1
|
Martin SA, Cane PA, Pillay D, Mbisa JL. Coevolved Multidrug-Resistant HIV-1 Protease and Reverse Transcriptase Influences Integrase Drug Susceptibility and Replication Fitness. Pathogens 2021; 10:1070. [PMID: 34578103 PMCID: PMC8470981 DOI: 10.3390/pathogens10091070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/23/2022] Open
Abstract
Integrase strand transfer inhibitors (InSTIs) are recommended agents in first-line combination antiretroviral therapy (cART). We examined the evolution of drug resistance mutations throughout HIV-1 pol and the effects on InSTI susceptibility and viral fitness. We performed single-genome sequencing of full-length HIV-1 pol in a highly treatment-experienced patient, and determined drug susceptibility of patient-derived HIV-1 genomes using a phenotypic assay encompassing full-length pol gene. We show the genetic linkage of multiple InSTI-resistant haplotypes containing major resistance mutations at Y143, Q148 and N155 to protease inhibitor (PI) and reverse transcriptase inhibitor (RTI) resistance mutations. Phenotypic analysis of viruses expressing patient-derived IN genes with eight different InSTI-resistant haplotypes alone or in combination with coevolved protease (PR) and RT genes exhibited similar levels of InSTI susceptibility, except for three haplotypes that showed up to 3-fold increases in InSTI susceptibility (p ≤ 0.032). The replicative fitness of most viruses expressing patient-derived IN only significantly decreased, ranging from 8% to 56% (p ≤ 0.01). Interestingly, the addition of coevolved PR + RT significantly increased the replicative fitness of some haplotypes by up to 73% (p ≤ 0.024). Coevolved PR + RT contributes to the susceptibility and viral fitness of patient-derived IN viruses. Maintaining patients on failing cART promotes the selection of fitter resistant strains, and thereby limits future therapy options.
Collapse
Affiliation(s)
- Supang A. Martin
- Antiviral Unit, Virus Reference Department, Public Health England, London NW9 5EQ, UK; (S.A.M.); (P.A.C.)
| | - Patricia A. Cane
- Antiviral Unit, Virus Reference Department, Public Health England, London NW9 5EQ, UK; (S.A.M.); (P.A.C.)
| | - Deenan Pillay
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK;
| | - Jean L. Mbisa
- Antiviral Unit, Virus Reference Department, Public Health England, London NW9 5EQ, UK; (S.A.M.); (P.A.C.)
| |
Collapse
|
2
|
Richetta C, Thierry S, Thierry E, Lesbats P, Lapaillerie D, Munir S, Subra F, Leh H, Deprez E, Parissi V, Delelis O. Two-long terminal repeat (LTR) DNA circles are a substrate for HIV-1 integrase. J Biol Chem 2019; 294:8286-8295. [PMID: 30971426 DOI: 10.1074/jbc.ra118.006755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/08/2019] [Indexed: 02/01/2023] Open
Abstract
Integration of the HIV-1 DNA into the host genome is essential for viral replication and is catalyzed by the retroviral integrase. To date, the only substrate described to be involved in this critical reaction is the linear viral DNA produced in reverse transcription. However, during HIV-1 infection, two-long terminal repeat DNA circles (2-LTRcs) are also generated through the ligation of the viral DNA ends by the host cell's nonhomologous DNA end-joining pathway. These DNAs contain all the genetic information required for viral replication, but their role in HIV-1's life cycle remains unknown. We previously showed that both linear and circular DNA fragments containing the 2-LTR palindrome junction can be efficiently cleaved in vitro by recombinant integrases, leading to the formation of linear 3'-processed-like DNA. In this report, using in vitro experiments with purified proteins and DNAs along with DNA endonuclease and in vivo integration assays, we show that this circularized genome can also be efficiently used as a substrate in HIV-1 integrase-mediated integration both in vitro and in eukaryotic cells. Notably, we demonstrate that the palindrome cleavage occurs via a two-step mechanism leading to a blunt-ended DNA product, followed by a classical 3'-processing reaction; this cleavage leads to integrase-dependent integration, highlighted by a 5-bp duplication of the host genome. Our results suggest that 2-LTRc may constitute a reserve supply of HIV-1 genomes for proviral integration.
Collapse
Affiliation(s)
- Clémence Richetta
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, ENS-Cachan, 94235 Cachan
| | - Sylvain Thierry
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, ENS-Cachan, 94235 Cachan
| | - Eloise Thierry
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, ENS-Cachan, 94235 Cachan
| | - Paul Lesbats
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, Centre National de la Recherche Scientifique UMR5234, Université Victor Segalen Bordeaux 2, 33076 Bordeaux, France
| | - Delphine Lapaillerie
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, Centre National de la Recherche Scientifique UMR5234, Université Victor Segalen Bordeaux 2, 33076 Bordeaux, France
| | - Soundasse Munir
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, ENS-Cachan, 94235 Cachan
| | - Frédéric Subra
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, ENS-Cachan, 94235 Cachan
| | - Hervé Leh
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, ENS-Cachan, 94235 Cachan
| | - Eric Deprez
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, ENS-Cachan, 94235 Cachan
| | - Vincent Parissi
- Laboratoire de Microbiologie Fondamentale et Pathogénicité, Centre National de la Recherche Scientifique UMR5234, Université Victor Segalen Bordeaux 2, 33076 Bordeaux, France
| | - Olivier Delelis
- Laboratoire de Biologie et Pharmacologie Appliquée, Centre National de la Recherche Scientifique UMR8113, ENS-Cachan, 94235 Cachan.
