1
|
Metwally NH, Abdallah SO, Mohsen MMA. Design, green one-pot synthesis and molecular docking study of novel N,N-bis(cyanoacetyl)hydrazines and bis-coumarins as effective inhibitors of DNA gyrase and topoisomerase IV. Bioorg Chem 2020; 97:103672. [PMID: 32145481 DOI: 10.1016/j.bioorg.2020.103672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/24/2020] [Accepted: 02/14/2020] [Indexed: 12/15/2022]
Abstract
A novel, quick, environmentally safe, and one-pot synthesis of a series of N,N-bis(cyanoacetyl)hydrazine derivatives, bis-imino-2H-chromenes and bis-2-oxo-2H-chromene derivatives have been designed. Some selected newly synthesized compounds were investigated in vitro for their antibacterial activity. Compound 5j is the most toxic compound against Staphylococcus aureus with activity index 171%, followed by compound 15b with activity index 136% compared to standard drug ampicillin. Moreover, compound 15a is the most toxic compound against Escherichia coli with activity index 111% compared to standard drug gentamicin. Minimum inhibitory concentration (MIC) was carried out for compounds with high antibacterial activity. Compound 5j has good MIC (7.8 μg/ml) against Staphylococcus aureus while 15a has good MIC (31.25 μg/ml) against Streptococcus mutans which is better than MIC of the standard drug ampicillin (MIC = 62.5 μg/ml). Compounds 5j, 5k, 15a, 15b and 15e which have good MIC values were introduced to enzyme assay against DNA gyrase and topoisomerase IV. The results showed that compound 15a can strongly inhibit DNA gyrase and topoisomerase IV (IC50 = 27.30 and 25.52 μM respectively), compared to methotrexate as the standard drug (IC50 = 29.01 and 23.55 μM respectively). Structure-activity relationships were also discussed based on the biological and docking simulation results.
Collapse
|
2
|
Maintaining Genome Integrity during Seed Development in Phaseolus vulgaris L.: Evidence from a Transcriptomic Profiling Study. Genes (Basel) 2018; 9:genes9100463. [PMID: 30241355 PMCID: PMC6209899 DOI: 10.3390/genes9100463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/01/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
The maintenance of genome integrity is crucial in seeds, due to the constant challenge of several endogenous and exogenous factors. The knowledge concerning DNA damage response and chromatin remodeling during seed development is still scarce, especially in Phaseolus vulgaris L. A transcriptomic profiling of the expression of genes related to DNA damage response/chromatin remodeling mechanisms was performed in P. vulgaris seeds at four distinct developmental stages, spanning from late embryogenesis to seed desiccation. Of the 14,001 expressed genes identified using massive analysis of cDNA ends, 301 belong to the DNA MapMan category. In late embryogenesis, a high expression of genes related to DNA damage sensing and repair suggests there is a tight control of DNA integrity. At the end of filling and the onset of seed dehydration, the upregulation of genes implicated in sensing of DNA double-strand breaks suggests that genome integrity is challenged. The expression of chromatin remodelers seems to imply a concomitant action of chromatin remodeling with DNA repair machinery, maintaining genome stability. The expression of genes related to nucleotide excision repair and chromatin structure is evidenced during the desiccation stage. An overview of the genes involved in DNA damage response and chromatin remodeling during P. vulgaris seed development is presented, providing insights into the mechanisms used by developing seeds to cope with DNA damage.
Collapse
|
3
|
Evans-Roberts KM, Mitchenall LA, Wall MK, Leroux J, Mylne JS, Maxwell A. DNA Gyrase Is the Target for the Quinolone Drug Ciprofloxacin in Arabidopsis thaliana. J Biol Chem 2015; 291:3136-44. [PMID: 26663076 PMCID: PMC4751362 DOI: 10.1074/jbc.m115.689554] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 12/27/2022] Open
Abstract
The Arabidopsis thaliana genome contains four genes that were originally annotated as potentially encoding DNA gyrase: ATGYRA, ATGYRB1, ATGYRB2, and ATGYRB3. Although we subsequently showed that ATGYRB3 does not encode a gyrase subunit, the other three genes potentially encode subunits of a plant gyrase. We also showed evidence for the existence of supercoiling activity in A. thaliana and that the plant is sensitive to quinolone and aminocoumarin antibiotics, compounds that target DNA gyrase in bacteria. However, it was not possible at that time to show whether the A. thaliana genes encoded an active gyrase enzyme, nor whether that enzyme is indeed the target for the quinolone and aminocoumarin antibiotics. Here we show that an A. thaliana mutant resistant to the quinolone drug ciprofloxacin has a point mutation in ATGYRA. Moreover we show that, as in bacteria, the quinolone-sensitive (wild-type) allele is dominant to the resistant gene. Further we have heterologously expressed ATGYRA and ATGYRB2 in a baculovirus expression system and shown supercoiling activity of the partially purified enzyme. Expression/purification of the quinolone-resistant A. thaliana gyrase yields active enzyme that is resistant to ciprofloxacin. Taken together these experiments now show unequivocally that A. thaliana encodes an organelle-targeted DNA gyrase that is the target of the quinolone drug ciprofloxacin; this has important consequences for plant physiology and the development of herbicides.
