1
|
Choi JW, Choi HH, Park YS, Jang MJ, Kim S. Comparative and expression analyses of AP2/ERF genes reveal copy number expansion and potential functions of ERF genes in Solanaceae. BMC PLANT BIOLOGY 2023; 23:48. [PMID: 36683040 PMCID: PMC9869560 DOI: 10.1186/s12870-022-04017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The AP2/ERF gene family is a superfamily of transcription factors that are important in the response of plants to abiotic stress and development. However, comprehensive research of the AP2/ERF genes in the Solanaceae family is lacking. RESULTS Here, we updated the annotation of AP2/ERF genes in the genomes of eight Solanaceae species, as well as Arabidopsis thaliana and Oryza sativa. We identified 2,195 AP2/ERF genes, of which 368 (17%) were newly identified. Based on phylogenetic analyses, we observed expansion of the copy number of these genes, especially those belonging to specific Ethylene-Responsive Factor (ERF) subgroups of the Solanaceae. From the results of chromosomal location and synteny analyses, we identified that the AP2/ERF genes of the pepper (Capsicum annuum), the tomato (Solanum lycopersicum), and the potato (Solanum tuberosum) belonging to ERF subgroups form a tandem array and most of them are species-specific without orthologs in other species, which has led to differentiation of AP2/ERF gene repertory among Solanaceae. We suggest that these genes mainly emerged through recent gene duplication after the divergence of these species. Transcriptome analyses showed that the genes have a putative function in the response of the pepper and tomato to abiotic stress, especially those in ERF subgroups. CONCLUSIONS Our findings will provide comprehensive information on AP2/ERF genes and insights into the structural, evolutionary, and functional understanding of the role of these genes in the Solanaceae.
Collapse
Affiliation(s)
- Jin-Wook Choi
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hyeon Ho Choi
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Young-Soo Park
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Min-Jeong Jang
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
2
|
Giordo R, Gulsha R, Kalla S, Calin GA, Lipovich L. LncRNA-Associated Genetic Etiologies Are Shared between Type 2 Diabetes and Cancers in the UAE Population. Cancers (Basel) 2022; 14:3313. [PMID: 35884374 PMCID: PMC9313416 DOI: 10.3390/cancers14143313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Numerous epidemiological studies place patients with T2D at a higher risk for cancer. Many risk factors, such as obesity, ageing, poor diet and low physical activity, are shared between T2D and cancer; however, the biological mechanisms linking the two diseases remain largely unknown. The advent of genome wide association studies (GWAS) revealed large numbers of genetic variants associated with both T2D and cancer. Most significant disease-associated variants reside in non-coding regions of the genome. Several studies show that single nucleotide polymorphisms (SNPs) at or near long non-coding RNA (lncRNA) genes may impact the susceptibility to T2D and cancer. Therefore, the identification of genetic variants predisposing individuals to both T2D and cancer may help explain the increased risk of cancer in T2D patients. We aim to investigate whether lncRNA genetic variants with significant diabetes and cancer associations overlap in the UAE population. We first performed an annotation-based analysis of UAE T2D GWAS, confirming the high prevalence of variants at or near non-coding RNA genes. We then explored whether these T2D SNPs in lncRNAs were relevant to cancer. We highlighted six non-coding genetic variants, jointly reaching statistical significance in T2D and cancer, implicating a shared genetic architecture between the two diseases in the UAE population.
Collapse
Affiliation(s)
- Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (R.G.); (R.G.); (S.K.)
| | - Rida Gulsha
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (R.G.); (R.G.); (S.K.)
| | - Sarah Kalla
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (R.G.); (R.G.); (S.K.)