| |
Collapse
|
3
|
Fun A, Leitner T, Vandekerckhove L, Däumer M, Thielen A, Buchholz B, Hoepelman AIM, Gisolf EH, Schipper PJ, Wensing AMJ, Nijhuis M. Impact of the HIV-1 genetic background and HIV-1 population size on the evolution of raltegravir resistance. Retrovirology 2018; 15:1. [PMID: 29304821 PMCID: PMC5755036 DOI: 10.1186/s12977-017-0384-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/23/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Emergence of resistance against integrase inhibitor raltegravir in human immunodeficiency virus type 1 (HIV-1) patients is generally associated with selection of one of three signature mutations: Y143C/R, Q148K/H/R or N155H, representing three distinct resistance pathways. The mechanisms that drive selection of a specific pathway are still poorly understood. We investigated the impact of the HIV-1 genetic background and population dynamics on the emergence of raltegravir resistance. Using deep sequencing we analyzed the integrase coding sequence (CDS) in longitudinal samples from five patients who initiated raltegravir plus optimized background therapy at viral loads > 5000 copies/ml. To investigate the role of the HIV-1 genetic background we created recombinant viruses containing the viral integrase coding region from pre-raltegravir samples from two patients in whom raltegravir resistance developed through different pathways. The in vitro selections performed with these recombinant viruses were designed to mimic natural population bottlenecks. RESULTS Deep sequencing analysis of the viral integrase CDS revealed that the virological response to raltegravir containing therapy inversely correlated with the relative amount of unique sequence variants that emerged suggesting diversifying selection during drug pressure. In 4/5 patients multiple signature mutations representing different resistance pathways were observed. Interestingly, the resistant population can consist of a single resistant variant that completely dominates the population but also of multiple variants from different resistance pathways that coexist in the viral population. We also found evidence for increased diversification after stronger bottlenecks. In vitro selections with low viral titers, mimicking population bottlenecks, revealed that both recombinant viruses and HXB2 reference virus were able to select mutations from different resistance pathways, although typically only one resistance pathway emerged in each individual culture. CONCLUSIONS The generation of a specific raltegravir resistant variant is not predisposed in the genetic background of the viral integrase CDS. Typically, in the early phases of therapy failure the sequence space is explored and multiple resistance pathways emerge and then compete for dominance which frequently results in a switch of the dominant population over time towards the fittest variant or even multiple variants of similar fitness that can coexist in the viral population.
Collapse
Affiliation(s)
- Axel Fun
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Heidelberglaan 100, HP G04.614, 3584 CX, Utrecht, The Netherlands
| | - Thomas Leitner
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Linos Vandekerckhove
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Ghent, Belgium
| | - Martin Däumer
- Institute of Immunology and Genetics, Kaiserslautern, Germany
| | | | - Bernd Buchholz
- Pediatric Clinic, University Medical Center Mannheim, Mannheim, Germany
| | - Andy I M Hoepelman
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elizabeth H Gisolf
- Department of Internal Medicine, Rijnstate Hospital, Arnhem, The Netherlands
| | - Pauline J Schipper
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Heidelberglaan 100, HP G04.614, 3584 CX, Utrecht, The Netherlands
| | - Annemarie M J Wensing
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Heidelberglaan 100, HP G04.614, 3584 CX, Utrecht, The Netherlands.,Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique Nijhuis
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Heidelberglaan 100, HP G04.614, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
4
|
El Khoury L, Piquemal JP, Fermandjian S, Maroun RG, Gresh N, Hobaika Z. The inhibition process of HIV-1 integrase by diketoacids molecules: Understanding the factors governing the better efficiency of dolutegravir. Biochem Biophys Res Commun 2017; 488:433-438. [PMID: 28478035 DOI: 10.1016/j.bbrc.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/01/2017] [Indexed: 01/03/2023]
Abstract
The Human Immunodeficiency Virus-1 integrase is responsible for the covalent insertion of a newly synthesized double-stranded viral DNA into the host cells, and is an emerging target for antivirus drug design. Raltegravir (RAL) and elvitegravir (EVG) are the first two integrase strand transfer inhibitors used in therapy. However, treated patients eventually develop detrimental resistance mutations. By contrast, a recently approved drug, dolutegravir (DTG), presents a high barrier to resistance. This study aims to understand the increased efficiency of DTG upon focusing on its interaction properties with viral DNA. The results showed DTG to be involved in more extended interactions with viral DNA than EVG. Such interactions involve the halobenzene and scaffold of DTG and EVG and bases 5'G-43', 3'A35'and 3'C45'.
Collapse
Affiliation(s)
- Léa El Khoury
- UR EGP, Centre d'Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 11-514 Riad El Solh, Beirut 1107 2050, Lebanon; Laboratoire de Chimie Théorique, UMR7616 CNRS, UPMC, Sorbonne Universités, Paris 75005, France.
| | - Jean-Philip Piquemal
- Laboratoire de Chimie Théorique, UMR7616 CNRS, UPMC, Sorbonne Universités, Paris 75005, France; Institut Universitaire de France, Paris Cedex 05, 75231, France; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, United States.
| | - Serge Fermandjian
- Chemistry and Biology Nucleo(S)Tides and Immunology for Therapy (CBNIT), UMR 8601 CNRS, UFR Biomédicale, Paris, France.
| | - Richard G Maroun
- UR EGP, Centre d'Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 11-514 Riad El Solh, Beirut 1107 2050, Lebanon.
| | - Nohad Gresh
- Laboratoire de Chimie Théorique, UMR7616 CNRS, UPMC, Sorbonne Universités, Paris 75005, France.
| | - Zeina Hobaika
- UR EGP, Centre d'Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph de Beyrouth, B.P. 11-514 Riad El Solh, Beirut 1107 2050, Lebanon.
| |
Collapse
|
5
|
Lack of impact of pre-existing T97A HIV-1 integrase mutation on integrase strand transfer inhibitor resistance and treatment outcome. PLoS One 2017; 12:e0172206. [PMID: 28212411 PMCID: PMC5315389 DOI: 10.1371/journal.pone.0172206] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/23/2017] [Indexed: 01/05/2023] Open
Abstract
T97A is an HIV-1 integrase polymorphism associated with integrase strand transfer inhibitor (INSTI) resistance. Using pooled data from 16 clinical studies, we investigated the prevalence of T97A (pre-existing and emergent) and its impact on INSTI susceptibility and treatment response in INSTI-naive patients who enrolled on elvitegravir (EVG)- or raltegravir (RAL)-based regimens. Prior to INSTI-based therapy, primary INSTI resistance-associated mutations (RAMs) were absent and T97A pre-existed infrequently (1.4%; 47 of 3367 integrase sequences); most often among non-B (5.3%) than B (0.9%) HIV-1 subtypes. During INSTI-based therapy, few patients experienced virologic failure with emergent INSTI RAMs (3%; 122 of 3881 patients), among whom T97A emerged infrequently in the presence (n = 6) or absence (n = 8) of primary INSTI RAMs. A comparison between pre-existing and emergent T97A patient populations (i.e., in the absence of primary INSTI RAMs) showed no significant differences in EVG or RAL susceptibility in vitro. Furthermore, among all T97A-containing viruses tested, only 38-44% exhibited reduced susceptibility to EVG and/or RAL (all of low magnitude; <11-fold), while all maintained susceptibility to dolutegravir. Of the patients with pre-existing T97A, 17 had available clinical follow-up: 16 achieved virologic suppression and 1 maintained T97A and INSTI sensitivity without further resistance development. Overall, T97A is an infrequent integrase polymorphism that is enriched among non-B HIV-1 subtypes and can confer low-level reduced susceptibility to EVG and/or RAL. However, detection of T97A does not affect response to INSTI-based therapy with EVG or RAL. These results suggest a very low risk of initiating INSTI-based therapy in patients with pre-existing T97A.
