1
|
Stuckert AMM, Matute DR. Using neutral loci to quantify reproductive isolation and speciation: a commentary on Westram et al., 2022. J Evol Biol 2022; 35:1169-1174. [PMID: 36063155 DOI: 10.1111/jeb.14057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/23/2023]
Affiliation(s)
- Adam M M Stuckert
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Ward HKE, Moehring AJ. Genes underlying species differences in cuticular hydrocarbon production between Drosophila melanogaster and D. simulans. Genome 2020; 64:87-95. [PMID: 33211537 DOI: 10.1139/gen-2019-0224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Surface chemical compounds are key components of survival and reproduction in many species. Cuticular hydrocarbons (CHCs) are chemical compounds produced by all insects that are used for both desiccation resistance and chemical communication, including communication related to mating. In the species pair of Drosophila melanogaster and D. simulans, female CHCs stimulate conspecific males to mate and repel heterospecific males. While CHCs are a critical contributor to both reproductive success within a species and isolation between species, few genes underlying species variation in CHC profiles are known. Here, we use genetic mapping of the 3rd chromosome to test a suite of candidate genes for interspecies variation in CHCs. Candidate gene CG5946 was found to be involved in species differences in the production of 7,11-heptacosadiene and 7-tricosene between D. melanogaster and D. simulans. This is therefore a new candidate locus contributing to species-specific variation in the CHC profile. In the process of mapping genes for CHCs, we also identified 29 candidate genes for the reduced survival or inviability of interspecies hybrids.
Collapse
Affiliation(s)
- Heather K E Ward
- Western University, London, ON N6A 5B7, Canada.,Western University, London, ON N6A 5B7, Canada
| | - Amanda J Moehring
- Western University, London, ON N6A 5B7, Canada.,Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
3
|
Ambrosi P, Chahda JS, Koslen HR, Chiel HJ, Mizutani CM. Modeling of the dorsal gradient across species reveals interaction between embryo morphology and Toll signaling pathway during evolution. PLoS Comput Biol 2014; 10:e1003807. [PMID: 25165818 PMCID: PMC4148200 DOI: 10.1371/journal.pcbi.1003807] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/14/2014] [Indexed: 12/16/2022] Open
Abstract
Morphogenetic gradients are essential to allocate cell fates in embryos of varying sizes within and across closely related species. We previously showed that the maternal NF-κB/Dorsal (Dl) gradient has acquired different shapes in Drosophila species, which result in unequally scaled germ layers along the dorso-ventral axis and the repositioning of the neuroectodermal borders. Here we combined experimentation and mathematical modeling to investigate which factors might have contributed to the fast evolutionary changes of this gradient. To this end, we modified a previously developed model that employs differential equations of the main biochemical interactions of the Toll (Tl) signaling pathway, which regulates Dl nuclear transport. The original model simulations fit well the D. melanogaster wild type, but not mutant conditions. To broaden the applicability of this model and probe evolutionary changes in gradient distributions, we adjusted a set of 19 independent parameters to reproduce three quantified experimental conditions (i.e. Dl levels lowered, nuclear size and density increased or decreased). We next searched for the most relevant parameters that reproduce the species-specific Dl gradients. We show that adjusting parameters relative to morphological traits (i.e. embryo diameter, nuclear size and density) alone is not sufficient to reproduce the species Dl gradients. Since components of the Tl pathway simulated by the model are fast-evolving, we next asked which parameters related to Tl would most effectively reproduce these gradients and identified a particular subset. A sensitivity analysis reveals the existence of nonlinear interactions between the two fast-evolving traits tested above, namely the embryonic morphological changes and Tl pathway components. Our modeling further suggests that distinct Dl gradient shapes observed in closely related melanogaster sub-group lineages may be caused by similar sequence modifications in Tl pathway components, which are in agreement with their phylogenetic relationships. Embryo size can vary greatly among closely related species. How tissue specification either scales or is modified in the developing embryo in different species is an ongoing investigation in developmental biology. Here we asked how embryo morphology and specific molecular pathways influence tissue specification by altering the distribution of morphogens. Morphogens are molecules that form gradients that regulate gene expression patterns in a dosage-dependent fashion that result in tissue specification, and therefore are a prime target for evolution in order to adjust or maintain tissue proportions in relation to overall embryo size. We used a mathematical model to identify factors that influence the distribution of the Dorsal morphogen gradient that is responsible for patterning the dorsal-ventral axis of the Drosophila fruit fly embryo. We obtained experimental data from mutant conditions and different species of Drosophila to calibrate our model and found an interaction between embryo morphology and regulation of the Toll pathway, which regulates the Dorsal gradient. Furthermore, the model predicts that closely related species share similar modifications in Toll pathway components resulting in their species-specific gradient shapes, which are supported by interspecies amino acid comparison of the components Dorsal and Cactus.
