1
|
Hou Y, Treanor B. DNA origami: Interrogating the nano-landscape of immune receptor activation. Biophys J 2024; 123:2211-2223. [PMID: 37838832 PMCID: PMC11331043 DOI: 10.1016/j.bpj.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
The immune response is orchestrated by elaborate protein interaction networks that interweave ligand-mediated receptor reorganization with signaling cascades. While the biochemical processes have been extensively investigated, delineating the biophysical principles governing immune receptor activation has remained challenging due to design limitations of traditional ligand display platforms. These constraints have been overcome by advances in DNA origami nanotechnology, enabling unprecedented control over ligand geometry on configurable scaffolds. It is now possible to systematically dissect the independent roles of ligand stoichiometry, spatial distribution, and rigidity in immune receptor activation, signaling, and cooperativity. In this review, we highlight pioneering efforts in manipulating the ligand presentation landscape to understand immune receptor triggering and to engineer functional immune responses.
Collapse
Affiliation(s)
- Yuchen Hou
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario.
| | - Bebhinn Treanor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario; Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario; Department of Immunology, University of Toronto, Toronto, Ontario.
| |
Collapse
|
2
|
Yang X, Liang X, Nandi R, Tian Y, Zhang Y, Li Y, Zhou J, Dong Y, Liu D, Zhong Z, Yang Z. DNA-Modified Liquid Crystal Droplets. BIOSENSORS 2022; 12:275. [PMID: 35624576 PMCID: PMC9138460 DOI: 10.3390/bios12050275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
In this work, we have combined the advantages of sequence programmability of DNA nanotechnology and optical birefringence of liquid crystals (LCs). Herein, DNA amphiphiles were adsorbed onto LC droplets. A unique phenomenon of LC droplet aggregation was demonstrated, using DNA-modified LC droplets, through complementary DNA hybridization. Further functionalization of DNA-modified LC droplets with a desired DNA sequence was used to detect a wide range of chemicals and biomolecules, such as Hg2+, thrombin, and enzymes, through LC droplet aggregation and vice versa, which can be seen through the naked eye. These DNA-modified LC droplets can be printed onto a desired patterned surface with temperature-induced responsiveness and reversibility. Overall, our work is the first to report DNA-modified LC droplet, which provides a general detection platform based on the development of DNA aptamers. Additionally, this work inspires the exploration of surface information visualization combined with microcontact printing.
Collapse
Affiliation(s)
- Xiuxiu Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China; (X.Y.); (X.L.); (R.N.); (Y.T.); (Y.Z.); (Y.L.); (J.Z.); (Y.D.); (D.L.)
| | - Xiao Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China; (X.Y.); (X.L.); (R.N.); (Y.T.); (Y.Z.); (Y.L.); (J.Z.); (Y.D.); (D.L.)
| | - Rajib Nandi
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China; (X.Y.); (X.L.); (R.N.); (Y.T.); (Y.Z.); (Y.L.); (J.Z.); (Y.D.); (D.L.)
| | - Yi Tian
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China; (X.Y.); (X.L.); (R.N.); (Y.T.); (Y.Z.); (Y.L.); (J.Z.); (Y.D.); (D.L.)
| | - Yiyang Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China; (X.Y.); (X.L.); (R.N.); (Y.T.); (Y.Z.); (Y.L.); (J.Z.); (Y.D.); (D.L.)
| | - Yan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China; (X.Y.); (X.L.); (R.N.); (Y.T.); (Y.Z.); (Y.L.); (J.Z.); (Y.D.); (D.L.)
| | - Jingsheng Zhou
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China; (X.Y.); (X.L.); (R.N.); (Y.T.); (Y.Z.); (Y.L.); (J.Z.); (Y.D.); (D.L.)
| | - Yuanchen Dong
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China; (X.Y.); (X.L.); (R.N.); (Y.T.); (Y.Z.); (Y.L.); (J.Z.); (Y.D.); (D.L.)
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China; (X.Y.); (X.L.); (R.N.); (Y.T.); (Y.Z.); (Y.L.); (J.Z.); (Y.D.); (D.L.)
| | - Zhengwei Zhong
- Department of Chemical Engineering, Hebei Petroleum University of Technology, Chengde 067000, China
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China; (X.Y.); (X.L.); (R.N.); (Y.T.); (Y.Z.); (Y.L.); (J.Z.); (Y.D.); (D.L.)
| |
Collapse
|
3
|
Casas-Ferrer L, Brisson A, Massiera G, Casanellas L. Design of vesicle prototissues as a model for cellular tissues. SOFT MATTER 2021; 17:5061-5072. [PMID: 33929482 DOI: 10.1039/d1sm00336d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthesizing biomimetic prototissues with predictable physical properties is a promising tool for the study of cellular tissues, as they would enable to test systematically the role of individual physical mechanisms on complex biological processes. The aim of this study is to design a biomimetic cohesive tissue with tunable mechanical properties by the controlled assembly of giant unillamelar vesicles (GUV). GUV-GUV specific adhesion is mediated by the inclusion of the streptavidin-biotin pair, or DNA complementary strands. Using a simple assembly protocol, we are capable of synthesizing vesicle prototissues of spheroidal or sheet-like morphologies, with predictable cell-cell adhesion strengths, typical sizes, and degree of compaction.
Collapse
Affiliation(s)
- Laura Casas-Ferrer
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier. Place Eugène Bataillon, 34095 Montpellier, France.
| | - Amaury Brisson
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier. Place Eugène Bataillon, 34095 Montpellier, France.
| | - Gladys Massiera
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier. Place Eugène Bataillon, 34095 Montpellier, France.
| | - Laura Casanellas
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier. Place Eugène Bataillon, 34095 Montpellier, France.
