Signaling Pathway Alleviates Lipopolysaccharide-induced Acute Respiratory Distress Syndrome in Rats. Chin Med J (Engl) 2017; 129:1719-24. [PMID: 27411461 PMCID: PMC4960963 DOI: 10.4103/0366-6999.185867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: An acute respiratory distress syndrome (ARDS) is still one of the major challenges in critically ill patients. This study aimed to investigate the effect of inhibiting c-Jun N-terminal kinase (JNK) on ARDS in a lipopolysaccharide (LPS)-induced ARDS rat model. Methods: Thirty-six rats were randomized into three groups: control, LPS, and LPS + JNK inhibitor. Rats were sacrificed 8 h after LPS treatment. The lung edema was observed by measuring the wet-to-dry weight (W/D) ratio of the lung. The severity of pulmonary inflammation was observed by measuring myeloperoxidase (MPO) activity of lung tissue. Moreover, the neutrophils in bronchoalveolar lavage fluid (BALF) were counted to observe the airway inflammation. In addition, lung collagen accumulation was quantified by Sircol Collagen Assay. At the same time, the pulmonary histologic examination was performed, and lung injury score was achieved in all three groups. Results: MPO activity in lung tissue was found increased in rats treated with LPS comparing with that in control (1.26 ± 0.15 U in LPS vs. 0.77 ± 0.27 U in control, P < 0.05). Inhibiting JNK attenuated LPS-induced MPO activity upregulation (0.52 ± 0.12 U in LPS + JNK inhibitor vs. 1.26 ± 0.15 U in LPS, P < 0.05). Neutrophils in BALF were also found to be increased with LPS treatment, and inhibiting JNK attenuated LPS-induced neutrophils increase in BALF (255.0 ± 164.4 in LPS vs. 53 (44.5-103) in control vs. 127.0 ± 44.3 in LPS + JNK inhibitor, P < 0.05). At the same time, the lung injury score showed a reduction in LPS + JNK inhibitor group comparing with that in LPS group (13.42 ± 4.82 vs. 7.00 ± 1.83, P = 0.001). However, the lung W/D ratio and the collagen in BALF did not show any differences between LPS and LPS + JNK inhibitor group. Conclusions: Inhibiting JNK alleviated LPS-induced acute lung inflammation and had no effects on pulmonary edema and fibrosis. JNK inhibitor might be a potential therapeutic medication in ARDS, in the context of reducing lung inflammatory.
Collapse
Affiliation(s)
- Jian-Bo Lai
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Chun-Fang Qiu
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Chuan-Xi Chen
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Min-Ying Chen
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Juan Chen
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xiang-Dong Guan
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Bin Ouyang
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
4
|
Sun W, Huang Y, Yin T, Wang J, Du R, Qiu J, Zhang Y, Wang Y, Chen J, Wang G. Effects of elemene on inhibiting proliferation of vascular smooth muscle cells and promoting reendothelialization at the stent implantation site. Biomater Sci 2017; 5:1144-1155. [DOI: 10.1039/c7bm00190h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Elemene coated stents prepared by electrospray could inhibit proliferation of VSMCs and promote endothelialization after implantation into rabbit iliac arteries.
Collapse
|
5
|
Lin Y, Huang Y, Lu Z, Luo C, shi Y, Zeng Q, Cao Y, Liu L, Wang X, Ji Q. Decreased plasma IL-35 levels are related to the left ventricular ejection fraction in coronary artery diseases. PLoS One 2012; 7:e52490. [PMID: 23285065 PMCID: PMC3528657 DOI: 10.1371/journal.pone.0052490] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 11/14/2012] [Indexed: 11/19/2022] Open
Abstract
Background Accumulating evidence shows that the novel anti-inflammatory cytokine IL-35 can efficiently suppress effector T cell activity and alter the progression of inflammatory and autoimmune diseases. The two subunits of IL-35, EBI3 and p35, are strongly expressed in human advanced plaque, suggesting a potential role of IL-35 in atherosclerosis and coronary artery disease (CAD). However, the plasma levels of IL-35 in patients with CAD have yet to be investigated. Methods Plasma IL-35, IL-10, TGF-β1, IL-12 and IL-27 levels were measured using an ELISA in 43 stable angina pectoris (SAP) patients, 62 unstable angina pectoris (UAP) patients, 56 acute myocardial infarction (AMI) patients and 47 chest pain syndrome patients as a control group. Results The results showed that plasma IL-35 levels were significantly decreased in the SAP group (90.74±34.22 pg/ml), the UAP group (72.20±26.63 pg/ml), and the AMI group (50.21±24.69 pg/ml) compared with chest pain syndrome group (115.06±32.27 pg/ml). Similar results were also demonstrated with IL-10 and TGF-β1. Plasma IL-12 and IL-27 levels were significantly increased in the UAP group (349.72±85.22 pg/ml, 101.75±51.42 pg/ml, respectively) and the AMI group (318.05±86.82 pg/ml, 148.88±68.45 pg/ml, respectively) compared with chest pain syndrome group (138.68±34.37 pg/ml, 63.60±22.75 pg/ml, respectively) and the SAP group (153.84±53.86 pg/ml, 70.84±38.77 pg/ml, respectively). Furthermore, lower IL-35 levels were moderately positively correlated with left ventricular ejection fraction (LVEF) in CAD patients (R = 0.416, P<0.01), whereas higher IL-27 levels were weakly negatively correlated with LVEF in CAD patients(R = −0.205, P<0.01). Conclusions The results of the present study show that circulating IL-35 is a potentially novel biomarker for coronary artery disease. Regulating the expression of IL-35 also provides a new possible target for the treatment of atherosclerosis and CAD.