Collapse
|
6
|
Characterization of the Drug Resistance Profiles of Integrase Strand Transfer Inhibitors in Simian Immunodeficiency Virus SIVmac239. J Virol 2015; 89:12002-13. [PMID: 26378179 DOI: 10.1128/jvi.02131-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We previously showed that the simian immunodeficiency virus SIVmac239 is susceptible to human immunodeficiency virus (HIV) integrase (IN) strand transfer inhibitors (INSTIs) and that the same IN drug resistance mutations result in similar phenotypes in both viruses. Now we wished to determine whether tissue culture drug selection studies with SIV would yield the same resistance mutations as in HIV. Tissue culture selection experiments were performed using rhesus macaque peripheral blood mononuclear cells (PBMCs) infected with SIVmac239 viruses in the presence of increasing concentrations of dolutegravir (DTG), elvitegravir (EVG), and raltegravir (RAL). We now show that 22 weeks of selection pressure with DTG yielded a mutation at position R263K in SIV, similar to what has been observed in HIV, and that selections with EVG led to emergence of the E92Q substitution, which is a primary INSTI resistance mutation in HIV associated with EVG treatment failure. To study this at a biochemical level, purified recombinant SIVmac239 wild-type (WT) and E92Q, T97A, G118R, Y143R, Q148R, N155H, R263K, E92Q T97A, E92Q Y143R, R263K H51Y, and G140S Q148R recombinant substitution-containing IN enzymes were produced, and each of the characteristics strand transfer, 3'-processing activity, and INSTI inhibitory constants was assessed in cell-free assays. The results show that the G118R and G140S Q148R substitutions decreased Km' and Vmax'/Km' for strand transfer compared to those of the WT. RAL and EVG showed reduced activity against both viruses and against enzymes containing Q148R, E92Q Y143R, and G140S Q148R. Both viruses and enzymes containing Q148R and G140S Q148R showed moderate levels of resistance against DTG. This study further confirms that the same mutations associated with drug resistance in HIV display similar profiles in SIV. IMPORTANCE Our goal was to definitively establish whether HIV and simian immunodeficiency virus (SIV) share similar resistance pathways under tissue culture drug selection pressure with integrase strand transfer inhibitors and to test the effect of HIV-1 integrase resistance-associated mutations on SIV integrase catalytic activity and resistance to integrase strand transfer inhibitors. Clinically relevant HIV integrase resistance-associated mutations were selected in SIV in our tissue culture experiments. Not only do we report on the characterization of SIV recombinant integrase enzyme catalytic activities, we also provide the first research anywhere on the effect of mutations within recombinant integrase SIV enzymes on drug resistance.
Collapse
|
7
|
Montagna C, Mazzuti L, Falasca F, Maida P, Bucci M, D'Ettorre G, Mezzaroma I, Fantauzzi A, Alvaro N, Vullo V, Antonelli G, Turriziani O. Trends in drug resistance-associated mutations in a real-life cohort of Italian patients infected with HIV-1. J Glob Antimicrob Resist 2015; 3:267-272. [PMID: 27842871 DOI: 10.1016/j.jgar.2015.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/26/2015] [Accepted: 07/08/2015] [Indexed: 11/29/2022] Open
Abstract
Recent studies support the idea that human immunodeficiency virus type 1 (HIV-1) drug resistance is declining in developed countries. To help assess the current situation in Italy, the dynamics of drug resistance mutations in pol and integrase genes in plasma samples from HIV-1-positive patients attending Sapienza University Hospital, Rome, from 2003 to 2014 were analysed. In total, 1730 genotype resistance tests (GRTs) were retrospectively analysed. The prevalence of major drug resistance mutations (DRMs) was evaluated over time in the global population and in patients with antiretroviral therapy (ART) failure. Population dynamics, changes in ART administration, and HIV-1 RNA levels were analysed in combination with DRM trends. The global population showed a strong reduction in major DRMs to all drug classes. Over the 2003-2014 decade, resistance to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs) and protease inhibitors (PIs) declined from 80.0% to 18.7%, from 42.8% to 20.1% and from 74.2% to 8.3%, respectively (P<0.005 for all comparisons). However, only PI-associated mutations showed a significant decrease in patients experiencing ART failure. Interestingly, analysis of the integrase gene disclosed an increased resistance to integrase inhibitors, mainly regarding N155H, detected in 32.6% of raltegravir-treated patients in 2012-2014. In conclusion, in line with previous findings, this study shows that drug resistance is declining in Italy. However, the persistence of DRMs to NRTIs and NNRTIs suggests that despite adherence and treatment optimisation, some patients still experience therapy failure, emphasising the need for GRTs both in naïve and ART-failed patients.
Collapse
Affiliation(s)
- Claudia Montagna
- Department of Molecular Medicine, Sapienza University, Viale di Porta Tiburtina 28, 00185 Rome, Italy
| | - Laura Mazzuti
- Department of Molecular Medicine, Sapienza University, Viale di Porta Tiburtina 28, 00185 Rome, Italy
| | - Francesca Falasca
- Department of Molecular Medicine, Sapienza University, Viale di Porta Tiburtina 28, 00185 Rome, Italy
| | - Paola Maida
- Department of Molecular Medicine, Sapienza University, Viale di Porta Tiburtina 28, 00185 Rome, Italy
| | - Mauro Bucci
- Department of Molecular Medicine, Sapienza University, Viale di Porta Tiburtina 28, 00185 Rome, Italy
| | - Gabriella D'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Ivano Mezzaroma
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | | | - Nadia Alvaro
- Department of Molecular Medicine, Sapienza University, Viale di Porta Tiburtina 28, 00185 Rome, Italy
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Sapienza University, Viale di Porta Tiburtina 28, 00185 Rome, Italy
| | - Ombretta Turriziani
- Department of Molecular Medicine, Sapienza University, Viale di Porta Tiburtina 28, 00185 Rome, Italy.