| |
Collapse
|
4
|
Wang X, Du H, Wang Z, Mu W, Han X. Versatile Phospholipid Assemblies for Functional Synthetic Cells and Artificial Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002635. [PMID: 32830387 DOI: 10.1002/adma.202002635] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The bottom-up construction of a synthetic cell from nonliving building blocks capable of mimicking cellular properties and behaviors helps to understand the particular biophysical properties and working mechanisms of a cell. A synthetic cell built in this way possesses defined chemical composition and structure. Since phospholipids are native biomembrane components, their assemblies are widely used to mimic cellular structures. Here, recent developments in the formation of versatile phospholipid assemblies are described, together with the applications of these assemblies for functional membranes (protein reconstituted giant unilamellar vesicles), spherical and nonspherical protoorganelles, and functional synthetic cells, as well as the high-order hierarchical structures of artificial tissues. Their biomedical applications are also briefly summarized. Finally, the challenges and future directions in the field of synthetic cells and artificial tissues based on phospholipid assemblies are proposed.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shangdong Province, Harbin Institute of Technology, Weihai, 264209, China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
5
|
de Lange N, Leermakers FAM, Kleijn JM. Step-wise linking of vesicles by combining reversible and irreversible linkers - towards total control on vesicle aggregate sizes. SOFT MATTER 2020; 16:6773-6783. [PMID: 32633317 DOI: 10.1039/d0sm00995d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Small vesicle aggregates as a model for primitive cellular assemblies or for application as multi-compartment drug delivery systems recently received a lot of interest, yet controlling the aggregation of vesicles to predetermined aggregate sizes remains quite a challenge. We show that this type of control is possible by using a combination of two different linker systems: streptavidin-biotin and C18-pNIPAm. The latter linker is a thermoresponsive surfactant, which below its lower critical solution temperature (LCST) of 32 °C acts as barrier on the outside of the vesicles preventing aggregation, even in the presence of other linkers. Above the LCST however, C18-pNIPAm collapses, becomes sticky and thus acts as a linker inducing aggregation. By working at low vesicle concentrations and tuning the C18-pNIPAm/lipid ratio, the aggregation is by design limited. When the temperature drops below the LCST again, the aggregation is reversed. However, this is not the case if other linkers are present. The collapse of C18-pNIPAm above the LCST provides close contact between vesicles, allowing other linker molecules to connect them. By combining the reversible 'switch-like' aggregation properties of C18-pNIPAm, with the irreversible linkage between biotinylated lipids and streptavidin, it is possible to control the size of the aggregates step by step using a simple temperature program.
Collapse
Affiliation(s)
- N de Lange
- Physical Chemistry & Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - F A M Leermakers
- Physical Chemistry & Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - J M Kleijn
- Physical Chemistry & Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
6
|
de Lange N, Leermakers FAM, Kleijn JM. Self-limiting aggregation of phospholipid vesicles. SOFT MATTER 2020; 16:2379-2389. [PMID: 32064491 DOI: 10.1039/c9sm01692a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipid vesicles are widely used as model systems to study biological membranes. The self-assembly of such vesicles into vesicle pairs provides further opportunity to study interactions between membranes. However, formation of vesicle pairs, while subsequently keeping their colloidal stability intact, is challenging. Here, we report on three strategies that lead to stable finite-sized aggregates of phospholipid vesicles: (i) vesicles containing biotinylated lipids are coupled together with streptavidin, (ii) bridging attraction is exploited by adding cationic polymers (polylysine) to negatively charged vesicles, and (iii) temperature as a control parameter is used for the aggregation of vesicles mixed with a thermo-sensitive surfactant. While each strategy has its own advantages and disadvantages for vesicle pair formation, the latter strategy additionally shows reversible limited aggregation: above the LCST of pNIPAm, vesicle pairs are formed, while below the LCST, single vesicles prevail. Mixing protocols were assessed by dynamic and static light scattering as well as fluorescence correlation spectroscopy to determine under which conditions vesicle pairs dominate the aggregate size distribution. We have strong indications that without subsequent perturbation, the individual vesicles remain intact and no fusion or leakage between vesicles occurs after vesicle pairs have formed.
Collapse
Affiliation(s)
- N de Lange
- Physical Chemistry & Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - F A M Leermakers
- Physical Chemistry & Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - J M Kleijn
- Physical Chemistry & Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Mognetti BM, Cicuta P, Di Michele L. Programmable interactions with biomimetic DNA linkers at fluid membranes and interfaces. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:116601. [PMID: 31370052 DOI: 10.1088/1361-6633/ab37ca] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
At the heart of the structured architecture and complex dynamics of biological systems are specific and timely interactions operated by biomolecules. In many instances, biomolecular agents are spatially confined to flexible lipid membranes where, among other functions, they control cell adhesion, motility and tissue formation. Besides being central to several biological processes, multivalent interactions mediated by reactive linkers confined to deformable substrates underpin the design of synthetic-biological platforms and advanced biomimetic materials. Here we review recent advances on the experimental study and theoretical modelling of a heterogeneous class of biomimetic systems in which synthetic linkers mediate multivalent interactions between fluid and deformable colloidal units, including lipid vesicles and emulsion droplets. Linkers are often prepared from synthetic DNA nanostructures, enabling full programmability of the thermodynamic and kinetic properties of their mutual interactions. The coupling of the statistical effects of multivalent interactions with substrate fluidity and deformability gives rise to a rich emerging phenomenology that, in the context of self-assembled soft materials, has been shown to produce exotic phase behaviour, stimuli-responsiveness, and kinetic programmability of the self-assembly process. Applications to (synthetic) biology will also be reviewed.
Collapse
Affiliation(s)
- Bortolo Matteo Mognetti
- Université libre de Bruxelles (ULB), Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Campus Plaine, CP 231, Blvd. du Triomphe, B-1050 Brussels, Belgium
| | | | | |
Collapse
|
8
|
Bartelt SM, Chervyachkova E, Ricken J, Wegner SV. Mimicking Adhesion in Minimal Synthetic Cells. ACTA ACUST UNITED AC 2019; 3:e1800333. [DOI: 10.1002/adbi.201800333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Solveig M. Bartelt
- Max Planck Institute of Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | | - Julia Ricken
- Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
| | - Seraphine V. Wegner
- Max Planck Institute of Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
9
|
Lanfranco R, Jana PK, Tunesi L, Cicuta P, Mognetti BM, Di Michele L, Bruylants G. Kinetics of Nanoparticle-Membrane Adhesion Mediated by Multivalent Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2002-2012. [PMID: 30636419 DOI: 10.1021/acs.langmuir.8b02707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multivalent adhesive interactions mediated by a large number of ligands and receptors underpin many biological processes, including cell adhesion and the uptake of particles, viruses, parasites, and nanomedical vectors. In materials science, multivalent interactions between colloidal particles have enabled unprecedented control over the phase behavior of self-assembled materials. Theoretical and experimental studies have pinpointed the relationship between equilibrium states and microscopic system parameters such as the ligand-receptor binding strength and their density. In regimes of strong interactions, however, kinetic factors are expected to slow down equilibration and lead to the emergence of long-lived out-of-equilibrium states that may significantly influence the outcome of self-assembly experiments and the adhesion of particles to biological membranes. Here we experimentally investigate the kinetics of adhesion of nanoparticles to biomimetic lipid membranes. Multivalent interactions are reproduced by strongly interacting DNA constructs, playing the role of both ligands and receptors. The rate of nanoparticle adhesion is investigated as a function of the surface density of membrane-anchored receptors and the bulk concentration of nanoparticles and is observed to decrease substantially in regimes where the number of available receptors is limited compared to the overall number of ligands. We attribute such peculiar behavior to the rapid sequestration of available receptors after initial nanoparticle adsorption. The experimental trends and the proposed interpretation are supported by numerical simulations.
