1
|
Soujanya M, Bihani A, Hajirnis N, Pathak RU, Mishra RK. Nuclear architecture and the structural basis of mitotic memory. CHROMOSOME RESEARCH : AN INTERNATIONAL JOURNAL ON THE MOLECULAR, SUPRAMOLECULAR AND EVOLUTIONARY ASPECTS OF CHROMOSOME BIOLOGY 2023; 31:8. [PMID: 36725757 DOI: 10.1007/s10577-023-09714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/13/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
The nucleus is a complex organelle that hosts the genome and is essential for vital processes like DNA replication, DNA repair, transcription, and splicing. The genome is non-randomly organized in the three-dimensional space of the nucleus. This functional sub-compartmentalization was thought to be organized on the framework of nuclear matrix (NuMat), a non-chromatin scaffold that functions as a substratum for various molecular processes of the nucleus. More recently, nuclear bodies or membrane-less subcompartments of the nucleus are thought to arise due to phase separation of chromatin, RNA, and proteins. The nuclear architecture is an amalgamation of the relative organization of chromatin, epigenetic landscape, the nuclear bodies, and the nucleoskeleton in the three-dimensional space of the nucleus. During mitosis, the nucleus undergoes drastic changes in morphology to the degree that it ceases to exist as such; various nuclear components, including the envelope that defines the nucleus, disintegrate, and the chromatin acquires mitosis-specific epigenetic marks and condenses to form chromosome. Upon mitotic exit, chromosomes are decondensed, re-establish hierarchical genome organization, and regain epigenetic and transcriptional status similar to that of the mother cell. How this mitotic memory is inherited during cell division remains a puzzle. NuMat components that are a part of the mitotic chromosome in the form of mitotic chromosome scaffold (MiCS) could potentially be the seeds that guide the relative re-establishment of the epigenome, chromosome territories, and the nuclear bodies. Here, we synthesize the advances towards understanding cellular memory of nuclear architecture across mitosis and propose a hypothesis that a subset of NuMat proteome essential for nucleation of various nuclear bodies are retained in MiCS to serve as seeds of mitotic memory, thus ensuring the daughter cells re-establish the complex status of nuclear architecture similar to that of the mother cells, thereby maintaining the pre-mitotic transcriptional status.
Collapse
Affiliation(s)
- Mamilla Soujanya
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ashish Bihani
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Nikhil Hajirnis
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, USA
| | - Rashmi U Pathak
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India.
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India.
- TIGS - Tata Institute for Genetics and Society, Bangalore, India.
| |
Collapse
|
2
|
Singh AK. Hsrω and Other lncRNAs in Neuronal Functions and Disorders in Drosophila. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010017. [PMID: 36675966 PMCID: PMC9865238 DOI: 10.3390/life13010017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) have a crucial role in epigenetic, transcriptional and posttranscriptional regulation of gene expression. Many of these regulatory lncRNAs, such as MALAT1, NEAT1, HOTAIR, etc., are associated with different neurodegenerative diseases in humans. The lncRNAs produced by the hsrω gene are known to modulate neurotoxicity in polyQ and amyotrophic lateral sclerosis disease models of Drosophila. Elevated expression of hsrω lncRNAs exaggerates, while their genetic depletion through hsrω-RNAi or in an hsrω-null mutant background suppresses, the disease pathogenicity. This review discusses the possible mechanistic details and implications of the functions of hsrω lncRNAs in the modulation of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anand Kumar Singh
- Interdisciplinary School of Life Sciences, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Lauria Sneideman MP, Meller VH. Drosophila Satellite Repeats at the Intersection of Chromatin, Gene Regulation and Evolution. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:1-26. [PMID: 34386870 DOI: 10.1007/978-3-030-74889-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Satellite repeats make up a large fraction of the genomes of many higher eukaryotes. Until recently these sequences were viewed as molecular parasites with few functions. Drosophila melanogaster and related species have a wealth of diverse satellite repeats. Comparative studies of Drosophilids have been instrumental in understanding how these rapidly evolving sequences change and move. Remarkably, satellite repeats have been found to modulate gene expression and mediate genetic conflicts between chromosomes and between closely related fly species. This suggests that satellites play a key role in speciation. We have taken advantage of the depth of research on satellite repeats in flies to review the known functions of these sequences and consider their central role in evolution and gene expression.
