1
|
Histone Methyltransferase SETDB1 Promotes Immune Evasion in Colorectal Cancer via FOSB-Mediated Downregulation of MicroRNA-22 through BATF3/PD-L1 Pathway. J Immunol Res 2022; 2022:4012920. [PMID: 35497876 PMCID: PMC9045983 DOI: 10.1155/2022/4012920] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Tumors may develop a variety of immune evasion mechanisms during the progression of colorectal cancer (CRC). Here, we intended to explore the mechanism of histone methyltransferase SETDB1 in immune evasion in CRC. The expression of SETDB1, microRNA-22 (miR-22), BATF3, PD-L1, and FOSB in CRC tissues and cells was determined with their interactions analyzed also. Gain-of-function and loss-of-function approaches were employed to evaluate the effects of the SETDB1/FOSB/miR-22/BATF3/PD-L1 axis on T cell function, immune cell infiltration, and tumorigenesis. Aberrant high SETDB1 expression in CRC was positively associated with PD-L1 expression. SETDB1 negatively regulated miR-22 expression by downregulating FOSB expression, while miR-22 downregulated PD-L1 expression via targeting BATF3. Furthermore, SETDB1 silencing promoted the T cell-mediated cytotoxicity to tumor cells via the FOSB/miR-22/BATF3/PD-L1 axis and hindered CRC tumor growth in mice while leading to decreased immune cell infiltration. Taken together, SETDB1 could activate the BATF3/PD-L1 axis by inhibiting FOSB-mediated miR-22 and promote immune evasion in CRC, which provides a better understanding of the mechanisms underlying immune evasion in CRC.
Collapse
|
2
|
Paddibhatla I, Gautam DK, Mishra RK. SETDB1 modulates the differentiation of both the crystal cells and the lamellocytes in Drosophila. Dev Biol 2019; 456:74-85. [DOI: 10.1016/j.ydbio.2019.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 01/10/2023]
|
3
|
Vieira GC, D'Ávila MF, Zanini R, Deprá M, da Silva Valente VL. Evolution of DNMT2 in drosophilids: Evidence for positive and purifying selection and insights into new protein (pathways) interactions. Genet Mol Biol 2018; 41:215-234. [PMID: 29668012 PMCID: PMC5913717 DOI: 10.1590/1678-4685-gmb-2017-0056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/18/2017] [Indexed: 12/03/2022] Open
Abstract
The DNA methyltransferase 2 (DNMT2) protein is the most conserved member of the
DNA methyltransferase family. Nevertheless, its substrate specificity is still
controversial and elusive. The genomic role and determinants of DNA methylation
are poorly understood in invertebrates, and several mechanisms and associations
are suggested. In Drosophila, the only known DNMT gene is
Dnmt2. Here we present our findings from a wide search for
Dnmt2 homologs in 68 species of Drosophilidae. We
investigated its molecular evolution, and in our phylogenetic analyses the main
clades of Drosophilidae species were recovered. We tested whether the
Dnmt2 has evolved neutrally or under positive selection
along the subgenera Drosophila and Sophophora
and investigated positive selection in relation to several physicochemical
properties. Despite of a major selective constraint on Dnmt2,
we detected six sites under positive selection. Regarding the DNMT2 protein, 12
sites under positive-destabilizing selection were found, which suggests a
selection that favors structural and functional shifts in the protein. The
search for new potential protein partners with DNMT2 revealed 15 proteins with
high evolutionary rate covariation (ERC), indicating a plurality of DNMT2
functions in different pathways. These events might represent signs of molecular
adaptation, with molecular peculiarities arising from the diversity of
evolutionary histories experienced by drosophilids.