Collapse
Affiliation(s)
- Roberta Lanfranco
- Biological and Soft Systems, Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
- Université Libre de Bruxelles (ULB) , Engineering of Molecular NanoSystems , 50 av. F.D. Roosevelt , 1050 Brussels , Belgium
| | - Pritam Kumar Jana
- Université Libre de Bruxelles (ULB) , Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Campus Plaine , CP 231, Blvd. du Triomphe , B-1050 Brussels , Belgium
| | - Lucia Tunesi
- Biological and Soft Systems, Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Pietro Cicuta
- Biological and Soft Systems, Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Bortolo Matteo Mognetti
- Université Libre de Bruxelles (ULB) , Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Campus Plaine , CP 231, Blvd. du Triomphe , B-1050 Brussels , Belgium
| | - Lorenzo Di Michele
- Biological and Soft Systems, Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , United Kingdom
| | - Gilles Bruylants
- Université Libre de Bruxelles (ULB) , Engineering of Molecular NanoSystems , 50 av. F.D. Roosevelt , 1050 Brussels , Belgium
| |
Collapse
|
10
|
Rinaldin M, Verweij RW, Chakraborty I, Kraft DJ. Colloid supported lipid bilayers for self-assembly. SOFT MATTER 2019; 15:1345-1360. [PMID: 30565635 PMCID: PMC6371764 DOI: 10.1039/c8sm01661e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/23/2018] [Indexed: 05/10/2023]
Abstract
The use of colloid supported lipid bilayers (CSLBs) has recently been extended to create colloidal joints, that enable the assembly of structures with internal degrees of flexibility, and to study lipid membranes on curved and closed geometries. These novel applications of CSLBs rely on previously unappreciated properties: the simultaneous fluidity of the bilayer, lateral mobility of inserted (linker) molecules and colloidal stability. Here we characterize every step in the manufacturing of CSLBs in view of these requirements using confocal microscopy and fluorescence recovery after photobleaching (FRAP). Specifically, we have studied the influence of different particle properties (roughness, surface charge, chemical composition, polymer coating) on the quality and mobility of the supported bilayer. We find that the insertion of lipopolymers in the bilayer can affect its homogeneity and fluidity. We improve the colloidal stability by inserting lipopolymers or double-stranded inert DNA into the bilayer. We include surface-mobile DNA linkers and use FRAP to characterize their lateral mobility both in their freely diffusive and bonded state. Finally, we demonstrate the self-assembly of flexibly linked structures from the CSLBs modified with surface-mobile DNA linkers. Our work offers a collection of experimental tools for working with CSLBs in applications ranging from controlled bottom-up self-assembly to model membrane studies.
Collapse
Affiliation(s)
- Melissa Rinaldin
- Huygens-Kamerlingh Onnes Lab, Universiteit Leiden
,
P.O. Box 9504
, 2300 RA Leiden
, The Netherlands
.
- Instituut-Lorentz, Universiteit Leiden
,
P.O. Box 9506
, 2300 RA Leiden
, The Netherlands
| | - Ruben W. Verweij
- Huygens-Kamerlingh Onnes Lab, Universiteit Leiden
,
P.O. Box 9504
, 2300 RA Leiden
, The Netherlands
.
| | - Indrani Chakraborty
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University
,
Tel Aviv 69978
, Israel
| | - Daniela J. Kraft
- Huygens-Kamerlingh Onnes Lab, Universiteit Leiden
,
P.O. Box 9504
, 2300 RA Leiden
, The Netherlands
.
| |
Collapse
|
11
|
Stano P. Is Research on "Synthetic Cells" Moving to the Next Level? Life (Basel) 2018; 9:E3. [PMID: 30587790 PMCID: PMC6463193 DOI: 10.3390/life9010003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
"Synthetic cells" research focuses on the construction of cell-like models by using solute-filled artificial microcompartments with a biomimetic structure. In recent years this bottom-up synthetic biology area has considerably progressed, and the field is currently experiencing a rapid expansion. Here we summarize some technical and theoretical aspects of synthetic cells based on gene expression and other enzymatic reactions inside liposomes, and comment on the most recent trends. Such a tour will be an occasion for asking whether times are ripe for a sort of qualitative jump toward novel SC prototypes: is research on "synthetic cells" moving to a next level?
Collapse
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento; Ecotekne-S.P. Lecce-Monteroni, I-73100 Lecce, Italy.
| |
Collapse
|
12
|
Chidchob P, Offenbartl-Stiegert D, McCarthy D, Luo X, Li J, Howorka S, Sleiman HF. Spatial Presentation of Cholesterol Units on a DNA Cube as a Determinant of Membrane Protein-Mimicking Functions. J Am Chem Soc 2018; 141:1100-1108. [DOI: 10.1021/jacs.8b11898] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Pongphak Chidchob
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Daniel Offenbartl-Stiegert
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London WC1H 0AJ, United Kingdom
| | - Dillon McCarthy
- Department of Chemistry, The University of Vermont, Burlington, Vermont 05405, United States
| | - Xin Luo
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Jianing Li
- Department of Chemistry, The University of Vermont, Burlington, Vermont 05405, United States
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural Molecular Biology, University College London, London WC1H 0AJ, United Kingdom
| | - Hanadi F. Sleiman
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
13
|
Volpe Bossa G, Souza TPD, May S. Adhesion of like-charged lipid vesicles induced by rod-like counterions. SOFT MATTER 2018; 14:3935-3944. [PMID: 29736542 DOI: 10.1039/c8sm00559a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Adhesion of electrically charged lipid vesicles and subsequent formation of multi-vesicle aggregates can be induced by multivalent rod-like counterions. Motivated by recent experimental observations we calculate the equilibrium conformation of two identical vesicles that adhere onto each other. The degree of adhesion reflects the competition between predominantly electrostatic attraction and vesicle bending. Our model assumes the enclosed vesicle volume is allowed to freely adjust and the area of the vesicle membrane is fixed and remains constant. We describe the electrostatic attraction, which arises from the bridging of the rod-like counterions between the two like-charged vesicles, using a recently developed mean-field theory. Bending fluctuation-induced entropic repulsion, depletion forces between the apposed vesicle membranes induced by the rod-like counterions, and van der Waals attraction between the vesicles are estimated to induce only minor shifts in the equilibrium vesicle conformation. Our model predicts the dependence of vesicle adhesion (including its onset) exclusively from material or molecular parameters such as vesicle size and charge, bending stiffness of the membrane, effective length and net charge of the added rod-like counterions, as well as concentrations of rod-like counterions and additional salt content. We demonstrate that the demixing of charged lipids between the adhesion region and the uncomplexed parts of the vesicles has only a minor influence on the degree of adhesion. Our predictions are in qualitative agreement with recent experimental findings.