Collapse
Affiliation(s)
- Priscilla Ambrosi
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Juan Sebastian Chahda
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Hannah R. Koslen
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Hillel J. Chiel
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (HJC); (CMM)
| | - Claudia Mieko Mizutani
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail: (HJC); (CMM)
| |
Collapse
|
4
|
Chu Y, Yang E, Schinaman JM, Chahda JS, Sousa-Neves R. Genetic analysis of mate discrimination in Drosophila simulans. Evolution 2013; 67:2335-47. [PMID: 23888855 DOI: 10.1111/evo.12115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 03/19/2013] [Indexed: 11/29/2022]
Abstract
Courtship is an elaborate behavior that conveys information about the identity of animal species and suitability of individual males as mates. In Drosophila, there is extensive evidence that females are capable of evaluating and comparing male courtships, and accepting or rejecting males as mates. These relatively simple responses minimize random sexual encounters involving subpar conspecific males and heterospecific males, and over generations can potentially select novel physical and behavioral traits. Despite its evolutionary and behavioral significance, little is still known about the genes involved in mating choice and how choices for novel males and females arise during evolution. Drosophila simulans and Drosophila sechellia are two recently diverged species of Drosophila in which females have a preference for conspecific males. Here we analyzed a total of 1748 F2 hybrid females between these two species and found a small number of dominant genes controlling the preference for D. simulans males. We also mapped two redundant X-linked loci of mating choice, Macho-XA and Macho-XB, and show that neither one is required for female attractiveness. Together, our results reveal part of the genetic architecture that allows D. simulans females to recognize, mate, and successfully generate progenies with D. simulans males.
Collapse
Affiliation(s)
- Y Chu
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
5
|
Chahda JS, Sousa-Neves R, Mizutani CM. Variation in the dorsal gradient distribution is a source for modified scaling of germ layers in Drosophila. Curr Biol 2013; 23:710-6. [PMID: 23583556 DOI: 10.1016/j.cub.2013.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 02/22/2013] [Accepted: 03/11/2013] [Indexed: 01/30/2023]
Abstract
Specification of germ layers along the dorsoventral axis by morphogenetic gradients is an ideal model to study scaling properties of gradients and cell fate changes during evolution. Classical anatomical studies in divergent insects (e.g., flies and grasshoppers) revealed that the neuroectodermal size is conserved and originates similar numbers of neuroblasts of homologous identity. In contrast, mesodermal domains vary significantly in closely related Drosophila species. To further investigate the underlying mechanisms of scaling of germ layers across Drosophila species, we quantified the Dorsal (Dl)/NF-κB gradient, the main morphogenetic gradient that initiates separation of the mesoderm, neuroectoderm, and ectoderm. We discovered a variable range of Toll activation across species and found that Dl activates mesodermal genes at the same threshold levels in melanogaster sibling species. We also show that the Dl gradient distribution can be modulated by nuclear size and packing densities. We propose that variation in mesodermal size occurs at a fast evolutionary rate and is an important mechanism to define the ventral boundary of the neuroectoderm.