Collapse
Affiliation(s)
- Gilberto Cavalheiro Vieira
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marícia Fantinel D'Ávila
- Departamento de Zoologia e Ciências Biológicas, Universidade Federal de Santa Maria (UFSM), Palmeira das Missões, RS, Brazil
| | - Rebeca Zanini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Maríndia Deprá
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Vera Lúcia da Silva Valente
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Zoologia e Ciências Biológicas, Universidade Federal de Santa Maria (UFSM), Palmeira das Missões, RS, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Krüppel homolog 1 represses insect ecdysone biosynthesis by directly inhibiting the transcription of steroidogenic enzymes. Proc Natl Acad Sci U S A 2018; 115:3960-3965. [PMID: 29567866 DOI: 10.1073/pnas.1800435115] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In insects, juvenile hormone (JH) and the steroid hormone ecdysone have opposing effects on regulation of the larval-pupal transition. Although increasing evidence suggests that JH represses ecdysone biosynthesis during larval development, the mechanism underlying this repression is not well understood. Here, we demonstrate that the expression of the Krüppel homolog 1 (Kr-h1), a gene encoding a transcription factor that mediates JH signaling, in ecdysone-producing organ prothoracic gland (PG) represses ecdysone biosynthesis by directly inhibiting the transcription of steroidogenic enzymes in both Drosophila and Bombyx Application of a JH mimic on ex vivo cultured PGs from Drosophila and Bombyx larvae induces Kr-h1 expression and inhibits the transcription of steroidogenic enzymes. In addition, PG-specific knockdown of Drosophila Kr-h1 promotes-while overexpression hampers-ecdysone production and pupariation. We further find that Kr-h1 inhibits the transcription of steroidogenic enzymes by directly binding to their promoters to induce promoter DNA methylation. Finally, we show that Kr-h1 does not affect DNA replication in Drosophila PG cells and that the reduction of PG size mediated by Kr-h1 overexpression can be rescued by feeding ecdysone. Taken together, our data indicate direct and conserved Kr-h1 repression of insect ecdysone biosynthesis in response to JH stimulation, providing insights into mechanisms underlying the antagonistic roles of JH and ecdysone.
Collapse
|
5
|
Retraction: SETDB1 Is Involved in Postembryonic DNA Methylation and Gene Silencing in Drosophila. PLoS One 2018; 13:e0194869. [PMID: 29558503 PMCID: PMC5860794 DOI: 10.1371/journal.pone.0194869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
6
|
Chavez J, Murillo-Maldonado JM, Bahena V, Cruz AK, Castañeda-Sortibrán A, Rodriguez-Arnaiz R, Zurita M, Valadez-Graham V. dAdd1 and dXNP prevent genome instability by maintaining HP1a localization at Drosophila telomeres. Chromosoma 2017; 126:697-712. [PMID: 28688038 DOI: 10.1007/s00412-017-0634-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022]
Abstract
Telomeres are important contributors to genome stability, as they prevent linear chromosome end degradation and contribute to the avoidance of telomeric fusions. An important component of the telomeres is the heterochromatin protein 1a (HP1a). Mutations in Su(var)205, the gene encoding HP1a in Drosophila, result in telomeric fusions, retrotransposon regulation loss and larger telomeres, leading to chromosome instability. Previously, it was found that several proteins physically interact with HP1a, including dXNP and dAdd1 (orthologues to the mammalian ATRX gene). In this study, we found that mutations in the genes encoding the dXNP and dAdd1 proteins affect chromosome stability, causing chromosomal aberrations, including telomeric defects, similar to those observed in Su(var)205 mutants. In somatic cells, we observed that dXNP and dAdd1 participate in the silencing of the telomeric HTT array of retrotransposons, preventing anomalous retrotransposon transcription and integration. Furthermore, the lack of dAdd1 results in the loss of HP1a from the telomeric regions without affecting other chromosomal HP1a binding sites; mutations in dxnp also affected HP1a localization but not at all telomeres, suggesting a specialized role for dAdd1 and dXNP proteins in locating HP1a at the tips of the chromosomes. These results place dAdd1 as an essential regulator of HP1a localization and function in the telomere heterochromatic domain.