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Leonard Lipovich
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (R.G.); (R.G.); (S.K.)
| |
Collapse
|
3
|
Belknap KC, Park CJ, Barth BM, Andam CP. Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Sci Rep 2020; 10:2003. [PMID: 32029878 PMCID: PMC7005152 DOI: 10.1038/s41598-020-58904-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/22/2020] [Indexed: 01/05/2023] Open
Abstract
Streptomyces bacteria are known for their prolific production of secondary metabolites, many of which have been widely used in human medicine, agriculture and animal health. To guide the effective prioritization of specific biosynthetic gene clusters (BGCs) for drug development and targeting the most prolific producer strains, knowledge about phylogenetic relationships of Streptomyces species, genome-wide diversity and distribution patterns of BGCs is critical. We used genomic and phylogenetic methods to elucidate the diversity of major classes of BGCs in 1,110 publicly available Streptomyces genomes. Genome mining of Streptomyces reveals high diversity of BGCs and variable distribution patterns in the Streptomyces phylogeny, even among very closely related strains. The most common BGCs are non-ribosomal peptide synthetases, type 1 polyketide synthases, terpenes, and lantipeptides. We also found that numerous Streptomyces species harbor BGCs known to encode antitumor compounds. We observed that strains that are considered the same species can vary tremendously in the BGCs they carry, suggesting that strain-level genome sequencing can uncover high levels of BGC diversity and potentially useful derivatives of any one compound. These findings suggest that a strain-level strategy for exploring secondary metabolites for clinical use provides an alternative or complementary approach to discovering novel pharmaceutical compounds from microbes.
Collapse
Affiliation(s)
- Kaitlyn C Belknap
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA
| | - Cooper J Park
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA
| | - Brian M Barth
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA
| | - Cheryl P Andam
- University of New Hampshire, Department of Molecular, Cellular and Biomedical Sciences, Durham, NH, 03824, USA.
| |
Collapse
|
4
|
Richard J, Kim ED, Nguyen H, Kim CD, Kim S. Allostery Wiring Map for Kinesin Energy Transduction and Its Evolution. J Biol Chem 2016; 291:20932-20945. [PMID: 27507814 PMCID: PMC5076506 DOI: 10.1074/jbc.m116.733675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Indexed: 12/28/2022] Open
Abstract
How signals between the kinesin active and cytoskeletal binding sites are transmitted is an open question and an allosteric question. By extracting correlated evolutionary changes within 700+ sequences, we built a model of residues that are energetically coupled and that define molecular routes for signal transmission. Typically, these coupled residues are located at multiple distal sites and thus are predicted to form a complex, non-linear network that wires together different functional sites in the protein. Of note, our model connected the site for ATP hydrolysis with sites that ultimately utilize its free energy, such as the microtubule-binding site, drug-binding loop 5, and necklinker. To confirm the calculated energetic connectivity between non-adjacent residues, double-mutant cycle analysis was conducted with 22 kinesin mutants. There was a direct correlation between thermodynamic coupling in experiment and evolutionarily derived energetic coupling. We conclude that energy transduction is coordinated by multiple distal sites in the protein rather than only being relayed through adjacent residues. Moreover, this allosteric map forecasts how energetic orchestration gives rise to different nanomotor behaviors within the superfamily.
Collapse
Affiliation(s)
- Jessica Richard
- From the Department of Biochemistry and Molecular Biology, Louisiana State University School of Medicine & Health Sciences Center, New Orleans, Louisiana 70112
| | - Elizabeth D Kim
- From the Department of Biochemistry and Molecular Biology, Louisiana State University School of Medicine & Health Sciences Center, New Orleans, Louisiana 70112
| | - Hoang Nguyen
- From the Department of Biochemistry and Molecular Biology, Louisiana State University School of Medicine & Health Sciences Center, New Orleans, Louisiana 70112
| | - Catherine D Kim
- From the Department of Biochemistry and Molecular Biology, Louisiana State University School of Medicine & Health Sciences Center, New Orleans, Louisiana 70112
| | - Sunyoung Kim
- From the Department of Biochemistry and Molecular Biology, Louisiana State University School of Medicine & Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
5
|