Collapse
Affiliation(s)
- Guilherme Volpe Bossa
- Department of Physics, North Dakota State University, Fargo North Dakota 58108-6050, USA.
| | | | | |
Collapse
|
14
|
van der Wel C, van de Stolpe GL, Verweij RW, Kraft DJ. Micrometer-sized TPM emulsion droplets with surface-mobile binding groups. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:094005. [PMID: 29376836 DOI: 10.1088/1361-648x/aaab22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Colloids coated with lipid membranes have been widely employed for fundamental studies of lipid membrane processes, biotechnological applications such as drug delivery and biosensing, and more recently, for self-assembly. The latter has been made possible by inserting DNA oligomers with covalently linked hydrophobic anchors into the membrane. The lateral mobility of the DNA linkers on micrometer-sized droplets and solid particles has opened the door to creating structures with unprecedented structural flexibility. Here, we investigate micro-emulsions of TPM (3-(trimethoxysilyl)propyl methacrylate) as a platform for lipid monolayers and further functionalization with proteins and DNA oligonucleotides. TPM droplets can be produced with a narrow size distribution and are polymerizable, thus providing supports for model lipid membranes with controlled size and curvature. With fluorescence recovery after photobleaching, we observed that droplet-attached lipids, NeutrAvidin proteins, as well as DNA oligonucleotides all show mobility on the surface. We explored the assembly of micron-sized particles on TPM-droplets by exploiting either avidin-biotin interactions or double-stranded DNA with complementary single-stranded end groups. While the single molecules are mobile, the particles that are attached to them are not. We propose that this is caused by the heterogeneous nature of emulsified TPM, which forms an oligomer network that limits the collective motion of linkers, but allows the surface mobility of individual molecules.
Collapse
Affiliation(s)
- Casper van der Wel
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300 RA Leiden, Netherlands
| | | | | | | |
Collapse
|
15
|
Trantidou T, Friddin M, Elani Y, Brooks NJ, Law RV, Seddon JM, Ces O. Engineering Compartmentalized Biomimetic Micro- and Nanocontainers. ACS NANO 2017; 11:6549-6565. [PMID: 28658575 DOI: 10.1021/acsnano.7b03245] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Compartmentalization of biological content and function is a key architectural feature in biology, where membrane bound micro- and nanocompartments are used for performing a host of highly specialized and tightly regulated biological functions. The benefit of compartmentalization as a design principle is behind its ubiquity in cells and has led to it being a central engineering theme in construction of artificial cell-like systems. In this review, we discuss the attractions of designing compartmentalized membrane-bound constructs and review a range of biomimetic membrane architectures that span length scales, focusing on lipid-based structures but also addressing polymer-based and hybrid approaches. These include nested vesicles, multicompartment vesicles, large-scale vesicle networks, as well as droplet interface bilayers, and double-emulsion multiphase systems (multisomes). We outline key examples of how such structures have been functionalized with biological and synthetic machinery, for example, to manufacture and deliver drugs and metabolic compounds, to replicate intracellular signaling cascades, and to demonstrate collective behaviors as minimal tissue constructs. Particular emphasis is placed on the applications of these architectures and the state-of-the-art microfluidic engineering required to fabricate, functionalize, and precisely assemble them. Finally, we outline the future directions of these technologies and highlight how they could be applied to engineer the next generation of cell models, therapeutic agents, and microreactors, together with the diverse applications in the emerging field of bottom-up synthetic biology.
Collapse
Affiliation(s)
- Tatiana Trantidou
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Mark Friddin
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Yuval Elani
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Nicholas J Brooks
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Robert V Law
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - John M Seddon
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| | - Oscar Ces
- Department of Chemistry and ‡Institute of Chemical Biology, Imperial College London , Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
16
|
Zhang Y, McMullen A, Pontani LL, He X, Sha R, Seeman NC, Brujic J, Chaikin PM. Sequential self-assembly of DNA functionalized droplets. Nat Commun 2017. [PMID: 28623249 PMCID: PMC5473892 DOI: 10.1038/s41467-017-00070-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Complex structures and devices, both natural and manmade, are often constructed sequentially. From crystallization to embryogenesis, a nucleus or seed is formed and built upon. Sequential assembly allows for initiation, signaling, and logical programming, which are necessary for making enclosed, hierarchical structures. Although biology relies on such schemes, they have not been available in materials science. Here, we demonstrate programmed sequential self-assembly of DNA functionalized emulsions. The droplets are initially inert because the grafted DNA strands are pre-hybridized in pairs. Active strands on initiator droplets then displace one of the paired strands and thus release its complement, which in turn activates the next droplet in the sequence, akin to living polymerization. Our strategy provides time and logic control during the self-assembly process, and offers a new perspective on the synthesis of materials.Natural complex systems are often constructed by sequential assembly but this is not readily available for synthetic systems. Here, the authors program the sequential self-assembly of DNA functionalized emulsions by altering the DNA grafted strands.
Collapse
Affiliation(s)
- Yin Zhang
- Physics Department, Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York, 10003, USA
| | - Angus McMullen
- Physics Department, Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York, 10003, USA
| | - Lea-Laetitia Pontani
- Physics Department, Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York, 10003, USA.,Institut des NanoSciences de Paris, UMR 7588, Centre National de la Recherche Scientifique-University Pierre et Marie Curie, 4 Place Jussieu, Paris, France
| | - Xiaojin He
- Physics Department, Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York, 10003, USA
| | - Ruojie Sha
- Chemistry Department, New York University, 100 Washington Square East, New York, New York, 10003, USA
| | - Nadrian C Seeman
- Chemistry Department, New York University, 100 Washington Square East, New York, New York, 10003, USA.
| | - Jasna Brujic
- Physics Department, Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York, 10003, USA.
| | - Paul M Chaikin
- Physics Department, Center for Soft Matter Research, New York University, 4 Washington Place, New York, New York, 10003, USA.
| |
Collapse
|
17
|
Czogalla A, Franquelim HG, Schwille P. DNA Nanostructures on Membranes as Tools for Synthetic Biology. Biophys J 2017; 110:1698-1707. [PMID: 27119630 PMCID: PMC4850321 DOI: 10.1016/j.bpj.2016.03.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/26/2015] [Accepted: 03/07/2016] [Indexed: 11/12/2022] Open
Abstract
Over the last decade, functionally designed DNA nanostructures applied to lipid membranes prompted important achievements in the fields of biophysics and synthetic biology. Taking advantage of the universal rules for self-assembly of complementary oligonucleotides, DNA has proven to be an extremely versatile biocompatible building material on the nanoscale. The possibility to chemically integrate functional groups into oligonucleotides, most notably with lipophilic anchors, enabled a widespread usage of DNA as a viable alternative to proteins with respect to functional activity on membranes. As described throughout this review, hybrid DNA-lipid nanostructures can mediate events such as vesicle docking and fusion, or selective partitioning of molecules into phase-separated membranes. Moreover, the major benefit of DNA structural constructs, such as DNA tiles and DNA origami, is the reproducibility and simplicity of their design. DNA nanotechnology can produce functional structures with subnanometer precision and allow for a tight control over their biochemical functionality, e.g., interaction partners. DNA-based membrane nanopores and origami structures able to assemble into two-dimensional networks on top of lipid bilayers are recent examples of the manifold of complex devices that can be achieved. In this review, we will shortly present some of the potentially most relevant avenues and accomplishments of membrane-anchored DNA nanostructures for investigating, engineering, and mimicking lipid membrane-related biophysical processes.