Collapse
Affiliation(s)
- Joselyn Chavez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Juan Manuel Murillo-Maldonado
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Vanessa Bahena
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Ana Karina Cruz
- Laboratorio de Genética. Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de México, Mexico
| | - América Castañeda-Sortibrán
- Laboratorio de Genética. Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de México, Mexico
| | - Rosario Rodriguez-Arnaiz
- Laboratorio de Genética. Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de México, Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
7
|
Ashapkin VV, Kutueva LI, Vanyushin BF. Dnmt2 is the most evolutionary conserved and enigmatic cytosine DNA methyltransferase in eukaryotes. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416030029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Shinoda N, Obata F, Zhang L, Miura M. Drosophila SETDB1 and caspase cooperatively fine-tune cell fate determination of sensory organ precursor. Genes Cells 2016; 21:378-86. [PMID: 26914287 DOI: 10.1111/gtc.12348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/06/2016] [Indexed: 12/18/2022]
Abstract
Drosophila produce a constant number of mechanosensory bristles called macrochaetae (MC), which develop from sensory organ precursor (SOP) cells within a proneural cluster (PNC). However, what ensures the precise determination of SOP cells remains to be elucidated. In this study, we conducted RNAi screening in PNC for genes involved in epigenetic regulation. We identified a H3K9 histone methyltransferase, SETDB1/eggless, as a regulator of SOP development. Knockdown of SETDB1 in PNC led to additional SOPs. We further tested the relationship between SETDB1 and non-apoptotic function of caspase on SOP development. Reinforcing caspase activation by heterozygous Drosophila inhibitor of apoptosis protein 1 (DIAP1) mutation rescued ectopic SOP development caused by SETDB1 knockdown. Knockdown of SETDB1, however, had little effect on caspase activity. Simultaneous loss of SETDB1 and caspase activity resulted in further increase in MC, indicating that the two components work cooperatively. Our study suggests the fine-tuning mechanisms for SOP development by epigenetic methyltransferase and non-apoptotic caspase function.
Collapse
Affiliation(s)
- Natsuki Shinoda
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Liu Zhang
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Building 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
9
|
Shang X, Su J, Wan Q, Su J. CpA/CpG methylation of CiMDA5 possesses tight association with the resistance against GCRV and negatively regulates mRNA expression in grass carp, Ctenopharyngodon idella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:86-94. [PMID: 25260715 DOI: 10.1016/j.dci.2014.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 06/03/2023]
Abstract
Melanoma differentiation-associated gene 5 (MDA5) plays a crucial role in recognizing intracellular viral infection, activating the interferon regulatory factor pathways as well as inducing antiviral response. While the antiviral regulatory mechanism of MDA5 remains unclear. In the present study, CiMDA5 (Ctenopharyngodon idella MDA5) against grass carp reovirus (GCRV) would be initially revealed from the perspective of DNA methylation, a pivotal epigenetic modification. Two CpG islands (CGIs) were predicted located in the first exon of CiMDA5, of which the first CpG island was 427 bp in length possessed 29 candidate CpG loci and 34 CpA loci, and the second one was 130 bp in length involving 7 CpG loci as well as 10 CpA loci. By bisulfite sequencing PCR (BSP), the methylation statuses were detected in spleen of 70 individuals divided into resistant/susceptible groups post challenge experiment, and the resistance-association analysis was performed with Chi-square test. Quantitative real-time RT-PCR (qRT-PCR) was carried out to explore the relationship between DNA methylation and gene expression in CiMDA5. Results indicated that the methylation levels of CpA/CpG sites at +200, +202, +204, +207 nt, which consisted of a putative densely methylated element (DME), were significantly higher in the susceptible group than those in the resistant group. Meanwhile, the average transcription of CiMDA5 was down-regulated in the susceptible individuals compared with the resistant individuals. Evidently, the DNA methylation may be the negative modulator of CiMDA5 antiviral expression. Collectively, the methylation levels of CiMDA5 demonstrated the tight association with the resistance against GCRV and the negative-regulated roles in mRNA expression. This study first discovered the resistance-associated gene modulated by DNA methylation in teleost, preliminary revealed the underlying regulatory mechanism of CiMDA5 transcription against GCRV as well as laid a theoretical foundation on molecular nosogenesis of hemorrhagic diseases in C. idella.