| |
Collapse
|
8
|
Bellecave P, Malato L, Calmels C, Reigadas S, Parissi V, Andreola ML, Fleury H. In vitro analysis of the susceptibility of HIV-1 subtype A and CRF01_AE integrases to raltegravir. Int J Antimicrob Agents 2014; 44:168-72. [DOI: 10.1016/j.ijantimicag.2014.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/26/2014] [Accepted: 04/04/2014] [Indexed: 11/29/2022]
|
9
|
Pollicita M, Surdo M, Di Santo F, Cortese MF, Fabeni L, Fedele V, Malet I, Marcelin AG, Calvez V, Ceccherini-Silberstein F, Perno CF, Svicher V. Comparative replication capacity of raltegravir-resistant strains and antiviral activity of the new-generation integrase inhibitor dolutegravir in human primary macrophages and lymphocytes. J Antimicrob Chemother 2014; 69:2412-9. [DOI: 10.1093/jac/dku144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
10
|
Multiple genetic pathways involving amino acid position 143 of HIV-1 integrase are preferentially associated with specific secondary amino acid substitutions and confer resistance to raltegravir and cross-resistance to elvitegravir. Antimicrob Agents Chemother 2013; 57:4105-13. [PMID: 23733474 DOI: 10.1128/aac.00204-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Y143C,R substitutions in HIV-1 integrase define one of three primary raltegravir (RAL) resistance pathways. Here we describe clinical isolates with alternative substitutions at position 143 (Y143A, Y143G, Y143H, and Y143S [Y143A,G,H,S]) that emerge less frequently, and we compare the genotypic and phenotypic profiles of these viruses to Y143C,R viruses to reconcile the preferential selection of Y143C,R variants during RAL treatment. Integrase amino acid sequences and RAL susceptibility were characterized in 117 patient isolates submitted for drug resistance testing and contained Y143 amino acid changes. The influence of specific Y143 substitutions on RAL susceptibility and their preferential association with particular secondary substitutions were further defined by evaluating the composition of patient virus populations along with a large panel of site-directed mutants. Our observations demonstrate that the RAL resistance profiles of Y143A,G,H,S viruses and their association with specific secondary substitutions are similar to the well-established Y143C profile but distinct from the Y143R profile. Y143R viruses differ from Y143A,C,G,H,S viruses in that Y143R confers a greater reduction in RAL susceptibility as a single substitution, consistent with a lower resistance barrier. Among Y143A,C,G,H,S viruses, the higher prevalence of Y143C viruses is the result of a lower genetic barrier than that of the Y143A,G,S viruses and a lower resistance barrier than that of the Y143H viruses. In addition, Y143A,C,G,H,S viruses require multiple secondary substitutions to develop large reductions in RAL susceptibility. Patient-derived viruses containing Y143 substitutions exhibit cross-resistance to elvitegravir.
Collapse
|
11
|
Impact of primary elvitegravir resistance-associated mutations in HIV-1 integrase on drug susceptibility and viral replication fitness. Antimicrob Agents Chemother 2013; 57:2654-63. [PMID: 23529738 DOI: 10.1128/aac.02568-12] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Elvitegravir (EVG) is an effective HIV-1 integrase (IN) strand transfer inhibitor (INSTI) in advanced clinical development. Primary INSTI resistance-associated mutations (RAMs) at six IN positions have been identified in HIV-1-infected patients failing EVG-containing regimens in clinical studies: T66I/A/K, E92Q/G, T97A, S147G, Q148R/H/K, and N155H. In this study, the effect of these primary IN mutations, alone and in combination, on susceptibility to the INSTIs EVG, raltegravir (RAL), and dolutegravir (DTG); IN enzyme activities; and viral replication fitness was characterized. Recombinant viruses containing the six most common mutations exhibited a range of reduced EVG susceptibility: 92-fold for Q148R, 30-fold for N155H, 26-fold for E92Q, 10-fold for T66I, 4-fold for S147G, and 2-fold for T97A. Less commonly observed primary IN mutations also showed a range of reduced EVG susceptibilities: 40- to 94-fold for T66K and Q148K and 5- to 10-fold for T66A, E92G, and Q148H. Some primary IN mutations exhibited broad cross-resistance between EVG and RAL (T66K, E92Q, Q148R/H/K, and N155H), while others retained susceptibility to RAL (T66I/A, E92G, T97A, and S147G). Dual combinations of primary IN mutations further reduced INSTI susceptibility, replication capacity, and viral fitness relative to either mutation alone. Susceptibility to DTG was retained by single primary IN mutations but reduced by dual mutation combinations with Q148R. Primary EVG RAMs also diminished IN enzymatic activities, concordant with their structural proximity to the active site. Greater reductions in viral fitness of dual mutation combinations may explain why some primary INSTI RAMs do not readily coexist on the same HIV-1 genome but rather establish independent pathways of resistance to EVG.
Collapse
|
12
|
Van der Borght K, Verheyen A, Feyaerts M, Van Wesenbeeck L, Verlinden Y, Van Craenenbroeck E, van Vlijmen H. Quantitative prediction of integrase inhibitor resistance from genotype through consensus linear regression modeling. Virol J 2013; 10:8. [PMID: 23282253 PMCID: PMC3551713 DOI: 10.1186/1743-422x-10-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 12/28/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Integrase inhibitors (INI) form a new drug class in the treatment of HIV-1 patients. We developed a linear regression modeling approach to make a quantitative raltegravir (RAL) resistance phenotype prediction, as Fold Change in IC50 against a wild type virus, from mutations in the integrase genotype. METHODS We developed a clonal genotype-phenotype database with 991 clones from 153 clinical isolates of INI naïve and RAL treated patients, and 28 site-directed mutants.We did the development of the RAL linear regression model in two stages, employing a genetic algorithm (GA) to select integrase mutations by consensus. First, we ran multiple GAs to generate first order linear regression models (GA models) that were stochastically optimized to reach a goal R2 accuracy, and consisted of a fixed-length subset of integrase mutations to estimate INI resistance. Secondly, we derived a consensus linear regression model in a forward stepwise regression procedure, considering integrase mutations or mutation pairs by descending prevalence in the GA models. RESULTS The most frequently occurring mutations in the GA models were 92Q, 97A, 143R and 155H (all 100%), 143G (90%), 148H/R (89%), 148K (88%), 151I (81%), 121Y (75%), 143C (72%), and 74M (69%). The RAL second order model contained 30 single mutations and five mutation pairs (p < 0.01): 143C/R&97A, 155H&97A/151I and 74M&151I. The R2 performance of this model on the clonal training data was 0.97, and 0.78 on an unseen population genotype-phenotype dataset of 171 clinical isolates from RAL treated and INI naïve patients. CONCLUSIONS We describe a systematic approach to derive a model for predicting INI resistance from a limited amount of clonal samples. Our RAL second order model is made available as an Additional file for calculating a resistance phenotype as the sum of integrase mutations and mutation pairs.