Wilson CM, Rodriguez M, Johnson CM, Martin SL, Chu TM, Wolfinger RD, Hauser LJ, Land ML, Klingeman DM, Syed MH, Ragauskas AJ, Tschaplinski TJ, Mielenz JR, Brown SD. Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:179. [PMID: 24295562 PMCID: PMC3880215 DOI: 10.1186/1754-6834-6-179] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/19/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing (CBP) biocatalyst for cellulosic ethanol production. The aim of this study was to investigate C. thermocellum genes required to ferment biomass substrates and to conduct a robust comparison of DNA microarray and RNA sequencing (RNA-seq) analytical platforms. RESULTS C. thermocellum ATCC 27405 fermentations were conducted with a 5 g/L solid substrate loading of either pretreated switchgrass or Populus. Quantitative saccharification and inductively coupled plasma emission spectroscopy (ICP-ES) for elemental analysis revealed composition differences between biomass substrates, which may have influenced growth and transcriptomic profiles. High quality RNA was prepared for C. thermocellum grown on solid substrates and transcriptome profiles were obtained for two time points during active growth (12 hours and 37 hours postinoculation). A comparison of two transcriptomic analytical techniques, microarray and RNA-seq, was performed and the data analyzed for statistical significance. Large expression differences for cellulosomal genes were not observed. We updated gene predictions for the strain and a small novel gene, Cthe_3383, with a putative AgrD peptide quorum sensing function was among the most highly expressed genes. RNA-seq data also supported different small regulatory RNA predictions over others. The DNA microarray gave a greater number (2,351) of significant genes relative to RNA-seq (280 genes when normalized by the kernel density mean of M component (KDMM) method) in an analysis of variance (ANOVA) testing method with a 5% false discovery rate (FDR). When a 2-fold difference in expression threshold was applied, 73 genes were significantly differentially expressed in common between the two techniques. Sulfate and phosphate uptake/utilization genes, along with genes for a putative efflux pump system were some of the most differentially regulated transcripts when profiles for C. thermocellum grown on either pretreated switchgrass or Populus were compared. CONCLUSIONS Our results suggest that a high degree of agreement in differential gene expression measurements between transcriptomic platforms is possible, but choosing an appropriate normalization regime is essential.
Collapse
Affiliation(s)
- Charlotte M Wilson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Courtney M Johnson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | | | - Loren J Hauser
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Miriam L Land
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Dawn M Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mustafa H Syed
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Arthur J Ragauskas
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jonathan R Mielenz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Steven D Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
6
|
McCarthy FM, Lyons E. From data to function: functional modeling of poultry genomics data. Poult Sci 2013; 92:2519-29. [PMID: 23960137 DOI: 10.3382/ps.2012-02808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the challenges of functional genomics is to create a better understanding of the biological system being studied so that the data produced are leveraged to provide gains for agriculture, human health, and the environment. Functional modeling enables researchers to make sense of these data as it reframes a long list of genes or gene products (mRNA, ncRNA, and proteins) by grouping based upon function, be it individual molecular functions or interactions between these molecules or broader biological processes, including metabolic and signaling pathways. However, poultry researchers have been hampered by a lack of functional annotation data, tools, and training to use these data and tools. Moreover, this lack is becoming more critical as new sequencing technologies enable us to generate data not only for an increasingly diverse range of species but also individual genomes and populations of individuals. We discuss the impact of these new sequencing technologies on poultry research, with a specific focus on what functional modeling resources are available for poultry researchers. We also describe key strategies for researchers who wish to functionally model their own data, providing background information about functional modeling approaches, the data and tools to support these approaches, and the strengths and limitations of each. Specifically, we describe methods for functional analysis using Gene Ontology (GO) functional summaries, functional enrichment analysis, and pathways and network modeling. As annotation efforts begin to provide the fundamental data that underpin poultry functional modeling (such as improved gene identification, standardized gene nomenclature, temporal and spatial expression data and gene product function), tool developers are incorporating these data into new and existing tools that are used for functional modeling, and cyberinfrastructure is being developed to provide the necessary extendibility and scalability for storing and analyzing these data. This process will support the efforts of poultry researchers to make sense of their functional genomics data sets, and we provide here a starting point for researchers who wish to take advantage of these tools.