Collapse
Affiliation(s)
- Xueying Shang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianguo Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Quanyuan Wan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Juanjuan Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
10
|
Kostaki M, Manona AD, Stavraka I, Korkolopoulou P, Levidou G, Trigka EA, Christofidou E, Champsas G, Stratigos AJ, Katsambas A, Papadopoulos O, Piperi C, Papavassiliou AG. High-frequency p16(INK) (4A) promoter methylation is associated with histone methyltransferase SETDB1 expression in sporadic cutaneous melanoma. Exp Dermatol 2014; 23:332-8. [PMID: 24673285 DOI: 10.1111/exd.12398] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2014] [Indexed: 12/20/2022]
Abstract
Epigenetic mechanisms participate in melanoma development and progression. The effect of histone modifications and their catalysing enzymes over euchromatic promoter DNA methylation in melanoma remains unclear. This study investigated the potential association of p16(INK) (4A) promoter methylation with histone methyltransferase SETDB1 expression in Greek patients with sporadic melanoma and their correlation with clinicopathological characteristics. Promoter methylation was detected by methylation-specific PCR in 100 peripheral blood samples and 58 melanoma tissues from the same patients. Cell proliferation (Ki-67 index), p16(INK) (4A) and SETDB1 expression were evaluated by immunohistochemistry. High-frequency promoter methylation (25.86%) was observed in tissue samples and correlated with increased cell proliferation (P = 0.0514). p16(INK) (4A) promoter methylation was higher in vertical growth-phase (60%) melanomas than in radial (40%, P = 0.063) and those displaying epidermal involvement (P = 0.046). Importantly, p16(INK) (4A) methylation correlated with increased melanoma thickness according to Breslow index (P = 0.0495) and marginally with increased Clark level (I/II vs III/IV/V, P = 0.070). Low (1-30%) p16(INK) (4A) expression was detected at the majority (19 of 54) of melanoma cases (35.19%), being marginally correlated with tumor lymphocytic infiltration (P = 0.078). SETDB1 nuclear immunoreactivity was observed in 47 of 57 (82.46%) cases, whereas 27 of 57 (47.37%) showed cytoplasmic immunoexpression. Cytoplasmic SETDB1 expression correlated with higher frequency of p16(INK) (4A) methylation and p16(INK) (4A) expression (P = 0.033, P = 0.011, respectively). Increased nuclear SETDB1 levels were associated with higher mitotic count (0-5/mm(2) vs >5/mm(2) , P = 0.0869), advanced Clark level (III-V, P = 0.0380), epidermal involvement (P = 0.0331) and the non-chronic sun exposure-associated melanoma type (P = 0.0664). Our data demonstrate for the first time the association of histone methyltransferase SETDB1 with frequent methylation of the euchromatic p16(INK) (4A) promoter and several prognostic parameters in melanomas.
Collapse
Affiliation(s)
- Maria Kostaki
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
LePage DP, Jernigan KK, Bordenstein SR. The relative importance of DNA methylation and Dnmt2-mediated epigenetic regulation on Wolbachia densities and cytoplasmic incompatibility. PeerJ 2014; 2:e678. [PMID: 25538866 PMCID: PMC4266856 DOI: 10.7717/peerj.678] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/06/2014] [Indexed: 12/30/2022] Open
Abstract
Wolbachia pipientis is a worldwide bacterial parasite of arthropods that infects germline cells and manipulates host reproduction to increase the ratio of infected females, the transmitting sex of the bacteria. The most common reproductive manipulation, cytoplasmic incompatibility (CI), is expressed as embryonic death in crosses between infected males and uninfected females. Specifically, Wolbachia modify developing sperm in the testes by unknown means to cause a post-fertilization disruption of the sperm chromatin that incapacitates the first mitosis of the embryo. As these Wolbachia-induced changes are stable, reversible, and affect the host cell cycle machinery including DNA replication and chromosome segregation, we hypothesized that the host methylation pathway is targeted for modulation during cytoplasmic incompatibility because it accounts for all of these traits. Here we show that infection of the testes is associated with a 55% increase of host DNA methylation in Drosophila melanogaster, but methylation of the paternal genome does not correlate with penetrance of CI. Overexpression and knock out of the Drosophila DNA methyltransferase Dnmt2 neither induces nor increases CI. Instead, overexpression decreases Wolbachia titers in host testes by approximately 17%, leading to a similar reduction in CI levels. Finally, strength of CI induced by several different strains of Wolbachia does not correlate with levels of DNA methylation in the host testes. We conclude that DNA methylation mediated by Drosophila’s only known methyltransferase is not required for the transgenerational sperm modification that causes CI.