Collapse
Affiliation(s)
- Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.
| | - Henri G Franquelim
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
18
|
Tagalakis AD, Maeshima R, Yu-Wai-Man C, Meng J, Syed F, Wu LP, Aldossary AM, McCarthy D, Moghimi SM, Hart SL. Peptide and nucleic acid-directed self-assembly of cationic nanovehicles through giant unilamellar vesicle modification: Targetable nanocomplexes for in vivo nucleic acid delivery. Acta Biomater 2017; 51:351-362. [PMID: 28110069 DOI: 10.1016/j.actbio.2017.01.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 12/29/2022]
Abstract
One of the greatest challenges for the development of genetic therapies is the efficient targeted delivery of therapeutic nucleic acids. Towards this goal, we have introduced a new engineering initiative in self-assembly of biologically safe and stable nanovesicle complexes (∼90 to 140nm) derived from giant unilamellar vesicle (GUV) precursors and comprising plasmid DNA or siRNA and targeting peptide ligands. The biological performance of the engineered nanovesicle complexes were studied both in vitro and in vivo and compared with cationic liposome-based lipopolyplexes. Compared with cationic lipopolyplexes, nanovesicle complexes did not show advantages in transfection and cell uptake. However, nanovesicle complexes neither displayed significant cytotoxicity nor activated the complement system, which are advantageous for intravenous injection and tumour therapy. On intravenous administration into a neuroblastoma xenograft mouse model, nanovesicle complexes were found to distribute throughout the tumour interstitium, thus providing an alternative safer approach for future development of tumour-specific therapeutic nucleic acid interventions. On oropharyngeal instillation, nanovesicle complexes displayed better transfection efficiency than cationic lipopolyplexes. The technological advantages of nanovesicle complexes, originating from GUVs, over traditional cationic liposome-based lipopolyplexes are discussed. STATEMENT OF SIGNIFICANCE The efficient targeted delivery of nucleic acids in vivo provides some of the greatest challenges to the development of genetic therapies. Giant unilamellar lipid vesicles (GUVs) have been used mainly as cell and tissue mimics and are instrumental in studying lipid bilayers and interactions. Here, the GUVs have been modified into smaller nanovesicles. We have then developed novel nanovesicle complexes comprising self-assembling mixtures of the nanovesicles, plasmid DNA or siRNA, and targeting peptide ligands. Their biophysical properties were studied and their transfection efficiency was investigated. They transfected cells efficiently without any associated cytotoxicity and with targeting specificity, and in vivo they resulted in very high and tumour-specific uptake and in addition, efficiently transfected the lung. The peptide-targeted nanovesicle complexes allow for the specific targeted enhancement of nucleic acid delivery with improved biosafety over liposomal formulations and represent a promising tool to improve our arsenal of safe, non-viral vectors to deliver therapeutic cargos in a variety of disorders.
Collapse
Affiliation(s)
- A D Tagalakis
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| | - R Maeshima
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - C Yu-Wai-Man
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - J Meng
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - F Syed
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - L-P Wu
- Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - A M Aldossary
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - D McCarthy
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - S M Moghimi
- Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; School of Medicine, Pharmacy and Health, Durham University, Stockton-on-Tees TS17 6BH, UK
| | - S L Hart
- Experimental and Personalised Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
19
|
Amjad OA, Mognetti BM, Cicuta P, Di Michele L. Membrane Adhesion through Bridging by Multimeric Ligands. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1139-1146. [PMID: 28068766 DOI: 10.1021/acs.langmuir.6b03692] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ligand/receptor multivalent interactions have been exploited to drive self-assembly of nanoparticles, hard colloids, and, more recently, compliant units including emulsion droplets and lipid vesicles. In deformable liposomes, formation of links between two membranes produces morphological changes depending on the amount of ligands in the environment. Here, we study a proof-of-concept biosensing system in which single lipid vesicles adhere to a flat supported lipid bilayer, both decorated with membrane-anchored biotinylated receptors. Adhesion is driven by multivalent streptavidin (SA) ligands forming bridges between the vesicles and the supported bilayer. Upon changing the concentration of ligands, we characterize the morphological and mechanical changes of the vesicles, including the formation of a stable adhesion patch, membrane tension, and the kinetics of bridge rupture/formation. We observe vesicle binding only within a specific range of ligand concentrations: adhesion does not occur if the amount of SA is either too low or too high. A theoretical model is presented, elucidating the mechanism underlying this observation, particularly, the role of SA multivalency in determining the onset of adhesion. We elaborate on how the behavior of membranes studied here could be exploited in next-generation (bio)molecular analytical devices.
Collapse
Affiliation(s)
- Omar A Amjad
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Bortolo M Mognetti
- Université libre de Bruxelles (ULB) , Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Campus Plaine, CP 231, Blvd. du Triomphe, B-1050 Brussels, Belgium
| | - Pietro Cicuta
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Lorenzo Di Michele
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
20
|
de Souza TP, Bossa GV, Stano P, Steiniger F, May S, Luisi PL, Fahr A. Vesicle aggregates as a model for primitive cellular assemblies. Phys Chem Chem Phys 2017; 19:20082-20092. [DOI: 10.1039/c7cp03751a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Primitive cell models help to understand the role that compartmentalization plays in origin of life scenarios.
Collapse
Affiliation(s)
- Tereza Pereira de Souza
- Institut für Pharmazie
- Friedrich Schiller Universität Jena
- Lessingstrasse 8
- D-07743 Jena
- Germany
| | | | - Pasquale Stano
- Science Department
- Roma Tre University
- Viale G. Marconi 446
- I-00146 Rome
- Italy
| | - Frank Steiniger
- Elektronenmikroskopisches Zentrum
- Friedrich Schiller Universität Jena
- D-07743 Jena
- Germany
| | - Sylvio May
- Department of Physics
- North Dakota State University
- Fargo North Dakota 58108-6050
- USA
| | - Pier Luigi Luisi
- Science Department
- Roma Tre University
- Viale G. Marconi 446
- I-00146 Rome
- Italy
| | - Alfred Fahr
- Institut für Pharmazie
- Friedrich Schiller Universität Jena
- Lessingstrasse 8
- D-07743 Jena
- Germany
| |
Collapse
|
21
|
Luo Q, Shi Z, Zhang Y, Chen XJ, Han SY, Baumgart T, Chenoweth DM, Park SJ. DNA Island Formation on Binary Block Copolymer Vesicles. J Am Chem Soc 2016; 138:10157-62. [DOI: 10.1021/jacs.6b04076] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qingjie Luo
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Zheng Shi
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Yitao Zhang
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Xi-Jun Chen
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Seo-Yeon Han
- Department
of Chemistry and Nano Science, Ewha Womans University, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| | - Tobias Baumgart
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - David M. Chenoweth
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - So-Jung Park
- Department
of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry and Nano Science, Ewha Womans University, Ewhayeodae-gil, Seodaemun-gu, Seoul 120-750, Korea
| |
Collapse
|
22
|
Hadorn M, Boenzli E, Hanczyc MM. Specific and Reversible DNA-Directed Self-Assembly of Modular Vesicle-Droplet Hybrid Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3561-3566. [PMID: 27010467 DOI: 10.1021/acs.langmuir.5b04003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Modular hybrid structures functionalized to assemble in a controlled manner possess diverse properties necessary for a new generation of complex materials and applications. Here, we functionalized giant unilamellar vesicles and emulsion droplets with biotinylated single-stranded DNA oligonucleotides using streptavidin as an intermediary linker to demonstrate specific and reversible DNA-directed self-assembly into vesicle-droplet hybrid structures. A low molar percentage of PEGylated phospholipids independent of the DNA-based recognition machinery at the supramolecular surface modulated the stability of the system. The reversibility of the aggregation was demonstrated by heating the hybrid structures above the melting temperature of the conjoining double-stranded DNA in the presence of excess biotin. The application of this general assembly control system to diverse multiphase soft materials provides the mechanism to assemble complex modular hybrid systems in a controllable and reversible way, which may provide an advantage where multifunctionality is a target property.