Collapse
Affiliation(s)
- F M McCarthy
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
7
|
Zimmer AD, Lang D, Buchta K, Rombauts S, Nishiyama T, Hasebe M, Van de Peer Y, Rensing SA, Reski R. Reannotation and extended community resources for the genome of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics 2013; 14:498. [PMID: 23879659 PMCID: PMC3729371 DOI: 10.1186/1471-2164-14-498] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/19/2013] [Indexed: 11/24/2022] Open
Abstract
Background The moss Physcomitrella patens as a model species provides an important reference for early-diverging lineages of plants and the release of the genome in 2008 opened the doors to genome-wide studies. The usability of a reference genome greatly depends on the quality of the annotation and the availability of centralized community resources. Therefore, in the light of accumulating evidence for missing genes, fragmentary gene structures, false annotations and a low rate of functional annotations on the original release, we decided to improve the moss genome annotation. Results Here, we report the complete moss genome re-annotation (designated V1.6) incorporating the increased transcript availability from a multitude of developmental stages and tissue types. We demonstrate the utility of the improved P. patens genome annotation for comparative genomics and new extensions to the cosmoss.org resource as a central repository for this plant “flagship” genome. The structural annotation of 32,275 protein-coding genes results in 8387 additional loci including 1456 loci with known protein domains or homologs in Plantae. This is the first release to include information on transcript isoforms, suggesting alternative splicing events for at least 10.8% of the loci. Furthermore, this release now also provides information on non-protein-coding loci. Functional annotations were improved regarding quality and coverage, resulting in 58% annotated loci (previously: 41%) that comprise also 7200 additional loci with GO annotations. Access and manual curation of the functional and structural genome annotation is provided via the http://www.cosmoss.org model organism database. Conclusions Comparative analysis of gene structure evolution along the green plant lineage provides novel insights, such as a comparatively high number of loci with 5’-UTR introns in the moss. Comparative analysis of functional annotations reveals expansions of moss house-keeping and metabolic genes and further possibly adaptive, lineage-specific expansions and gains including at least 13% orphan genes.
Collapse
Affiliation(s)
- Andreas D Zimmer
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Guo FB, Xiong L, Teng JLL, Yuen KY, Lau SKP, Woo PCY. Re-annotation of protein-coding genes in 10 complete genomes of Neisseriaceae family by combining similarity-based and composition-based methods. DNA Res 2013; 20:273-86. [PMID: 23571676 PMCID: PMC3686433 DOI: 10.1093/dnares/dst009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this paper, we performed a comprehensive re-annotation of protein-coding genes by a systematic method combining composition- and similarity-based approaches in 10 complete bacterial genomes of the family Neisseriaceae. First, 418 hypothetical genes were predicted as non-coding using the composition-based method and 413 were eliminated from the gene list. Both the scatter plot and cluster of orthologous groups (COG) fraction analyses supported the result. Second, from 20 to 400 hypothetical proteins were assigned with functions in each of the 10 strains based on the homology search. Among newly assigned functions, 397 are so detailed to have definite gene names. Third, 106 genes missed by the original annotations were picked up by an ab initio gene finder combined with similarity alignment. Transcriptional experiments validated the effectiveness of this method in Laribacter hongkongensis and Chromobacterium violaceum. Among the 106 newly found genes, some deserve particular interests. For example, 27 transposases were newly found in Neiserria meningitidis alpha14. In Neiserria gonorrhoeae NCCP11945, four new genes with putative functions and definite names (nusG, rpsN, rpmD and infA) were found and homologues of them usually are essential for survival in bacteria. The updated annotations for the 10 Neisseriaceae genomes provide a more accurate prediction of protein-coding genes and a more detailed functional information of hypothetical proteins. It will benefit research into the lifestyle, metabolism, environmental adaption and pathogenicity of the Neisseriaceae species. The re-annotation procedure could be used directly, or after the adaption of detailed methods, for checking annotations of any other bacterial or archaeal genomes.
Collapse
Affiliation(s)
- Feng-Biao Guo
- Department of Microbiology, The University of Hong Kong, Special Administrative Region, Hong Kong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Sim C, Denlinger DL. Juvenile hormone III suppresses forkhead of transcription factor in the fat body and reduces fat accumulation in the diapausing mosquito, Culex pipiens. INSECT MOLECULAR BIOLOGY 2013; 22:1-11. [PMID: 23121109 DOI: 10.1111/j.1365-2583.2012.01166.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Juvenile hormone (JH) controls diverse physiological and developmental events including diapause and nutrient metabolism. The focal point of endocrine regulation in adult reproductive diapause is initiated by a halt of JH synthesis. In diapausing females of the mosquito Culex pipiens, the other key molecular event is the signalling pathway from insulin to forkhead of transcription factor (FOXO). We hypothesized that a halt of JH synthesis is related to activation of FOXO, which results in increasing lipid reserves in the fat body at the onset of the diapause programme. In this study, the full-length sequence of the foxo gene in C. pipiens was characterized, and the protein abundance pattern of the foxo gene product was analyzed by immunoblotting and immunohistochemistry. FOXO was much more abundant in the fat body of diapausing females than in the fat body of nondiapausing females; much lower levels were present in other adult tissues. When we topically applied JH III to diapause-destined females, FOXO was suppressed, and fat accumulation was reduced, suggesting an interaction between JH synthesis and FOXO that is critical for expression of the diapause phenotype.