Collapse
Affiliation(s)
- Daniel P LePage
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA
| | - Kristin K Jernigan
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA ; Department of Cell and Developmental Biology, Vanderbilt University , Nashville, TN , USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA ; Department of Pathology, Microbiology and Immunology, Vanderbilt University , Nashville, TN , USA
| |
Collapse
|
12
|
Valenzuela CY. The structure of selective dinucleotide interactions and periodicities in D melanogaster mtDNA. Biol Res 2014; 47:18. [PMID: 25027717 PMCID: PMC4101722 DOI: 10.1186/0717-6287-47-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 04/26/2014] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND We found a strong selective 3-sites periodicity of deviations from randomness of the dinucleotide (DN) distribution, where both bases of DN were separated by 1, 2, K sites in prokaryotes and mtDNA. Three main aspects are studied. I) the specific 3 K-sites periodic structure of the 16 DN. II) to discard the possibility that the periodicity was produced by the highly nonrandom interactive association of contiguous bases, by studying the interaction of non-contiguous bases, the first one chosen each I sites and the second chosen J sites downstream. III) the difference between this selective periodicity of association (distance to randomness) of the four bases with the described fixed periodicities of base sequences. RESULTS I) The 16 pairs presented a consistent periodicity in the strength of association of both bases of the pairs; the most deviated pairs are those where G and C are involved and the least deviated ones are those where A and T are involved. II) we found significant non-random interactions when the first nucleotide is chosen every I sites and the second J sites downstream until I=J=76. III) we showed conclusive differences between these internucleotide association periodicities and sequence periodicities. CONCLUSIONS This relational selective periodicity is different from sequence periodicities and indicates that any base strongly interacts with the bases of the residual genome; this interaction and periodicity is highly structured and systematic for every pair of bases. This interaction should be destroyed in few generations by recurrent mutation; it is only compatible with the Synthetic Theory of Evolution and agrees with the Wright's adaptive landscape conception and evolution by shifting balanced adaptive peaks.
Collapse
|
13
|
High intake of dietary sugar enhances bisphenol A (BPA) disruption and reveals ribosome-mediated pathways of toxicity. Genetics 2014; 197:147-57. [PMID: 24614930 DOI: 10.1534/genetics.114.163170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bisphenol A (BPA) is an organic compound to which human populations are ubiquitously exposed. Epidemiological data suggest BPA exposure might be associated with higher rates of diabetes and reproductive anomalies. Health concerns also include transgenerational consequences, but these mechanisms are crudely defined. Similarly, little is known about synergistic interactions between BPA and other substances. Here we show that acute and chronic exposure to BPA causes genome-wide modulation of several functionally coherent genetic pathways in the fruit fly Drosophila melanogaster. In particular, BPA exposure causes massive downregulation of testis-specific genes and upregulation of ribosome-associated genes widely expressed across tissues. In addition, it causes the modulation of transposable elements that are specific to the ribosomal DNA loci, suggesting that nucleolar stress might contribute to BPA toxicity. The upregulation of ribosome-associated genes and the impairment of testis-specific gene expression are significantly enhanced upon BPA exposure with a high-sugar diet. Our results suggest that BPA and dietary sugar might functionally interact, with consequences to regulatory programs in both reproductive and somatic tissues.
Collapse
|
14
|
Chromatin-associated proteins HP1 and Mod(mdg4) modify Y-linked regulatory variation in the drosophila testis. Genetics 2013; 194:609-18. [PMID: 23636736 DOI: 10.1534/genetics.113.150805] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Chromatin remodeling is crucial for gene regulation. Remodeling is often mediated through chemical modifications of the DNA template, DNA-associated proteins, and RNA-mediated processes. Y-linked regulatory variation (YRV) refers to the quantitative effects that polymorphic tracts of Y-linked chromatin exert on gene expression of X-linked and autosomal genes. Here we show that naturally occurring polymorphisms in the Drosophila melanogaster Y chromosome contribute disproportionally to gene expression variation in the testis. The variation is dependent on wild-type expression levels of mod(mdg4) as well as Su(var)205; the latter gene codes for heterochromatin protein 1 (HP1) in Drosophila. Testis-specific YRV is abolished in genotypes with heterozygous loss-of-function mutations for mod(mdg4) and Su(var)205 but not in similar experiments with JIL-1. Furthermore, the Y chromosome differentially regulates several ubiquitously expressed genes. The results highlight the requirement for wild-type dosage of Su(var)205 and mod(mdg4) in enabling naturally occurring Y-linked regulatory variation in the testis. The phenotypes that emerge in the context of wild-type levels of the HP1 and Mod(mdg4) proteins might be part of an adaptive response to the environment.