Collapse
Affiliation(s)
- Yingzhong Lin
- Department of Cardiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ying Huang
- Department of Ultrasound, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhengde Lu
- Department of Cardiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Cheng Luo
- Department of Cardiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ying shi
- Department of Cardiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiutang Zeng
- Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifeng Cao
- Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Liu
- Department of Cardiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiaoyan Wang
- Department of Ultrasound, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qingwei Ji
- Department of Cardiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- * E-mail:
| |
Collapse
|
6
|
Li J, Li P, Zhang Y, Li GB, Zhou YG, Yang K, Dai SS. c-Ski inhibits the proliferation of vascular smooth muscle cells via suppressing Smad3 signaling but stimulating p38 pathway. Cell Signal 2012; 25:159-67. [PMID: 22986000 DOI: 10.1016/j.cellsig.2012.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/17/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) plays key roles in the progression of intimal hyperplasia, but the molecular mechanisms that trigger VSMC proliferation after vascular injury remain unclear. c-Ski, a co-repressor of transforming growth factor β (TGF-β)/Smad signaling, was detected to express in VSMC of rat artery. During the course of arterial VSMC proliferation induced by balloon injury in rat, the endogenous protein expressions of c-Ski decreased markedly in a time-dependent manner. In vivo c-Ski gene delivery was found to significantly suppress balloon injury-induced VSMC proliferation and neointima formation. Further investigation in A10 rat aortic smooth muscle cells demonstrated that overexpression of c-Ski gene inhibited TGF-β1 (1 ng/ml)-induced A10 cell proliferation while knockdown of c-Ski by RNAi enhanced the stimulatory effect of TGF-β1 on A10 cell growth. Western blot for signaling detection showed that suppression of Smad3 phosphorylation while stimulating p38 signaling associated with upregulation of cyclin-dependent kinase inhibitors p21 and p27 was responsible for the inhibitory effect of c-Ski on TGF-β1-induced VSMC proliferation. These data suggest that the decrease of endogenous c-Ski expression is implicated in the progression of VSMC proliferation after arterial injury and c-Ski administration represents a promising role for treating intimal hyperplasia via inhibiting the proliferation of VSMC.
Collapse
Affiliation(s)
- Jun Li
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Aspirin suppresses cardiac fibroblast proliferation and collagen formation through downregulation of angiotensin type 1 receptor transcription. Toxicol Appl Pharmacol 2012; 259:346-54. [PMID: 22306536 DOI: 10.1016/j.taap.2012.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/20/2011] [Accepted: 01/15/2012] [Indexed: 11/22/2022]
Abstract
Aspirin (acetyl salicylic acid, ASA) is a common drug used for its analgesic and antipyretic effects. Recent studies show that ASA not only blocks cyclooxygenase, but also inhibits NADPH oxidase and resultant reactive oxygen species (ROS) generation, a pathway that underlies pathogenesis of several ailments, including hypertension and tissue remodeling after injury. In these disease states, angiotensin II (Ang II) activates NADPH oxidase via its type 1 receptor (AT1R) and leads to fibroblast growth and collagen synthesis. In this study, we examined if ASA would inhibit NADPH oxidase activation, upregulation of AT1R transcription, and subsequent collagen generation in mouse cardiac fibroblasts challenged with Ang II. Mouse heart fibroblasts were isolated and treated with Ang II with or without ASA. As expected, Ang II induced AT1R expression, and stimulated cardiac fibroblast growth and collagen synthesis. The AT1R blocker losartan attenuated these effects of Ang II. Similarly to losartan, ASA, and its SA moiety suppressed Ang II-mediated AT1R transcription and fibroblast proliferation as well as expression of collagens and MMPs. ASA also suppressed the expression of NADPH oxidase subunits (p22(phox), p47(phox), p67(phox), NOX2 and NOX4) and ROS generation. ASA did not affect total NF-κB p65, but inhibited its phosphorylation and activation. These observations suggest that ASA inhibits Ang II-induced NADPH oxidase expression, NF-κB activation and AT1R transcription in cardiac fibroblasts, and fibroblast proliferation and collagen expression. The critical role of NADPH oxidase activity in stimulation of AT1R transcription became apparent in experiments where ASA also inhibited AT1R transcription in cardiac fibroblasts challenged with H2O2. Since SA had similar effect as ASA on AT1R expression, we suggest that ASA's effect is mediated by its SA moiety.