Collapse
|
13
|
Passaes CPB, Guimarães ML, Cardoso SW, Pilotto JH, Veloso V, Grinsztejn B, Morgado MG. Monitoring the emergence of resistance mutations in patients infected with HIV-1 under salvage therapy with raltegravir in Rio de Janeiro, Brazil: a follow-up study. J Med Virol 2012; 84:1869-75. [PMID: 23080489 DOI: 10.1002/jmv.23409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study describes a follow-up of a prospective and observational cohort of patients infected with HIV-1 and treated with raltegravir for salvage therapy in Brazil. Two groups of patients were analyzed: switching from T20 to RAL (Group 1, n = 9) and salvage therapy containing RAL (Group 2, n = 10). Blood samples were drawn for CD4(+) T-cell counts and HIV-1 viral load determinations. Protease, reverse transcriptase, and integrase genotyping were performed at baseline and at the time of virologic failure. CD4(+) T-cells increased at 6 and 12 months in both groups; HIV-1 viral load was continuously suppressed for Group 1, and for Group 2 it significantly decreased after starting a RAL-containing regimen. Three out of 10 patients from Group 2 could not suppress HIV-1 viral load. The mutations Q148H + G140S were observed for two patients and for the third patient only mutations to PR/RT inhibitors were detected. The genotypic sensitivity score (GSS) was analyzed for all patients of Group 2 and both patients who developed resistance to raltegravir presented a GSS < 2.0 for the RAL-containing scheme, which could be associated to the lack of effectiveness of the proposed scheme. The present study describes, for the first time in Brazil, the close follow-up of a series of patients using a raltegravir-containing HAART, showing the safety of the enfuvirtide switch to RAL and the effectiveness of a therapeutic regimen with RAL in promoting immune reconstitution and suppressing HIV replication, as well as documenting the occurrence of resistance to integrase inhibitors in the country.
Collapse
|
14
|
Nguyen HL, Charpentier C, Nguyen N, de Truchis P, Molina JM, Ruxrungtham K, Delaugerre C. Longitudinal analysis of integrase N155H variants in heavily treated patients failing raltegravir-based regimens. HIV Med 2012; 14:85-91. [PMID: 22994529 DOI: 10.1111/j.1468-1293.2012.01039.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The mechanism of raltegravir (RAL)-resistant evolutions has not already been elucidated. Because the emergence of RAL resistance is usually initiated by the N155H mutant, we assessed the role of minor N155H-mutated variants in circulating RNA and archived DNA in five heavily treated patients experiencing long-term RAL therapy failure and harbouring three different resistance profiles determined by standard genotyping. METHODS Allele-specific polymerase chain reaction (AS-PCR) was used to detect N155H mutants in longitudinal stored plasma and whole-blood samples before, during and after RAL-based regimens in five patients infected with the HIV-1 B subtype. RESULTS No minor N155H-mutated variant was found by AS-PCR in either plasma or whole-blood samples collected at baseline and after RAL withdrawal in any of the five patients. During RAL failure, the mutation N155H was detected at different levels in three patients displaying the N155H pathway and gradually declined when the double mutant Q148H+G140S was selected in one patient. In two patients with the Q148H resistance pathway, no N155H variant was identified by AS-PCR in either viral RNA or DNA. CONCLUSIONS The N155H mutation present at various levels from minority to majority showed no relationship with the three RAL-associated resistance profiles, suggesting that this mutant may not play a role in determining different resistance profiles. Moreover, pre-existing N155H is very infrequent and, if selected during RAL failure, the N155H mutant disappears quickly after RAL withdrawal.
Collapse
Affiliation(s)
- H L Nguyen
- Virology Department, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, INSERM U941, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Schrijvers R, Debyser Z. Combinational therapies for HIV: a focus on EVG/COBI/FTC/TDF. Expert Opin Pharmacother 2012; 13:1969-83. [DOI: 10.1517/14656566.2012.712514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Winters MA, Lloyd RM, Shafer RW, Kozal MJ, Miller MD, Holodniy M. Development of elvitegravir resistance and linkage of integrase inhibitor mutations with protease and reverse transcriptase resistance mutations. PLoS One 2012; 7:e40514. [PMID: 22815755 PMCID: PMC3399858 DOI: 10.1371/journal.pone.0040514] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/12/2012] [Indexed: 12/04/2022] Open
Abstract
Failure of antiretroviral regimens containing elvitegravir (EVG) and raltegravir (RAL) can result in the appearance of integrase inhibitor (INI) drug-resistance mutations (DRMs). While several INI DRMs have been identified, the evolution of EVG DRMs and the linkage of these DRMs with protease inhibitor (PI) and reverse transcriptase inhibitor (RTI) DRMs have not been studied at the clonal level. We examined the development of INI DRMs in 10 patients failing EVG-containing regimens over time, and the linkage of INI DRMs with PI and RTI DRMs in these patients plus 6 RAL-treated patients. A one-step RT-nested PCR protocol was used to generate a 2.7 kB amplicon that included the PR, RT, and IN coding region, and standard cloning and sequencing techniques were used to determine DRMs in 1,277 clones (mean 21 clones per time point). Results showed all patients had multiple PI, NRTI, and/or NNRTI DRMs at baseline, but no primary INI DRM. EVG-treated patients developed from 2 to 6 strains with different primary INI DRMs as early as 2 weeks after initiation of treatment, predominantly as single mutations. The prevalence of these strains fluctuated and new strains, and/or strains with new combinations of INI DRMs, developed over time. Final failure samples (weeks 14 to 48) typically showed a dominant strain with multiple mutations or N155H alone. Single N155H or multiple mutations were also observed in RAL-treated patients at virologic failure. All patient strains showed evidence of INI DRM co-located with single or multiple PI and/or RTI DRMs on the same viral strand. Our study shows that EVG treatment can select for a number of distinct INI-resistant strains whose prevalence fluctuates over time. Continued appearance of new INI DRMs after initial INI failure suggests a potent, highly dynamic selection of INI resistant strains that is unaffected by co-location with PI and RTI DRMs.