Collapse
|
15
|
Duan G, Saint RB, Helliwell CA, Behm CA, Wang MB, Waterhouse PM, Gordon KHJ. C. elegans RNA-dependent RNA polymerases rrf-1 and ego-1 silence Drosophila transgenes by differing mechanisms. Cell Mol Life Sci 2013; 70:1469-81. [PMID: 23224429 PMCID: PMC11113355 DOI: 10.1007/s00018-012-1218-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/19/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
Abstract
Drosophila possesses the core gene silencing machinery but, like all insects, lacks the canonical RNA-dependent RNA polymerases (RdRps) that in C. elegans either trigger or enhance two major small RNA-dependent gene silencing pathways. Introduction of two different nematode RdRps into Drosophila showed them to be functional, resulting in differing silencing activities. While RRF-1 enhanced transitive dsRNA-dependent silencing, EGO-1 triggered dsRNA-independent silencing, specifically of transgenes. The strain w; da-Gal4; UAST-ego-1, constitutively expressing ego-1, is capable of silencing transgene including dsRNA hairpin upon a single cross, which created a powerful tool for research in Drosophila. In C. elegans, EGO-1 is involved in transcriptional gene silencing (TGS) of chromosome regions that are unpaired during meiosis. There was no opportunity for meiotic interactions involving EGO-1 in Drosophila that would explain the observed transgene silencing. Transgene DNA is, however, unpaired during the pairing of chromosomes in embryonic mitosis that is an unusual characteristic of Diptera, suggesting that in Drosophila, EGO-1 triggers transcriptional silencing of unpaired DNA during embryonic mitosis.
Collapse
Affiliation(s)
- Guowen Duan
- CSIRO Ecosystem Sciences, Clunies Ross St., Canberra, ACT, 2601, Australia.
| | | | | | | | | | | | | |
Collapse
|
16
|
Silva-Sousa R, López-Panadès E, Piñeyro D, Casacuberta E. The chromosomal proteins JIL-1 and Z4/Putzig regulate the telomeric chromatin in Drosophila melanogaster. PLoS Genet 2012; 8:e1003153. [PMID: 23271984 PMCID: PMC3521665 DOI: 10.1371/journal.pgen.1003153] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 10/24/2012] [Indexed: 12/28/2022] Open
Abstract
Drosophila telomere maintenance depends on the transposition of the specialized retrotransposons HeT-A, TART, and TAHRE. Controlling the activation and silencing of these elements is crucial for a precise telomere function without compromising genomic integrity. Here we describe two chromosomal proteins, JIL-1 and Z4 (also known as Putzig), which are necessary for establishing a fine-tuned regulation of the transcription of the major component of Drosophila telomeres, the HeT-A retrotransposon, thus guaranteeing genome stability. We found that mutant alleles of JIL-1 have decreased HeT-A transcription, putting forward this kinase as the first positive regulator of telomere transcription in Drosophila described to date. We describe how the decrease in HeT-A transcription in JIL-1 alleles correlates with an increase in silencing chromatin marks such as H3K9me3 and HP1a at the HeT-A promoter. Moreover, we have detected that Z4 mutant alleles show moderate telomere instability, suggesting an important role of the JIL-1-Z4 complex in establishing and maintaining an appropriate chromatin environment at Drosophila telomeres. Interestingly, we have detected a biochemical interaction between Z4 and the HeT-A Gag protein, which could explain how the Z4-JIL-1 complex is targeted to the telomeres. Accordingly, we demonstrate that a phenotype of telomere instability similar to that observed for Z4 mutant alleles is found when the gene that encodes the HeT-A Gag protein is knocked down. We propose a model to explain the observed transcriptional and stability changes in relation to other heterochromatin components characteristic of Drosophila telomeres, such as HP1a.