Collapse
|
8
|
Biros E, Walker PJ, Nataatmadja M, West M, Golledge J. Downregulation of transforming growth factor, beta receptor 2 and Notch signaling pathway in human abdominal aortic aneurysm. Atherosclerosis 2012; 221:383-6. [PMID: 22310065 DOI: 10.1016/j.atherosclerosis.2012.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/19/2011] [Accepted: 01/03/2012] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Mutations in FBN1 and TGFBR2 genes are the main causative mutations identified in Marfan syndrome (MFS). The major vascular complication of MFS is aneurysm formation. Abdominal aortic aneurysm (AAA) is an acquired disease of later life of unknown etiology. The aim of this study was to examine if genetic aberrations in MFS-related genes FBN1 and TGFBR2 are present in patients with AAA. METHODS We assessed the presence of copy number variation (CNV) in FBN1 and TGFBR2 genes in AAA biopsies from twelve patients. We also analyzed the expression of these genes in AAA biopsies compared to control biopsies from six organ donors. In addition we assessed the expression of two members of the Notch signaling pathway NOTCH3 and HEY2 as well as aortic smooth muscle cell (AoSMC) differentiation marker TAGLN in AAA and control biopsies. RESULTS Loss of one copy (deletion) of the FBN1 exon 66 sequence and TGFBR2 exon 8 was identified in 7 (58%) and 11 (92%) of the 12 AAA biopsies. No copy number amplifications (duplications) were detected. Patients carrying TGFBR2 exon 8 deletion showed marked downregulation of this gene in AAA biopsies compared to control biopsies (0.699 vs. 1.765, p = 0.038). Notch signaling components NOTCH3 and HEY2 were markedly downregulated in AAA, while expression of the AoSMC differentiation marker TAGLN did not differ between AAA and control biopsies (0.468 vs. 0.486, p = 0.546). CONCLUSION This study suggests an acquired impairment in TGF-β signaling that along with downregulation of the Notch signaling pathway may contribute to the pathogenesis of AAA.
Collapse
Affiliation(s)
- Erik Biros
- Vascular Biology Unit, School of Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | | | | | | | | |
Collapse
|
9
|
Fu H, Luo F, Yang L, Wu W, Liu X. Hypoxia stimulates the expression of macrophage migration inhibitory factor in human vascular smooth muscle cells via HIF-1alpha dependent pathway. BMC Cell Biol 2010; 11:66. [PMID: 20727156 PMCID: PMC2931459 DOI: 10.1186/1471-2121-11-66] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 08/20/2010] [Indexed: 02/05/2023] Open
Abstract
Background Hypoxia plays an important role in vascular remodeling and directly affects vascular smooth muscle cells (VSMC) functions. Macrophage migration inhibitory factor (MIF) is a well known proinflammatory factor, and recent evidence suggests an important role of MIF in the progression of atherosclerosis and restenosis. However, the potential link between hypoxia and MIF in VSMC has not been investigated. The current study was designed to test whether hypoxia could regulate MIF expression in human VSMC. The effect of modulating MIF expression on hypoxia-induced VSMC proliferation and migration was also investigated at the same time. Results Expression of MIF mRNA and protein was up-regulated as early as 2 hours in cultured human VSMCs after exposed to moderate hypoxia condition (3% O2). The up-regulation of MIF expression appears to be dependent on hypoxia-inducible transcription factor-1α(HIF-1α) since knockdown of HIF-1α inhibits the hypoxia induction of MIF gene and protein expression. The hypoxia induced expression of MIF was attenuated by antioxidant treatment as well as by inhibition of extracellular signal-regulated kinase (ERK). Under moderate hypoxia conditions (3% O2), both cell proliferation and cell migration were increased in VSMC cells. Blocking the MIF by specific small interference RNA to MIF (MIF-shRNA) resulted in the suppression of proliferation and migration of VSMCs. Conclusion Our results demonstrated that in VSMCs, hypoxia increased MIF gene expression and protein production. The hypoxia-induced HIF-1α activation, reactive oxygen species (ROS) generation and ERK activation might be involved in this response. Both MIF and HIF-1α mediated the hypoxia response of vascular smooth muscle cells, including cell migration and proliferation.
Collapse
Affiliation(s)
- Hua Fu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | |
Collapse
|