Collapse
Affiliation(s)
- Mark A Winters
- AIDS Research Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America.
| | | | | | | | | | | |
Collapse
|
17
|
Ammar FF, Abdel-Azeim S, Zargarian L, Hobaika Z, Maroun RG, Fermandjian S. Unprocessed viral DNA could be the primary target of the HIV-1 integrase inhibitor raltegravir. PLoS One 2012; 7:e40223. [PMID: 22768342 PMCID: PMC3388078 DOI: 10.1371/journal.pone.0040223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/02/2012] [Indexed: 12/18/2022] Open
Abstract
Integration of HIV DNA into host chromosome requires a 3'-processing (3'-P) and a strand transfer (ST) reactions catalyzed by virus integrase (IN). Raltegravir (RAL), commonly used in AIDS therapy, belongs to the family of IN ST inhibitors (INSTIs) acting on IN-viral DNA complexes (intasomes). However, studies show that RAL fails to bind IN alone, but nothing has been reported on the behaviour of RAL toward free viral DNA. Here, we assessed whether free viral DNA could be a primary target for RAL, assuming that the DNA molecule is a receptor for a huge number of pharmacological agents. Optical spectroscopy, molecular dynamics and free energy calculations, showed that RAL is a tight binder of both processed and unprocessed LTR (long terminal repeat) ends. Complex formation involved mainly van der Waals forces and was enthalpy driven. Dissociation constants (Kds) revealed that RAL affinity for unbound LTRs was stronger than for bound LTRs. Moreover, Kd value for binding of RAL to LTRs and IC50 value (half concentration for inhibition) were in same range, suggesting that RAL binding to DNA and ST inhibition are correlated events. Accommodation of RAL into terminal base-pairs of unprocessed LTR is facilitated by an extensive end fraying that lowers the RAL binding energy barrier. The RAL binding entails a weak damping of fraying and correlatively of 3'-P inhibition. Noteworthy, present calculated RAL structures bound to free viral DNA resemble those found in RAL-intasome crystals, especially concerning the contacts between the fluorobenzyl group and the conserved 5'C(4)pA(3)3' step. We propose that RAL inhibits IN, in binding first unprocessed DNA. Similarly to anticancer drug poisons acting on topoisomerases, its interaction with DNA does not alter the cut, but blocks the subsequent joining reaction. We also speculate that INSTIs having viral DNA rather IN as main target could induce less resistance.
Collapse
Affiliation(s)
- Farah F. Ammar
- LBPA, UMR8113 du CNRS, Ecole Normale Supérieure de Cachan, Cedex, Cachan, France
- Unité de Biochimie, Département SVT, Faculté des Sciences, Université Saint-Joseph, CST-Mar Roukoz, Beyrouth, Liban
| | - Safwat Abdel-Azeim
- LBPA, UMR8113 du CNRS, Ecole Normale Supérieure de Cachan, Cedex, Cachan, France
| | - Loussinée Zargarian
- LBPA, UMR8113 du CNRS, Ecole Normale Supérieure de Cachan, Cedex, Cachan, France
| | - Zeina Hobaika
- Unité de Biochimie, Département SVT, Faculté des Sciences, Université Saint-Joseph, CST-Mar Roukoz, Beyrouth, Liban
| | - Richard G. Maroun
- Unité de Biochimie, Département SVT, Faculté des Sciences, Université Saint-Joseph, CST-Mar Roukoz, Beyrouth, Liban
| | - Serge Fermandjian
- LBPA, UMR8113 du CNRS, Ecole Normale Supérieure de Cachan, Cedex, Cachan, France
- * E-mail:
| |
Collapse
|
18
|
Broad phenotypic cross-resistance to elvitegravir in HIV-infected patients failing on raltegravir-containing regimens. Antimicrob Agents Chemother 2012; 56:2873-8. [PMID: 22450969 DOI: 10.1128/aac.06170-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The failure of raltegravir (RAL) is generally associated with the selection of mutations at integrase position Y143, Q148, or N155. However, a relatively high proportion of failures occurs in the absence of these changes. Here, we report the phenotypic susceptibilities to RAL and elvitegravir (EVG) for a large group of HIV-infected patients failing on RAL-containing regimens. Plasma from HIV-infected individuals failing on RAL-containing regimens underwent genotypic and phenotypic resistance testing (Antivirogram v2.5.01; Virco). A control group of patients failing on other regimens was similarly tested. Sixty-one samples were analyzed, 40 of which belonged to patients failing on RAL-containing regimens. Full RAL susceptibility was found in 20/21 controls, while susceptibility to EVG was diminished in 8 subjects, with a median fold change (FC) of 2.5 (interquartile range [IQR], 2.1 to 3.1). Fourteen samples from patients with RAL failures showed diminished RAL susceptibility, with a median FC of 38.5 (IQR, 10.8 to 103.2). Primary integrase resistance mutations were found in 11 of these samples, displaying a median FC of 68.5 (IQR, 23.5 to 134.3). The remaining 3 samples showed a median FC of 2.5 (IQR, 2 to 2.7). EVG susceptibility was diminished in 19/40 samples from patients with RAL failures (median FC, 7.71 [IQR, 2.48 to 99.93]). Cross-resistance between RAL and EVG was high (R(2) = 0.8; P < 0.001), with drug susceptibility being more frequently reduced for EVG than for RAL (44.3% versus 24.6%; P = 0.035). Susceptibility to RAL and EVG is rarely affected in the absence of primary integrase resistance mutations. There is broad cross-resistance between RAL and EVG, which should preclude their sequential use. Resistance to EVG seems to be more frequent and might be more influenced by integrase variability.