Collapse
Affiliation(s)
- Rute Silva-Sousa
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Elisenda López-Panadès
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - David Piñeyro
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| | - Elena Casacuberta
- Institute of Evolutionary Biology, Institut de Biologia Evolutiva (CSIC-UPF), Barcelona, Spain
| |
Collapse
|
17
|
Takács S, Biessmann H, Reddy HM, Mason JM, Török T. Protein interactions on telomeric retrotransposons in Drosophila. Int J Biol Sci 2012; 8:1055-61. [PMID: 22949888 PMCID: PMC3432853 DOI: 10.7150/ijbs.4460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/04/2012] [Indexed: 12/02/2022] Open
Abstract
Telomere length in Drosophila is maintained by targeted transposition of three non-LTR retrotransposons: HeT-A, TART and TAHRE (HTT), but understanding the regulation of this process is hindered by our poor knowledge of HTT associated proteins. We have identified new protein components of the HTT array: Chromator (Chro), the TRF2/DREF complex and the sumoylation machinery. Chro was localized on telomeric HTT arrays by immunostaining, where it may interact with Prod directly, as indicated by yeast two-hybrid interaction, co-IP, and colocalization on polytene chromosomes. The TRF2/DREF complex may promote the open structure of HTT chromatin. The protein interactions controlling HTT chromatin structure and telomere length may be modulated by sumoylation.
Collapse
Affiliation(s)
- Sándor Takács
- Department of Genetics, University of Szeged, H-6701 Szeged, Hungary
| | | | | | | | | |
Collapse
|
18
|
Szwagierczak A, Brachmann A, Schmidt CS, Bultmann S, Leonhardt H, Spada F. Characterization of PvuRts1I endonuclease as a tool to investigate genomic 5-hydroxymethylcytosine. Nucleic Acids Res 2011; 39:5149-56. [PMID: 21378122 PMCID: PMC3130283 DOI: 10.1093/nar/gkr118] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In mammalian genomes a sixth base, 5-hydroxymethylcytosine ((hm)C), is generated by enzymatic oxidation of 5-methylcytosine ((m)C). This discovery has raised fundamental questions about the functional relevance of (hm)C in mammalian genomes. Due to their very similar chemical structure, discrimination of the rare (hm)C against the far more abundant (m)C is technically challenging and to date no methods for direct sequencing of (hm)C have been reported. Here, we report on a purified recombinant endonuclease, PvuRts1I, which selectively cleaves (hm)C-containing sequences. We determined the consensus cleavage site of PvuRts1I as (hm)CN(11-12)/N(9-10)G and show first data on its potential to interrogate (hm)C patterns in mammalian genomes.
Collapse
Affiliation(s)
- Aleksandra Szwagierczak
- Ludwig Maximilians University Munich, Department of Biology and Center for Integrated Protein Science Munich, 82152 Planegg-Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Krauss V, Reuter G. DNA methylation in Drosophila--a critical evaluation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:177-91. [PMID: 21507351 DOI: 10.1016/b978-0-12-387685-0.00003-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Drosophila belongs to the so-called "Dnmt2 only" organisms, and does not contain any of the canonical DNA methyltransferases (Dnmt1 and Dnmt3). Furthermore, no functional homologs of known 5-methylcytosine reader proteins are found. Nevertheless, there is strong evidence for DNA methylation in this organism. It has been suggested that DNA methylation in Drosophila is simply a byproduct of Dnmt2, which is a DNA methyltransferase (Dnmt) according to structure and type of catalysis but functions in vivo as a tRNA methyltransferase. However, concerning the very specific timing of cytosine methylation in Drosophila, their suggested functions in control of retrotransposon silencing and genome stability, and the obvious DNA methylation activity of Dnmt2 enzymes in the protozoans Dictyostelium discoideum and Entamoeba histolytica, we tend to disagree with this notation. Dnmt2 probably serves, and not only in Drosophila, as a methyltransferase of both specific DNA and tRNA targets.
Collapse
Affiliation(s)
- Veiko Krauss
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg, Halle/S, Germany
| | | |
Collapse
|
20
|
Joulie M, Miotto B, Defossez PA. Mammalian methyl-binding proteins: What might they do? Bioessays 2010; 32:1025-32. [DOI: 10.1002/bies.201000057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 08/19/2010] [Accepted: 08/24/2010] [Indexed: 12/12/2022]
|