Collapse
Affiliation(s)
| | - Victoria H Meller
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
4
|
Hutter K, Lohmüller M, Jukic A, Eichin F, Avci S, Labi V, Szabo TG, Hoser SM, Hüttenhofer A, Villunger A, Herzog S. SAFB2 Enables the Processing of Suboptimal Stem-Loop Structures in Clustered Primary miRNA Transcripts. Mol Cell 2020; 78:876-889.e6. [PMID: 32502422 DOI: 10.1016/j.molcel.2020.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/24/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022]
Abstract
Many microRNAs (miRNAs) are generated from primary transcripts containing multiple clustered stem-loop structures that are thought to be recognized and cleaved by the Microprocessor complex as independent units. Here, we uncover an unexpected mode of processing of the bicistronic miR-15a-16-1 cluster. We find that the primary miR-15a stem-loop is not processed on its own but that the presence of the neighboring primary miR-16-1 stem-loop on the same transcript can compensate for this deficiency in cis. Using a CRISPR/Cas9 screen, we identify SAFB2 (scaffold attachment factor B2) as an essential co-factor in this miR-16-1-assisted pri-miR-15 cleavage and describe SAFB2 as an accessory protein of the Microprocessor. Notably, SAFB2-mediated cleavage expands to other clustered pri-miRNAs, indicating a general mechanism. Together, our study reveals an unrecognized function of SAFB2 in miRNA processing and suggests a scenario in which SAFB2 enables the binding and processing of suboptimal Microprocessor substrates in clustered primary miRNA transcripts.
Collapse
Affiliation(s)
- Katharina Hutter
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Michael Lohmüller
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Almina Jukic
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Felix Eichin
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Seymen Avci
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Verena Labi
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Tamas G Szabo
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Simon M Hoser
- Institute for Genomics and RNomics, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Institute for Genomics and RNomics, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Villunger
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090 Vienna, Austria
| | - Sebastian Herzog
- Institute of Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
5
|
Ma L, Sun L, Jin X, Xiong SD, Wang JH. Scaffold attachment factor B suppresses HIV-1 infection of CD4 + T cells by preventing binding of RNA polymerase II to HIV-1's long terminal repeat. J Biol Chem 2018; 293:12177-12185. [PMID: 29887524 DOI: 10.1074/jbc.ra118.002018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/01/2018] [Indexed: 12/19/2022] Open
Abstract
The 5' end of the HIV, type 1 (HIV-1) long terminal repeat (LTR) promoter plays an essential role in driving viral transcription and productive infection. Multiple host and viral factors regulate LTR activity and modulate HIV-1 latency. Manipulation of the HIV-1 LTR provides a potential therapeutic strategy for combating HIV-1 persistence. In this study, we identified an RNA/DNA-binding protein, scaffold attachment factor B (SAFB1), as a host cell factor that represses HIV-1 transcription. We found that SAFB1 bound to the HIV-1 5' LTR and significantly repressed 5' LTR-driven viral transcription and HIV-1 infection of CD4+ T cells. Mechanistically, SAFB1-mediated repression of HIV-1 transcription and infection was independent of its RNA- and DNA-binding capacities. Instead, by binding to phosphorylated RNA polymerase II, SAFB1 blocked its recruitment to the HIV-1 LTR. Of note, SAFB1-mediated repression of HIV-1 transcription from proviral DNA maintained HIV-1 latency in CD4+ T cells. In summary, our findings reveal that SAFB1 binds to the HIV-1 LTR and physically interacts with phosphorylated RNA polymerase II, repressing HIV-1 transcription initiation and elongation. Our findings improve our understanding of host modulation of HIV-1 transcription and latency and provide a new host cell target for improved anti-HIV-1 therapies.