Collapse
Affiliation(s)
- Katherine M Evans-Roberts
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Lesley A Mitchenall
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Melisa K Wall
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Julie Leroux
- the School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia, and the Australian Research Council Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Joshua S Mylne
- the School of Chemistry and Biochemistry, University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia, and the Australian Research Council Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Anthony Maxwell
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom,
| |
Collapse
|
4
|
Mittal A, Balasubramanian R, Cao J, Singh P, Subramanian S, Hicks G, Nothnagel EA, Abidi N, Janda J, Galbraith DW, Rock CD. TOPOISOMERASE 6B is involved in chromatin remodelling associated with control of carbon partitioning into secondary metabolites and cell walls, and epidermal morphogenesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4217-39. [PMID: 24821950 PMCID: PMC4112631 DOI: 10.1093/jxb/eru198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant growth is continuous and modular, a combination that allows morphogenesis by cell division and elongation and serves to facilitate adaptation to changing environments. The pleiotropic phenotypes of the harlequin (hlq) mutant, isolated on the basis of ectopic expression of the abscisic acid (ABA)- and auxin-inducible proDc3:GUS reporter gene, were previously characterized. Mutants are skotomorphogenic, have deformed and collapsed epidermal cells which accumulate callose and starch, cell walls abundant in pectins and cell wall proteins, and abnormal and reduced root hairs and leaf trichomes. hlq and two additional alleles that vary in their phenotypic severity of starch accumulation in the light and dark have been isolated, and it is shown that they are alleles of bin3/hyp6/rhl3/Topoisomerase6B. Mutants and inhibitors affecting the cell wall phenocopy several of the traits displayed in hlq. A microarray analysis was performed, and coordinated expression of physically adjacent pairs/sets of genes was observed in hlq, suggesting a direct effect on chromatin. Histones, WRKY and IAA/AUX transcription factors, aquaporins, and components of ubiquitin-E3-ligase-mediated proteolysis, and ABA or biotic stress response markers as well as proteins involved in cellular processes affecting carbon partitioning into secondary metabolites were also identified. A comparative analysis was performed of the hlq transcriptome with other previously published TopoVI mutant transcriptomes, namely bin3, bin5, and caa39 mutants, and limited concordance between data sets was found, suggesting indirect or genotype-specific effects. The results shed light on the molecular mechanisms underlying the det/cop/fus-like pleiotropic phenotypes of hlq and support a broader role for TopoVI regulation of chromatin remodelling to mediate development in response to environmental and hormonal signals.
Collapse
Affiliation(s)
- Amandeep Mittal
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Rajagopal Balasubramanian
- Tamil Nadu Agricultural University, Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Madurai-625 104, India
| | - Jin Cao
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar-143 005, Punjab, India
| | - Senthil Subramanian
- South Dakota State University, Department of Plant Science, Brookings, SD 57007, USA
| | - Glenn Hicks
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA Department of Botany and Plant Sciences, University of California, Riverside CA 92521-0124, USA
| | - Eugene A Nothnagel
- Department of Botany and Plant Sciences, University of California, Riverside CA 92521-0124, USA
| | - Noureddine Abidi
- Texas Tech University, Department of Plant and Soil Science and Fiber and Biopolymer Research Institute, 1001 East Loop 289, Lubbock, TX 79409-5019, USA
| | - Jaroslav Janda
- University of Arizona, Department of Plant Sciences and BIO5 Institute, 341 Keating Bldg, Tucson, AZ 85721, USA
| | - David W Galbraith
- University of Arizona, Department of Plant Sciences and BIO5 Institute, 341 Keating Bldg, Tucson, AZ 85721, USA
| | - Christopher D Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, USA
| |
Collapse
|
5
|
Moriyama T, Sato N. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes. FRONTIERS IN PLANT SCIENCE 2014; 5:480. [PMID: 25278952 PMCID: PMC4166229 DOI: 10.3389/fpls.2014.00480] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/30/2014] [Indexed: 05/18/2023]
Abstract
Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.
Collapse
Affiliation(s)
- Takashi Moriyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
- Japan Science and Technology Agency – Core Research for Evolutional Science and TechnologyTokyo, Japan
| | - Naoki Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
- Japan Science and Technology Agency – Core Research for Evolutional Science and TechnologyTokyo, Japan
- *Correspondence: Naoki Sato, Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan e-mail:
| |
Collapse
|
6
|
Integration of stress-related and reactive oxygen species-mediated signals by Topoisomerase VI in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2012; 109:16360-5. [PMID: 22988090 DOI: 10.1073/pnas.1202041109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Environmental stress often leads to an increased production of reactive oxygen species that are involved in plastid-to-nucleus retrograde signaling. Soon after the release of singlet oxygen ((1)O(2)) in chloroplasts of the flu mutant of Arabidopsis, reprogramming of nuclear gene expression reveals a rapid transfer of signals from the plastid to the nucleus. We have identified extraplastidic signaling constituents involved in (1)O(2)-initiated plastid-to-nucleus signaling and nuclear gene activation after mutagenizing a flu line expressing the luciferase reporter gene under the control of the promoter of a (1)O(2)-responsive AAA-ATPase gene (At3g28580) and isolating second-site mutations that lead to a constitutive up-regulation of the reporter gene or abrogate its (1)O(2)-dependent up-regulation. One of these mutants, caa39, turned out to be a weak mutant allele of the Topoisomerase VI (Topo VI) A-subunit gene with a single amino acid substitution. Transcript profile analysis of flu and flu caa39 mutants revealed that Topo VI is necessary for the full activation of AAA-ATPase and a set of (1)O(2)-responsive transcripts in response to (1)O(2). Topo VI binds to the promoter of the AAA-ATPase and other (1)O(2)-responsive genes, and hence could directly regulate their expression. Under photoinhibitory stress conditions, which enhance the production of (1)O(2) and H(2)O(2), Topo VI regulates (1)O(2)-responsive and H(2)O(2)-responsive genes in a distinct manner. These results suggest that Topo VI acts as an integrator of multiple signals generated by reactive oxygen species formed in plants under adverse environmental conditions.
Collapse
|