Collapse
|
6
|
Laturney M, Moehring AJ. Fine-scale genetic analysis of species-specific female preference in Drosophila simulans. J Evol Biol 2012; 25:1718-31. [PMID: 22694106 DOI: 10.1111/j.1420-9101.2012.02550.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Behavioural differences are thought to be the first components to contribute to species isolation, yet the precise genetic basis of behavioural isolation remains poorly understood. Here, we used a combination of behaviour assays and genetic mapping to provide the first refined map locating candidate genes for interspecific female preference isolating Drosophila simulans from D. melanogaster. First, we tested whether two genes identified as affecting D. melanogaster female intraspecific mate choice also affect interspecific mate choice; neither of these genes was found to contribute to species-specific female preference. Next, we used deficiency mapping to locate genes on the right arm of the third chromosome for species-specific female preference and identified five small significant regions that contain candidate genes contributing to behavioural isolation. All five regions were located in areas that would have low interspecific recombination, which mirrors the results of other behavioural isolation studies that used quantitative trait locus (QTL) mapping, but without the potential concern of bias towards regions of low recombination that QTL mapping may have. As this model system may be refined to the individual gene level using the same methodology, this initial map we provide may potentially serve as a ready template for the identification and characterization of the first behavioural isolation genes.
Collapse
Affiliation(s)
- M Laturney
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
7
|
Belu M, Mizutani CM. Variation in mesoderm specification across Drosophilids is compensated by different rates of myoblast fusion during body wall musculature development. PLoS One 2011; 6:e28970. [PMID: 22194964 PMCID: PMC3237579 DOI: 10.1371/journal.pone.0028970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/18/2011] [Indexed: 11/20/2022] Open
Abstract
Background It has been shown that species separated by relatively short evolutionary distances may have extreme variations in egg size and shape. Those variations are expected to modify the polarized morphogenetic gradients that pattern the dorso-ventral axis of embryos. Currently, little is known about the effects of scaling over the embryonic architecture of organisms. We began examining this problem by asking if changes in embryo size in closely related species of Drosophila modify all three dorso-ventral germ layers or only particular layers, and whether or not tissue patterning would be affected at later stages. Principal Findings Here we report that changes in scale affect predominantly the mesodermal layer at early stages, while the neuroectoderm remains constant across the species studied. Next, we examined the fate of somatic myoblast precursor cells that derive from the mesoderm to test whether the assembly of the larval body wall musculature would be affected by the variation in mesoderm specification. Our results show that in all four species analyzed, the stereotyped organization of the body wall musculature is not disrupted and remains the same as in D. melanogaster. Instead, the excess or shortage of myoblast precursors is compensated by the formation of individual muscle fibers containing more or less fused myoblasts. Conclusions Our data suggest that changes in embryonic scaling often lead to expansions or retractions of the mesodermal domain across Drosophila species. At later stages, two compensatory cellular mechanisms assure the formation of a highly stereotyped larval somatic musculature: an invariable selection of 30 muscle founder cells per hemisegment, which seed the formation of a complete array of muscle fibers, and a variable rate in myoblast fusion that modifies the number of myoblasts that fuse to individual muscle fibers.
Collapse
Affiliation(s)
- Mirela Belu
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Claudia M. Mizutani
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
8
|
Neto EDC, de Oliveira VM, Rosas A, Campos PRA. The effect of spatially correlated environments on genetic diversity-area relationships. J Theor Biol 2011; 288:57-65. [PMID: 21872606 DOI: 10.1016/j.jtbi.2011.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 08/15/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
Understanding the spatial patterns of genetic diversity and what causes them is an important outstanding question in ecology. Here we investigate the roles of spatial heterogeneity and system area in generating genome diversity, and study its dependence with sampled area. We study an individual-based model that incorporates natural selection on the habitat type and compare the effects of asexual and sexual reproductions. A key ingredient of the model is the possibility to tune the level of spatial heterogeneity among the habitats. Our results corroborate either the bi-phasic or tri-phasic scenarios, one phase corresponding to a power law regime, for the diversity-area relationship in both sexual and asexual populations, being the shape of the curve influenced by mutation rates and spatial correlation. These observations are verified for distinct sets of parameter values.
Collapse
Affiliation(s)
- Elias D C Neto
- Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco 52171-900, Dois Irmãos, Recife-PE, Brazil
| | | | | | | |
Collapse
|
9
|
Campos PR, de Oliveira VM, Rosas A. Epistasis and environmental heterogeneity in the speciation process. Ecol Modell 2010. [DOI: 10.1016/j.ecolmodel.2010.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|