Collapse
Affiliation(s)
- Cheolho Sim
- Department of Biology, Baylor University, Waco, TX 76798, USA.
| | | |
Collapse
|
10
|
Sekhwal MK, Sharma V, Sarin R. Annotation of glycoside hydrolases in Sorghum bicolor using proteins interaction approach. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2050-2273-2-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Sandford EE, Orr M, Balfanz E, Bowerman N, Li X, Zhou H, Johnson TJ, Kariyawasam S, Liu P, Nolan LK, Lamont SJ. Spleen transcriptome response to infection with avian pathogenic Escherichia coli in broiler chickens. BMC Genomics 2011; 12:469. [PMID: 21951686 PMCID: PMC3190404 DOI: 10.1186/1471-2164-12-469] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/27/2011] [Indexed: 11/10/2022] Open
Abstract
Background Avian pathogenic Escherichia coli (APEC) is detrimental to poultry health and its zoonotic potential is a food safety concern. Regulation of antimicrobials in food-production animals has put greater focus on enhancing host resistance to bacterial infections through genetics. To better define effective mechanism of host resistance, global gene expression in the spleen of chickens, harvested at two times post-infection (PI) with APEC, was measured using microarray technology, in a design that will enable investigation of effects of vaccination, challenge, and pathology level. Results There were 1,101 genes significantly differentially expressed between severely infected and non-infected groups on day 1 PI and 1,723 on day 5 PI. Very little difference was seen between mildly infected and non-infected groups on either time point. Between birds exhibiting mild and severe pathology, there were 2 significantly differentially expressed genes on day 1 PI and 799 on day 5 PI. Groups with greater pathology had more genes with increased expression than decreased expression levels. Several predominate immune pathways, Toll-like receptor, Jak-STAT, and cytokine signaling, were represented between challenged and non-challenged groups. Vaccination had, surprisingly, no detectible effect on gene expression, although it significantly protected the birds from observable gross lesions. Functional characterization of significantly expressed genes revealed unique gene ontology classifications during each time point, with many unique to a particular treatment or class contrast. Conclusions More severe pathology caused by APEC infection was associated with a high level of gene expression differences and increase in gene expression levels. Many of the significantly differentially expressed genes were unique to a particular treatment, pathology level or time point. The present study not only investigates the transcriptomic regulations of APEC infection, but also the degree of pathology associated with that infection. This study will allow for greater discovery into host mechanisms for disease resistance, providing targets for marker assisted selection and advanced drug development.
Collapse
Affiliation(s)
- Erin E Sandford
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Angiuoli SV, Dunning Hotopp JC, Salzberg SL, Tettelin H. Improving pan-genome annotation using whole genome multiple alignment. BMC Bioinformatics 2011; 12:272. [PMID: 21718539 PMCID: PMC3142524 DOI: 10.1186/1471-2105-12-272] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/30/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapid annotation and comparisons of genomes from multiple isolates (pan-genomes) is becoming commonplace due to advances in sequencing technology. Genome annotations can contain inconsistencies and errors that hinder comparative analysis even within a single species. Tools are needed to compare and improve annotation quality across sets of closely related genomes. RESULTS We introduce a new tool, Mugsy-Annotator, that identifies orthologs and evaluates annotation quality in prokaryotic genomes using whole genome multiple alignment. Mugsy-Annotator identifies anomalies in annotated gene structures, including inconsistently located translation initiation sites and disrupted genes due to draft genome sequencing or pseudogenes. An evaluation of species pan-genomes using the tool indicates that such anomalies are common, especially at translation initiation sites. Mugsy-Annotator reports alternate annotations that improve consistency and are candidates for further review. CONCLUSIONS Whole genome multiple alignment can be used to efficiently identify orthologs and annotation problem areas in a bacterial pan-genome. Comparisons of annotated gene structures within a species may show more variation than is actually present in the genome, indicating errors in genome annotation. Our new tool Mugsy-Annotator assists re-annotation efforts by highlighting edits that improve annotation consistency.