Collapse
Affiliation(s)
- Maik Hadorn
- Laboratory for Artificial Biology, Centre for Integrative Biology (CIBIO), University of Trento , 38122 Trento, Italy
| | - Eva Boenzli
- Laboratory for Artificial Biology, Centre for Integrative Biology (CIBIO), University of Trento , 38122 Trento, Italy
| | - Martin M Hanczyc
- Laboratory for Artificial Biology, Centre for Integrative Biology (CIBIO), University of Trento , 38122 Trento, Italy
| |
Collapse
|
23
|
van der Meulen SAJ, Helms G, Dogterom M. Solid colloids with surface-mobile linkers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:233101. [PMID: 25993272 DOI: 10.1088/0953-8984/27/23/233101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this report we review the possibilities of using colloids with surface mobile linkers for the study of colloidal self-assembly processes. A promising route to create systems with mobile linkers is the use of lipid (bi-)layers. These lipid layers can be either used in the form of vesicles or as coatings for hard colloids and emulsion droplets. Inside the lipid bilayers molecules can be inserted via membrane anchors. Due to the fluidity of the lipid bilayer, the anchored molecules remain mobile. The use of different lipid mixtures even allows creating Janus-like particles that exhibit directional bonding if linkers are used which have a preference for a certain lipid phase. In nature mobile linkers can be found e.g. as receptors in cells. Therefore, towards the end of the review, we also briefly address the possibility of using colloids with surface mobile linkers as model systems to mimic cell-cell interactions and cell adhesion processes.
Collapse
|
24
|
Le Chevalier Isaad A, Carrara P, Stano P, Krishnakumar KS, Lafont D, Zamboulis A, Buchet R, Bouchu D, Albrieux F, Strazewski P. A hydrophobic disordered peptide spontaneously anchors a covalently bound RNA hairpin to giant lipidic vesicles. Org Biomol Chem 2015; 12:6363-73. [PMID: 24915577 DOI: 10.1039/c4ob00721b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The attraction of nucleic acids to lipidic compartments is the first step for carriers of potentially inheritable information to self-organise in functionalised synthetic cells. Confocal fluorescence imaging shows that a synthetic amphiphilic peptidyl RNA molecule spontaneously accumulates at the outer bilayer membranes of phospho- and glycolipidic giant vesicles. Cooperatively attractive interactions of -3.4 to -4.0 kcal mol(-1) between a random coil hydrophobic peptide and lipid membranes can thus pilot lipophobic RNA to its compartmentation. The separation of mixed lipid phases in the membranes further enhances the local concentration of anchored RNA.
Collapse
Affiliation(s)
- Alexandra Le Chevalier Isaad
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (Unité Mixte de Recherche 5246), Université de Lyon, Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, Lyon, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shimobayashi SF, Mognetti BM, Parolini L, Orsi D, Cicuta P, Di Michele L. Direct measurement of DNA-mediated adhesion between lipid bilayers. Phys Chem Chem Phys 2015; 17:15615-28. [PMID: 25989828 DOI: 10.1039/c5cp01340b] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multivalent interactions between deformable mesoscopic units are ubiquitous in biology, where membrane macromolecules mediate the interactions between neighbouring living cells and between cells and solid substrates. Lately, analogous artificial materials have been synthesised by functionalising the outer surface of compliant Brownian units, for example emulsion droplets and lipid vesicles, with selective linkers, in particular short DNA sequences. This development extended the range of applicability of DNA as a selective glue, originally applied to solid nano and colloidal particles. On very deformable lipid vesicles, the coupling between statistical effects of multivalent interactions and mechanical deformation of the membranes gives rise to complex emergent behaviours, as we recently contributed to demonstrate [Parolini et al., Nat. Commun., 2015, 6, 5948]. Several aspects of the complex phenomenology observed in these systems still lack a quantitative experimental characterisation and a fundamental understanding. Here we focus on the DNA-mediated multivalent interactions of a single liposome adhering to a flat supported bilayer. This simplified geometry enables the estimate of the membrane tension induced by the DNA-mediated adhesive forces acting on the liposome. Our experimental investigation is completed by morphological measurements and the characterisation of the DNA-melting transition, probed by in situ Förster Resonant Energy Transfer spectroscopy. Experimental results are compared with the predictions of an analytical theory that couples the deformation of the vesicle to a full description of the statistical mechanics of mobile linkers. With at most one fitting parameter, our theory is capable of semi-quantitatively matching experimental data, confirming the quality of the underlying assumptions.
Collapse
Affiliation(s)
- S F Shimobayashi
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Volume and porosity thermal regulation in lipid mesophases by coupling mobile ligands to soft membranes. Nat Commun 2015; 6:5948. [PMID: 25565580 PMCID: PMC4354032 DOI: 10.1038/ncomms6948] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022] Open
Abstract
Short DNA linkers are increasingly being exploited for driving-specific self-assembly of Brownian objects. DNA-functionalized colloids can assemble into ordered or amorphous materials with tailored morphology. Recently, the same approach has been applied to compliant units, including emulsion droplets and lipid vesicles. The liquid structure of these substrates introduces new degrees of freedom: the tethers can diffuse and rearrange, radically changing the physics of the interactions. Unlike droplets, vesicles are extremely deformable and DNA-mediated adhesion causes significant shape adjustments. We investigate experimentally the thermal response of pairs and networks of DNA-tethered liposomes and observe two intriguing and possibly useful collective properties: negative thermal expansion and tuneable porosity of the liposome networks. A model providing a thorough understanding of this unexpected phenomenon is developed, explaining the emergent properties out of the interplay between the temperature-dependent deformability of the vesicles and the DNA-mediated adhesive forces. DNA-functionalized particles can aggregate into materials with programmable morphology, but the response of these materials to external stimuli is limited. Here, the authors demonstrate how the structure of DNA-liposome aggregates can be controlled by changing temperature.