Collapse
|
19
|
Pandey KK. Raltegravir in HIV-1 infection: Safety and Efficacy in Treatment-naïve Patients. ACTA ACUST UNITED AC 2011; 2012:13-30. [PMID: 22389581 DOI: 10.4137/cmrt.s5022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The hunt for a compound which inhibits the HIV-1 integrase had been painstakingly difficult. Integrase is essential for viral replication as it mediates the integration of the viral DNA genome into the host DNA resulting in the establishment of the permanent provirus. Persistent efforts have resulted in the discovery of Raltegravir (Isentress, MK-0518), the first integrase inhibitor approved by US Food and Drug Administration for the treatment in HIV-1 infected patients. Numerous clinical studies with raltegravir have found it to be safe and effective in treatment naïve as well as treatment experienced patients. Adverse events associated with raltegravir based therapy are milder compared to previously available regimens. Raltegravir is metabolized primarily via glucuronidation mediated by uridine diphosphate glucuronosyltransferase and has a favorable pharmacokinetics independent of age, gender, race, food, and drug-drug interactions. Within a short period of time of its introduction, raltegravir has been included as one of DHHS recommended preferred regimen for the treatment of HIV-1 infection in treatment naïve patients.
Collapse
Affiliation(s)
- Krishan K Pandey
- 1100 South Grand Boulevard, E. A. Doisy Research Center, Institute for Molecular Virology Saint Louis University Health Sciences Center, Saint Louis, MO 63104 USA
| |
Collapse
|
20
|
Ni XJ, Delelis O, Charpentier C, Storto A, Collin G, Damond F, Descamps D, Mouscadet JF. G140S/Q148R and N155H mutations render HIV-2 Integrase resistant to raltegravir whereas Y143C does not. Retrovirology 2011; 8:68. [PMID: 21854605 PMCID: PMC3170264 DOI: 10.1186/1742-4690-8-68] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/19/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND HIV-2 is endemic in West Africa and has spread throughout Europe. However, the alternatives for HIV-2-infected patients are more limited than for HIV-1. Raltegravir, an integrase inhibitor, is active against wild-type HIV-2, with a susceptibility to this drug similar to that of HIV-1, and is therefore a promising option for use in the treatment of HIV-2-infected patients. Recent studies have shown that HIV-2 resistance to raltegravir involves one of three resistance mutations, N155H, Q148R/H and Y143C, previously identified as resistance determinants in the HIV-1 integrase coding sequence. The resistance of HIV-1 IN has been confirmed in vitro for mutated enzymes harboring these mutations, but no such confirmation has yet been obtained for HIV-2. RESULTS The integrase coding sequence was amplified from plasma samples collected from ten patients infected with HIV-2 viruses, of whom three RAL-naïve and seven on RAL-based treatment at the time of virological failure. The genomes of the resistant strains were cloned and three patterns involving N155H, G140S/Q148R or Y143C mutations were identified. Study of the susceptibility of integrases, either amplified from clinical isolates or obtained by mutagenesis demonstrated that mutations at positions 155 and 148 render the integrase resistant to RAL. The G140S mutation conferred little resistance, but compensated for the catalytic defect due to the Q148R mutation. Conversely, Y143C alone did not confer resistance to RAL unless E92Q is also present. Furthermore, the introduction of the Y143C mutation into the N155H resistant background decreased the resistance level of enzymes containing the N155H mutation. CONCLUSION This study confirms that HIV-2 resistance to RAL is due to the N155H, G140S/Q148R or E92Q/Y143C mutations. The N155H and G140S/Q148R mutations make similar contributions to resistance in both HIV-1 and HIV-2, but Y143C is not sufficient to account for the resistance of HIV-2 genomes harboring this mutation. For Y143C to confer resistance in vitro, it must be accompanied by E92Q, which therefore plays a more important role in the HIV-2 context than in the HIV-1 context. Finally, the Y143C mutation counteracts the resistance conferred by the N155H mutation, probably accounting for the lack of detection of these mutations together in a single genome.
Collapse
Affiliation(s)
- Xiao-Ju Ni
- LBPA, CNRS, Ecole Normale Supérieure de Cachan, Cachan, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
The development of multiple agents with potent antiretroviral activity against HIV has ushered in a new age of optimism in the management of patients infected with the virus. However, the viruses' dynamic ability to develop resistance against these agents necessitates the investigation of novel targets for viral suppression. Raltegravir represents a first-in-class agent targeting the HIV integrase enzyme, which is responsible for integration of virally encoded DNA into the host genome. Over the last 5 years, clinical trials data has demonstrated an increasing role for raltegravir in the management of both treatment-experienced and treatment-naïve HIV-1-infected patients. This review focuses on the evidence supporting raltegravir's efficacy in an array of clinical settings. Other HIV-1 integrase inhibitors in development are also briefly discussed.
Collapse
Affiliation(s)
- N Lance Okeke
- Duke University Medical Center, Department of Hospital Medicine, Durham Regional Hospital, Durham, North Carolina, USA
| | | |
Collapse
|
22
|
Abstract
OBJECTIVE In this study, we characterized elvitegravir activity in the context of raltegravir resistance mutations. DESIGN Using site-directed mutagenesis, we generated recombinant integrase proteins and viruses harboring raltegravir resistance mutation to assess the biochemical and cellular activity of elvitegravir in the presence of such mutants. METHODS Recombinant proteins were used in gel-based assays. Antiviral data were obtained with reporter viruses in a single-round infection using a luciferase-based assay. RESULTS Although main raltegravir resistance pathways involving mutations at integrase position 148 and 155 confer cross-resistance to elvitegravir, elvitegravir remains fully active against the Y143R mutant integrase and virus particles. CONCLUSION In addition to favorable pharmacokinetics compared to raltegravir, our findings provide the rationale for using elvitegravir in patients failing raltegravir because of the integrase mutation Y143.