Collapse
Affiliation(s)
- Li Ma
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215006, China; Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Sun
- Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Jin
- Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Si-Dong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215006, China
| | - Jian-Hua Wang
- Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
6
|
Drakouli S, Lyberopoulou A, Papathanassiou M, Mylonis I, Georgatsou E. Enhancer of rudimentary homologue interacts with scaffold attachment factor B at the nuclear matrix to regulate SR protein phosphorylation. FEBS J 2017. [DOI: 10.1111/febs.14141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sotiria Drakouli
- Laboratory of Biochemistry; Faculty of Medicine; University of Thessaly; Volos Greece
| | - Aggeliki Lyberopoulou
- Laboratory of Biochemistry; Faculty of Medicine; University of Thessaly; Volos Greece
- Laboratory of Internal Medicine; Faculty of Medicine; University of Thessaly; Volos Greece
| | - Maria Papathanassiou
- Laboratory of Biochemistry; Faculty of Medicine; University of Thessaly; Volos Greece
- Department of Pathology; Faculty of Medicine; University of Thessaly; Volos Greece
| | - Ilias Mylonis
- Laboratory of Biochemistry; Faculty of Medicine; University of Thessaly; Volos Greece
| | - Eleni Georgatsou
- Laboratory of Biochemistry; Faculty of Medicine; University of Thessaly; Volos Greece
| |
Collapse
|
7
|
The increasing diversity of functions attributed to the SAFB family of RNA-/DNA-binding proteins. Biochem J 2016; 473:4271-4288. [DOI: 10.1042/bcj20160649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/28/2016] [Accepted: 09/02/2016] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins play a central role in cellular metabolism by orchestrating the complex interactions of coding, structural and regulatory RNA species. The SAFB (scaffold attachment factor B) proteins (SAFB1, SAFB2 and SAFB-like transcriptional modulator, SLTM), which are highly conserved evolutionarily, were first identified on the basis of their ability to bind scaffold attachment region DNA elements, but attention has subsequently shifted to their RNA-binding and protein–protein interactions. Initial studies identified the involvement of these proteins in the cellular stress response and other aspects of gene regulation. More recently, the multifunctional capabilities of SAFB proteins have shown that they play crucial roles in DNA repair, processing of mRNA and regulatory RNA, as well as in interaction with chromatin-modifying complexes. With the advent of new techniques for identifying RNA-binding sites, enumeration of individual RNA targets has now begun. This review aims to summarise what is currently known about the functions of SAFB proteins.
Collapse
|
8
|
Yamaguchi A, Takanashi K. FUS interacts with nuclear matrix-associated protein SAFB1 as well as Matrin3 to regulate splicing and ligand-mediated transcription. Sci Rep 2016; 6:35195. [PMID: 27731383 PMCID: PMC5059712 DOI: 10.1038/srep35195] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/26/2016] [Indexed: 11/23/2022] Open
Abstract
FUS (Fused-in-Sarcoma) is a multifunctional DNA/RNA binding protein linked to familial amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD). Since FUS is localized mainly in the nucleus with nucleo-cytoplasmic shuttling, it is critical to understand physiological functions in the nucleus to clarify pathogenesis. Here we report a yeast two-hybrid screening identified FUS interaction with nuclear matrix-associated protein SAFB1 (scaffold attachment factor B1). FUS and SAFB1, abundant in chromatin-bound fraction, interact in a DNA-dependent manner. N-terminal SAP domain of SAFB1, a DNA-binding motif, was required for its localization to chromatin-bound fraction and splicing regulation. In addition, depletion of SAFB1 reduced FUS’s localization to chromatin-bound fraction and splicing activity, suggesting SAFB1 could tether FUS to chromatin compartment thorough N-terminal DNA-binding motif. FUS and SAFB1 also interact with Androgen Receptor (AR) regulating ligand-dependent transcription. Moreover, FUS interacts with another nuclear matrix-associated protein Matrin3, which is muted in a subset of familial ALS cases and reportedly interacts with TDP-43. Interestingly, ectopic ALS-linked FUS mutant sequestered endogenous Matrin3 and SAFB1 in the cytoplasmic aggregates. These findings indicate SAFB1 could be a FUS’s functional platform in chromatin compartment to regulate RNA splicing and ligand-dependent transcription and shed light on the etiological significance of nuclear matrix-associated proteins in ALS pathogenesis.
Collapse
Affiliation(s)
- Atsushi Yamaguchi
- Department of Neurobiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Keisuke Takanashi
- Department of Neurobiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
9
|
Wang XJ, Wang J, Wang YY, Guo YJ, Chu BB, Yang GY. Sus scrofa matrix attachment region enhances expression of the PiggyBac system transfected into HEK293T cells. Biotechnol Lett 2016; 38:949-58. [PMID: 26965151 DOI: 10.1007/s10529-016-2074-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To determine the effects of the Sus scrofa matrix attachment region (SusMAR) on transgene expression in HEK293T cells. RESULTS Three expression vectors with the MAR at different sites in the PiggyBac (PB) transposon vector backbone were compared: two MARs flanking the β-galactosidase (β-gal) expression cassette, and one at the upstream or downstream site. Bos taurus MAR (BosMAR) and a β-gal expression cassette without MARs were the positive and negative controls, respectively. Compared to the control, β-gal activity of all SusMAR and BosMAR vectors was significantly improved in the presence of PB transposase (PBase). However, only the downstream SusMAR and upstream BosMAR vectors showed increased expression in the absence of PBase. Expression was significantly increased in all vectors with the PBase group compared to those without the PBase group. Gene copy numbers were not increased compared to the negative control. CONCLUSIONS SusMAR enhanced recombinant gene expression levels and stability in HEK293T cells, was not increase transgene copy number. These results could facilitate the development of vectors for stable production of therapeutic proteins.