Collapse
|
27
|
Fellermann H, Cardelli L. Programming chemistry in DNA-addressable bioreactors. J R Soc Interface 2014; 11:rsif.2013.0987. [PMID: 25121647 DOI: 10.1098/rsif.2013.0987] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We present a formal calculus, termed the chemtainer calculus, able to capture the complexity of compartmentalized reaction systems such as populations of possibly nested vesicular compartments. Compartments contain molecular cargo as well as surface markers in the form of DNA single strands. These markers serve as compartment addresses and allow for their targeted transport and fusion, thereby enabling reactions of previously separated chemicals. The overall system organization allows for the set-up of programmable chemistry in microfluidic or other automated environments. We introduce a simple sequential programming language whose instructions are motivated by state-of-the-art microfluidic technology. Our approach integrates electronic control, chemical computing and material production in a unified formal framework that is able to mimic the integrated computational and constructive capabilities of the subcellular matrix. We provide a non-deterministic semantics of our programming language that enables us to analytically derive the computational and constructive power of our machinery. This semantics is used to derive the sets of all constructable chemicals and supermolecular structures that emerge from different underlying instruction sets. Because our proofs are constructive, they can be used to automatically infer control programs for the construction of target structures from a limited set of resource molecules. Finally, we present an example of our framework from the area of oligosaccharide synthesis.
Collapse
Affiliation(s)
- Harold Fellermann
- School of Computing Science, Newcastle University, King's Gate, Newcastle upon Tyne NE1 7RU, UK Center for Fundamental Living Technology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Luca Cardelli
- Microsoft Research Cambridge, 21 Station Road, Cambridge CB1 2FB, UK
| |
Collapse
|
28
|
Kogan M, Feng B, Nordén B, Rocha S, Beke-Somfai T. Shear-induced membrane fusion in viscous solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4875-4878. [PMID: 24758573 DOI: 10.1021/la404857r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We present evidence that shear forces in a viscous solution can induce lipid bilayer fusion. The fusion of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes is observed in Couette flow with shear rates above 3000 s(-1) provided that the medium is viscous enough. Liposome samples, prepared at different viscosities using a 0-50 wt % range of sucrose concentration, were studied by dynamic light scattering, lipid fusion assays using Förster resonance energy transfer (FRET), and linear dichroism (LD) spectroscopy. Liposomes in solutions with 40 wt % (or more) sucrose showed lipid fusion under shear forces. These results support the hypothesis that under suitable conditions lipid membranes may fuse in response to mechanical-force-induced stress.
Collapse
Affiliation(s)
- Maxim Kogan
- Department of Chemical and Biological Engineering, Physical Chemistry, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
29
|
Application of nucleic acid-lipid conjugates for the programmable organisation of liposomal modules. Adv Colloid Interface Sci 2014; 207:290-305. [PMID: 24461711 DOI: 10.1016/j.cis.2013.12.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/29/2013] [Accepted: 12/19/2013] [Indexed: 01/06/2023]
Abstract
We present a critical review of recent work related to the assembly of multicompartment liposome clusters using nucleic acids as a specific recognition unit to link liposomal modules. The asymmetry in nucleic acid binding to its non-self complementary strand allows the controlled association of different compartmental modules into composite systems. These biomimetic multicompartment architectures could have future applications in chemical process control, drug delivery and synthetic biology. We assess the different methods of anchoring DNA to lipid membrane surfaces and discuss how lipid and DNA properties can be tuned to control the morphology and properties of liposome superstructures. We consider different methods for chemical communication between the contents of liposomal compartments within these clusters and assess the progress towards making this chemical mixing efficient, switchable and chemically specific. Finally, given the current state of the art, we assess the outlook for future developments towards functional modular networks of liposomes.
Collapse
|
30
|
The MATCHIT automaton: exploiting compartmentalization for the synthesis of branched polymers. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:467428. [PMID: 24489601 PMCID: PMC3893812 DOI: 10.1155/2013/467428] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/08/2013] [Indexed: 11/18/2022]
Abstract
We propose an automaton, a theoretical framework that demonstrates how to improve the yield of the synthesis of branched chemical polymer reactions. This is achieved by separating substeps of the path of synthesis into compartments. We use chemical containers (chemtainers) to carry the substances through a sequence of fixed successive compartments. We describe the automaton in mathematical terms and show how it can be configured automatically in order to synthesize a given branched polymer target. The algorithm we present finds an optimal path of synthesis in linear time. We discuss how the automaton models compartmentalized structures found in cells, such as the endoplasmic reticulum and the Golgi apparatus, and we show how this compartmentalization can be exploited for the synthesis of branched polymers such as oligosaccharides. Lastly, we show examples of artificial branched polymers and discuss how the automaton can be configured to synthesize them with maximal yield.
Collapse
|
31
|
Hadorn M, Boenzli E, Sørensen KT, De Lucrezia D, Hanczyc MM, Yomo T. Defined DNA-mediated assemblies of gene-expressing giant unilamellar vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15309-15319. [PMID: 24294899 DOI: 10.1021/la402621r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The technological aspects of artificial vesicles as prominent cell mimics are evolving toward higher-order assemblies of functional vesicles with tissuelike architectures. Here, we demonstrate the spatially controlled DNA-directed bottom-up synthesis of complex microassemblies and macroassemblies of giant unilamellar vesicles functionalized with a basic cellular machinery to express green fluorescent protein and specified neighbor-to-neighbor interactions. We show both that the local and programmable DNA pairing rules on the nanoscale are able to direct the microscale vesicles into macroscale soft matter assemblies and that the highly sensitive gene-expression machinery remains intact and active during multiple experimental steps. An in silico model recapitulates the experiments performed in vitro and covers additional experimental setups highlighting the parameters that control the DNA-directed bottom-up synthesis of higher-order self-assembled structures. The controlled assembly of a functional vesicle matrix may be useful not only as simplified natural tissue mimics but also as artificial scaffolds that could interact and support living cells.