Collapse
|
23
|
Structure-analysis of the HIV-1 integrase Y143C/R raltegravir resistance mutation in association with the secondary mutation T97A. Antimicrob Agents Chemother 2011; 55:3187-94. [PMID: 21576445 DOI: 10.1128/aac.00071-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The HIV-1 integrase (IN) mutations Y143C/R are known as raltegravir (RAL) primary resistance mutations. In a previous study (S. Reigadas et al., PLoS One 5:e10311, 2010), we investigated the genetic pathway and the dynamics of emergence of the Y143C/R mutations in three patients failing RAL-containing regimens. In these patients, the Y143C/R mutation was associated with the T97A mutation. The aim of the present biochemical and molecular studies in vitro was to evaluate whether the secondary mutation, T97A, associated with the Y143C/R mutation could increase the level of resistance to RAL and impact IN activities. Site-directed mutagenesis experiments were performed with expression vectors harboring the region of the pol gene coding for IN. With a 3'-end processing assay, the 50% inhibitory concentrations (IC(50)) were 1.2 μM, 1.2 μM, 2.4 μM (fold change [FC], 2), and 20 μM (FC, 16.7) for IN wild type (WT), the IN T97A mutation, the IN Y143C/T97A mutation, and the IN Y143R/T97A mutation, respectively. FCs of 18 and 100 were observed with the strand transfer assay for IN Y143C/T97A and Y143R/T97A mutations, with IC(50) of 0.625 μM and 2.5 μM, respectively. In the strand transfer assay, the IN Y143C or R mutation combined with the secondary mutation T97A severely impaired susceptibility to RAL compared to results with the IN Y143C or R mutation alone. Assays without RAL suggested that the T97A mutation could rescue the catalytic activity which was impaired by the presence of the Y143C/R mutation. The combination of the T97A mutation with the primary RAL resistance mutations Y143C/R strongly reduces the susceptibility to RAL and rescues the catalytic defect due to the Y143C/R mutation. This result indicates that the emergence of the Y143C/R/T97A double-mutation pattern in patients is a signature of a high resistance level.
Collapse
|
24
|
Rhodes DI, Peat TS, Vandegraaff N, Jeevarajah D, Le G, Jones ED, Smith JA, Coates JAV, Winfield LJ, Thienthong N, Newman J, Lucent D, Ryan JH, Savage GP, Francis CL, Deadman JJ. Structural basis for a new mechanism of inhibition of HIV-1 integrase identified by fragment screening and structure-based design. Antivir Chem Chemother 2011; 21:155-68. [PMID: 21602613 DOI: 10.3851/imp1716] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND HIV-1 integrase is a clinically validated therapeutic target for the treatment of HIV-1 infection, with one approved therapeutic currently on the market. This enzyme represents an attractive target for the development of new inhibitors to HIV-1 that are effective against the current resistance mutations. METHODS A fragment-based screening method employing surface plasmon resonance and NMR was initially used to detect interactions between integrase and fragments. The binding sites of the fragments were elucidated by crystallography and the structural information used to design and synthesize improved ligands. RESULTS The location of binding of fragments to the catalytic core of integrase was found to be in a previously undescribed binding site, adjacent to the mobile loop. Enzyme assays confirmed that formation of enzyme-fragment complexes inhibits the catalytic activity of integrase and the structural data was utilized to further develop these fragments into more potent novel enzyme inhibitors. CONCLUSIONS We have defined a new site in integrase as a valid region for the structure-based design of allosteric integrase inhibitors. Using a structure-based design process we have improved the activity of the initial fragments 45-fold.
Collapse
|
25
|
Mbisa JL, Martin SA, Cane PA. Patterns of resistance development with integrase inhibitors in HIV. Infect Drug Resist 2011; 4:65-76. [PMID: 21694910 PMCID: PMC3108751 DOI: 10.2147/idr.s7775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Indexed: 12/15/2022] Open
Abstract
Raltegravir, the only integrase (IN) inhibitor approved for use in HIV therapy, has recently been licensed. Raltegravir inhibits HIV-1 replication by blocking the IN strand transfer reaction. More than 30 mutations have been associated with resistance to raltegravir and other IN strand transfer inhibitors (INSTIs). The majority of the mutations are located in the vicinity of the IN active site within the catalytic core domain which is also the binding pocket for INSTIs. High-level resistance to INSTIs primarily involves three independent mutations at residues Q148, N155, and Y143. The mutations significantly affect replication capacity of the virus and are often accompanied by other mutations that either improve replication fitness and/or increase resistance to the inhibitors. The pattern of development of INSTI resistance mutations has been extensively studied in vitro and in vivo. This has been augmented by cell-based phenotypic studies and investigation of the mechanisms of resistance using biochemical assays. The recent elucidation of the structure of the prototype foamy virus IN, which is closely related to HIV-1, in complex with INSTIs has greatly enhanced our understanding of the evolution and mechanisms of IN drug resistance.
Collapse
Affiliation(s)
- Jean L Mbisa
- Virus Reference Department, Microbiology Services, Health Protection Agency, London, UK
| | | | | |
Collapse
|
26
|
Charpentier C, Weiss L. Extended use of raltegravir in the treatment of HIV-1 infection: optimizing therapy. Infect Drug Resist 2010; 3:103-14. [PMID: 21694899 PMCID: PMC3108740 DOI: 10.2147/idr.s8673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Indexed: 11/28/2022] Open
Abstract
Raltegravir is the first licensed compound in 2007 of the new integrase inhibitor drug class. At the dose of 400 mg twice daily, raltegravir showed a potent antiviral action in antiretroviral-naïve patients when associated with tenofovir and emtricitabine. Raltegravir was also found to be highly active in antiretroviral-experienced patients with virological failure and displaying multiresistant virus, as shown with the BENCHMRK and ANRS 139 TRIO trials. Finally, the use of raltegravir was assessed in the context of a switch strategy in antiretroviral-experienced patients with virological success [human immunodeficiency virus type 1 (HIV-1) RNA below detection limit], highlighting the following mandatory criteria in this strategy: the nucleoside reverse transcriptase inhibitors associated with raltegravir have to be fully active. In the different studies, raltegravir had a favorable safety and tolerability profile. In the clinical situation a switch in virologically suppressed patients receiving a protease inhibitor, an improvement of the lipid profile was observed. Overall, when analyzing the Phase II and III trials together, only a few patients on raltegravir discontinued for adverse events. The development of resistance to raltegravir mainly involved three resistance mutations in integrase gene: Q148H/K/R, N155H, and Y143C/H/R. In conclusion, raltegravir improved the clinical management of HIV-1 infection both in antiretroviral-naïve and in antiretroviral-experienced patients.
Collapse
Affiliation(s)
- Charlotte Charpentier
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Laboratoire de Virologie, Université Paris-Diderot, Paris, France
| | | |
Collapse
|
27
|
Le G, Vandegraaff N, Rhodes DI, Jones ED, Coates JA, Lu L, Li X, Yu C, Feng X, Deadman JJ. Discovery of potent HIV integrase inhibitors active against raltegravir resistant viruses. Bioorg Med Chem Lett 2010; 20:5013-8. [DOI: 10.1016/j.bmcl.2010.07.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 11/26/2022]
|