Collapse
Affiliation(s)
- Xin-Jian Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiang Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yue-Ying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yu-Jie Guo
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Bei-Bei Chu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guo-Yu Yang
- College of Animal Husbandary and Veterinary Science, Henan Agricultural University, Wenhua Road 95, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
10
|
Dynamics of hnRNPs and omega speckles in normal and heat shocked live cell nuclei of Drosophila melanogaster. Chromosoma 2015; 124:367-83. [PMID: 25663367 DOI: 10.1007/s00412-015-0506-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/27/2014] [Accepted: 01/20/2015] [Indexed: 01/14/2023]
Abstract
The nucleus limited long-noncoding hsrω-n transcripts, hnRNPs, and some other RNA processing proteins organize nucleoplasmic omega speckles in Drosophila. Unlike other nuclear speckles, omega speckles rapidly disappear following cell stress, while hnRNPs and other associated proteins move away from chromosome sites, nucleoplasm, and the disappearing speckles to get uniquely sequestered at hsrω locus. Omega speckles reappear and hnRNPs get redistributed to normal locations during recovery from stress. With a view to understand the dynamics of omega speckles and their associated proteins, we used live imaging of GFP tagged hnRNPs (Hrb87F, Hrb98DE, or Squid) in unstressed and stressed Drosophila cells. Omega speckles display size-dependent mobility in nucleoplasmic domains with significant colocalization with nuclear matrix Tpr/Megator and SAFB proteins, which also accumulate at hsrω gene site after stress. Instead of moving towards the nuclear periphery located hsrω locus following heat shock or colchicine treatment, omega speckles rapidly disappear within nucleoplasm while chromosomal and nucleoplasmic hnRNPs move, stochastically or, more likely, by nuclear matrix-mediated transport to hsrω locus in non-particulate form. Continuing transcription of hsrω during cell stress is essential for sequestering incoming hnRNPs at the site. While recovering from stress, the sequestered hnRNPs are released as omega speckles in ISWI-dependent manner. Photobleaching studies reveal hnRNPs to freely move between nucleoplasm, omega speckles, chromosome regions, and hsrω gene site although their residence periods at chromosomes and hsrω locus are longer. A model for regulation of exchange of hnRNPs between nuclear compartments by hsrω-n transcripts is presented.
Collapse
|
11
|
Traweger A, Toepfer S, Wagner RN, Zweimueller-Mayer J, Gehwolf R, Lehner C, Tempfer H, Krizbai I, Wilhelm I, Bauer HC, Bauer H. Beyond cell-cell adhesion: Emerging roles of the tight junction scaffold ZO-2. Tissue Barriers 2014; 1:e25039. [PMID: 24665396 PMCID: PMC3885625 DOI: 10.4161/tisb.25039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 01/28/2023] Open
Abstract
Zonula occludens proteins (ZO-1, ZO-2, ZO-3), which belong to the family of membrane-associated guanylate kinase (MAGUK) homologs, serve as molecular hubs for the assembly of multi-protein networks at the cytoplasmic surface of intercellular contacts in epithelial and endothelial cells. These multi-PDZ proteins exert crucial functions in the structural organization of intercellular contacts and in transducing intracellular signals from the plasma membrane to the nucleus. The junctional MAGUK protein ZO-2 not only associates with the C-terminal PDZ-binding motif of various transmembrane junctional proteins but also transiently targets to the nucleus and interacts with a number of nuclear proteins, thereby modulating gene expression and cell proliferation. Recent evidence suggests that ZO-2 is also involved in stress response and cytoprotective mechanisms, which further highlights the multi-faceted nature of this PDZ domain-containing protein. This review focuses on ZO-2 acting as a molecular scaffold at the cytoplasmic aspect of tight junctions and within the nucleus and discusses additional aspects of its cellular activities. The multitude of proteins interacting with ZO-2 and the heterogeneity of proteins either influencing or being influenced by ZO-2 suggests an exceptional functional capacity of this protein far beyond merely serving as a structural component of cellular junctions.