Collapse
Affiliation(s)
- Maik Hadorn
- Center for Fundamental Living Technology (FLinT), Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Odense, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Keller R, Kwak M, de Vries JW, Sawaryn C, Wang J, Anaya M, Müllen K, Butt HJ, Herrmann A, Berger R. Properties of amphiphilic oligonucleotide films at the air/water interface and after film transfer. Colloids Surf B Biointerfaces 2013; 111:439-45. [PMID: 23859875 DOI: 10.1016/j.colsurfb.2013.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 10/26/2022]
Abstract
The self-assembly of amphiphilic hybrid materials containing an oligonucleotide sequence at the air/water interface was investigated by means of pressure-molecular area (Π-A) isotherms. In addition, films were transferred onto solid substrates and imaged using scanning force microscopy. We used oligonucleotide molecules with lipid tails, which consisted of a single stranded oligonucleotide 11 mer containing two hydrophobically modified 5-(dodec-1-ynyl)uracil nucleobases (dU11) at the 5'-end of the oligonucleotide sequence. The air/water interface was used as confinement for the self-assembling process of dU11. Scanning force microscopy of films transferred via Langmuir-Blodgett technique revealed mono-, bi- (Π ≥ 2 mN/m) and multilayer formation (Π ≥ 30 mN/m). The first layer was 1.6 ± 0.1 nm thick. It was oriented with the hydrophilic oligonucleotide moiety facing the hydrophilic substrate while the hydrophobic alkyl chains faced air. In the second layer the oligonucleotide moiety was found to face the air. The second layer was found to cover up to 95% of the sample area. Our measurements indicated that the rearrangement of the molecules into bi- and multiple bilayers happened already at the air/water interface. Similar results were obtained with a second type of oligonucleotide amphiphile, an oligonucleotide block copolymer, which was composed of an oligonucleotide 11 mer covalently attached at the terminus to polypropyleneoxide (PPO).
Collapse
Affiliation(s)
- R Keller
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - M Kwak
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - J W de Vries
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - C Sawaryn
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - J Wang
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - M Anaya
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - K Müllen
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - H-J Butt
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - A Herrmann
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - R Berger
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| |
Collapse
|
33
|
Rodríguez-Pulido A, Kondrachuk AI, Prusty DK, Gao J, Loi MA, Herrmann A. Light-triggered sequence-specific cargo release from DNA block copolymer-lipid vesicles. Angew Chem Int Ed Engl 2013; 52:1008-12. [PMID: 23109173 PMCID: PMC3563227 DOI: 10.1002/anie.201206783] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Alberto Rodríguez-Pulido
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of GroningenNijenborgh 4, 9747 AG Groningen (The Netherlands)
| | - Alina I Kondrachuk
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of GroningenNijenborgh 4, 9747 AG Groningen (The Netherlands)
| | - Deepak K Prusty
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of GroningenNijenborgh 4, 9747 AG Groningen (The Netherlands)
| | - Jia Gao
- Department of Photophysics and Optoelectronics, University of Groningen(The Netherlands)
| | - Maria A Loi
- Department of Photophysics and Optoelectronics, University of Groningen(The Netherlands)
| | - Andreas Herrmann
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of GroningenNijenborgh 4, 9747 AG Groningen (The Netherlands)
| |
Collapse
|
34
|
Abstract
Biological cells are highly dynamic, and continually move material around their own volume and between their interior and exterior. Much of this transport encapsulates the material inside phospholipid vesicles that shuttle to and from, fusing with, and budding from, other membranes. A feature of vesicles that is crucial for this transport is their ability to fuse to target membranes and release their contents to the distal side. In industry, some personal care products contain vesicles to help transport reagents across the skin, and research on drug formulation shows that packaging active compounds inside vesicles delays their clearance from the blood stream. In this chapter, we survey the biological role and physicochemical properties of phospholipids, and describe progress in coarse-grained simulations of vesicles and vesicle fusion. Because coarse-grained simulations retain only those molecular details that are thought to influence the large-scale processes of interest, they act as a model embodying our current understanding. Comparing the predictions of these models with experiments reveals the importance of the retained microscopic details and also the deficiencies that can suggest missing details, thereby furthering our understanding of the complex dynamic world of vesicles.
Collapse
|
35
|
Specific and reversible DNA-directed self-assembly of oil-in-water emulsion droplets. Proc Natl Acad Sci U S A 2012; 109:20320-5. [PMID: 23175791 DOI: 10.1073/pnas.1214386109] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Higher-order structures that originate from the specific and reversible DNA-directed self-assembly of microscopic building blocks hold great promise for future technologies. Here, we functionalized biotinylated soft colloid oil-in-water emulsion droplets with biotinylated single-stranded DNA oligonucleotides using streptavidin as an intermediary linker. We show the components of this modular linking system to be stable and to induce sequence-specific aggregation of binary mixtures of emulsion droplets. Three length scales were thereby involved: nanoscale DNA base pairing linking microscopic building blocks resulted in macroscopic aggregates visible to the naked eye. The aggregation process was reversible by changing the temperature and electrolyte concentration and by the addition of competing oligonucleotides. The system was reset and reused by subsequent refunctionalization of the emulsion droplets. DNA-directed self-assembly of oil-in-water emulsion droplets, therefore, offers a solid basis for programmable and recyclable soft materials that undergo structural rearrangements on demand and that range in application from information technology to medicine.
Collapse
|
36
|
Rodríguez-Pulido A, Kondrachuk AI, Prusty DK, Gao J, Loi MA, Herrmann A. Light-Triggered Sequence-Specific Cargo Release from DNA Block Copolymer-Lipid Vesicles. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206783] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Hadorn M, Boenzli E, Hotz PE. A quantitative analytical method to test for salt effects on giant unilamellar vesicles. Sci Rep 2011; 1:168. [PMID: 22355683 PMCID: PMC3240971 DOI: 10.1038/srep00168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 10/21/2011] [Indexed: 11/24/2022] Open
Abstract
Today, free-standing membranes, i.e. liposomes and vesicles, are used in a multitude of
applications, e.g. as drug delivery devices and artificial cell models. Because current
laboratory techniques do not allow handling of large sample sizes, systematic and
quantitative studies on the impact of different effectors, e.g. electrolytes, are limited.
In this work, we evaluated the Hofmeister effects of ten alkali metal halides on giant
unilamellar vesicles made of palmitoyloleoylphosphatidylcholine for a large sample size by
combining the highly parallel water-in-oil emulsion transfer vesicle preparation method with
automatic haemocytometry. We found that this new quantitative screening method is highly
reliable and consistent with previously reported results. Thus, this method may provide a
significant methodological advance in analysis of effects on free-standing model
membranes.
Collapse
Affiliation(s)
- Maik Hadorn
- Center for Fundamental Living Technology (FLinT), Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
| | | | | |
Collapse
|
38
|
Dave N, Liu J. Protection and promotion of UV radiation-induced liposome leakage via DNA-directed assembly with gold nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:3182-3186. [PMID: 21630360 DOI: 10.1002/adma.201101086] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/19/2011] [Indexed: 05/30/2023]
Affiliation(s)
- Neeshma Dave
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada
| | | |
Collapse
|
39
|
Primitive Membrane Formation, Characteristics and Roles in the Emergent Properties of a Protocell. ENTROPY 2011. [DOI: 10.3390/e13020466] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
|
41
|
Hadorn M, Eggenberger Hotz P. Encapsulated Multi-vesicle Assemblies of Programmable Architecture: Towards Personalized Healthcare. BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES 2011. [DOI: 10.1007/978-3-642-18472-7_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Stano P, Carrara P, Kuruma Y, Pereira de Souza T, Luisi PL. Compartmentalized reactions as a case of soft-matter biotechnology: synthesis of proteins and nucleic acids inside lipid vesicles. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12298c] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|