Collapse
Affiliation(s)
- Andreas Traweger
- Paracelsus Medical University; Spinal Cord Injury and Tissue Regeneration Center Salzburg; Institute of Tendon and Bone Regeneration; Salzburg, Austria ; Austrian Cluster for Tissue Regeneration; Vienna, Austria
| | - Sebastian Toepfer
- University of Salzburg; Department of Organismic Biology; Salzburg, Austria
| | - Roland N Wagner
- Sanford-Burnham Medical Research Institute; La Jolla, CA USA
| | | | - Renate Gehwolf
- Paracelsus Medical University; Spinal Cord Injury and Tissue Regeneration Center Salzburg; Institute of Tendon and Bone Regeneration; Salzburg, Austria ; Austrian Cluster for Tissue Regeneration; Vienna, Austria
| | - Christine Lehner
- Paracelsus Medical University; Spinal Cord Injury and Tissue Regeneration Center Salzburg; Institute of Tendon and Bone Regeneration; Salzburg, Austria ; Austrian Cluster for Tissue Regeneration; Vienna, Austria
| | - Herbert Tempfer
- Paracelsus Medical University; Spinal Cord Injury and Tissue Regeneration Center Salzburg; Institute of Tendon and Bone Regeneration; Salzburg, Austria ; Austrian Cluster for Tissue Regeneration; Vienna, Austria
| | - Istvan Krizbai
- Institute of Biophysics; Biological Research Centre; Szeged, Hungary
| | - Imola Wilhelm
- Institute of Biophysics; Biological Research Centre; Szeged, Hungary
| | - Hans-Christian Bauer
- Paracelsus Medical University; Spinal Cord Injury and Tissue Regeneration Center Salzburg; Institute of Tendon and Bone Regeneration; Salzburg, Austria ; Austrian Cluster for Tissue Regeneration; Vienna, Austria ; University of Salzburg; Department of Organismic Biology; Salzburg, Austria
| | - Hannelore Bauer
- Paracelsus Medical University; Spinal Cord Injury and Tissue Regeneration Center Salzburg; Institute of Tendon and Bone Regeneration; Salzburg, Austria ; University of Salzburg; Department of Organismic Biology; Salzburg, Austria
| |
Collapse
|
12
|
Pascuzzi PE, Flores-Vergara MA, Lee TJ, Sosinski B, Vaughn MW, Hanley-Bowdoin L, Thompson WF, Allen GC. In vivo mapping of arabidopsis scaffold/matrix attachment regions reveals link to nucleosome-disfavoring poly(dA:dT) tracts. THE PLANT CELL 2014; 26:102-20. [PMID: 24488963 PMCID: PMC3963562 DOI: 10.1105/tpc.113.121194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 11/25/2013] [Accepted: 01/10/2014] [Indexed: 05/21/2023]
Abstract
Scaffold or matrix attachment regions (S/MARs) are found in all eukaryotes. The pattern of distribution and genomic context of S/MARs is thought to be important for processes such as chromatin organization and modulation of gene expression. Despite the importance of such processes, much is unknown about the large-scale distribution and sequence content of S/MARs in vivo. Here, we report the use of tiling microarrays to map 1358 S/MARs on Arabidopsis thaliana chromosome 4 (chr4). S/MARs occur throughout chr4, spaced much more closely than in the large plant and animal genomes that have been studied to date. Arabidopsis S/MARs can be divided into five clusters based on their association with other genomic features, suggesting a diversity of functions. While some Arabidopsis S/MARs may define structural domains, most occur near the transcription start sites of genes. Genes associated with these S/MARs have an increased probability of expression, which is particularly pronounced in the case of transcription factor genes. Analysis of sequence motifs and 6-mer enrichment patterns show that S/MARs are preferentially enriched in poly(dA:dT) tracts, sequences that resist nucleosome formation, and the majority of S/MARs contain at least one nucleosome-depleted region. This global view of S/MARs provides a framework to begin evaluating genome-scale models for S/MAR function.
Collapse
Affiliation(s)
- Pete E. Pascuzzi
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | | | - Tae-Jin Lee
- Department of Plant Biology, North Carolina State University, Raleigh, North Carolina 27695
| | - Bryon Sosinski
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina 27695
| | - Matthew W. Vaughn
- Texas Advanced Computing Center, University of Texas, Austin, Texas 78758
| | - Linda Hanley-Bowdoin
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - William F. Thompson
- Departments of Plant Biology, Genetics, and Crop Science, North Carolina State University, Raleigh, North Carolina 27695
| | - George C. Allen
- Department of Horticultural Science, North Carolina State University, Raleigh, North Carolina 27695
- Address correspondence to
| |
Collapse
|