Collapse
Affiliation(s)
- Samuel V Angiuoli
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD 20742, USA.
| | | | | | | |
Collapse
|
13
|
Jiang M, Instrell R, Saunders B, Berven H, Howell M. Tales from an academic RNAi screening facility; FAQs. Brief Funct Genomics 2011; 10:227-37. [PMID: 21527443 DOI: 10.1093/bfgp/elr016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNAi technology is now a well-established and widely employed research technique that has been adopted by many researchers for use in large-scale screening campaigns. Here, we offer our experience of genome-wide siRNA screening from the perspective of a facility providing screening as a service to a wide range of researchers with diverse interests and approaches. We have experienced the emotional rollercoaster of screening from the exuberant early promise of a screen, the messy reality of the data through to the recognition of screen data as a potential information goldmine. Here, we use some of the questions we most frequently encounter to highlight the initial concerns of many researchers embarking on a siRNA screen and conclude that an informed view of what can be reasonably expected from a screen is essential to the most effective implementation of the technology. Along the way, we suggest that for this area of research at least, either centralization of the resources or close and open collaboration between interested parties offers distinct advantages.
Collapse
Affiliation(s)
- Ming Jiang
- High-Throughput Screening facility, Cancer Research UK, London Research Institute
| | | | | | | | | |
Collapse
|
14
|
Werner T. Next generation sequencing allows deeper analysis and understanding of genomes and transcriptomes including aspects to fertility. Reprod Fertil Dev 2011; 23:75-80. [PMID: 21366983 DOI: 10.1071/rd10247] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reproduction and fertility are controlled by specific events naturally linked to oocytes, testes and early embryonal tissues. A significant part of these events involves gene expression, especially transcriptional control and alternative transcription (alternative promoters and alternative splicing). While methods to analyse such events for carefully predetermined target genes are well established, until recently no methodology existed to extend such analyses into a genome-wide de novo discovery process. With the arrival of next generation sequencing (NGS) it becomes possible to attempt genome-wide discovery in genomic sequences as well as whole transcriptomes at a single nucleotide level. This does not only allow identification of the primary changes (e.g. alternative transcripts) but also helps to elucidate the regulatory context that leads to the induction of transcriptional changes. This review discusses the basics of the new technological and scientific concepts arising from NGS, prominent differences from microarray-based approaches and several aspects of its application to reproduction and fertility research. These concepts will then be illustrated in an application example of NGS sequencing data analysis involving postimplantation endometrium tissue from cows.
Collapse
Affiliation(s)
- Thomas Werner
- Genomatix Software GmbH, Bayerstr. 85A, D-80335 München, Germany.
| |
Collapse
|
15
|
Hughes MW, Wu P, Jiang TX, Lin SJ, Dong CY, Li A, Hsieh FJ, Widelitz RB, Chuong CM. In search of the Golden Fleece: unraveling principles of morphogenesis by studying the integrative biology of skin appendages. Integr Biol (Camb) 2011; 3:388-407. [PMID: 21437328 DOI: 10.1039/c0ib00108b] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mythological story of the Golden Fleece symbolizes the magical regenerative power of skin appendages. Similar to the adventurous pursuit of the Golden Fleece by the multi-talented Argonauts, today we also need an integrated multi-disciplined approach to understand the cellular and molecular processes during development, regeneration and evolution of skin appendages. To this end, we have explored several aspects of skin appendage biology that contribute to the Turing activator/inhibitor model in feather pattern formation, the topo-biological arrangement of stem cells in organ shape determination, the macro-environmental regulation of stem cells in regenerative hair waves, and potential novel molecular pathways in the morphological evolution of feathers. Here we show our current integrative biology efforts to unravel the complex cellular behavior in patterning stem cells and the control of regional specificity in skin appendages. We use feather/scale tissue recombination to demonstrate the timing control of competence and inducibility. Feathers from different body regions are used to study skin regional specificity. Bioinformatic analyses of transcriptome microarrays show the potential involvement of candidate molecular pathways. We further show Hox genes exhibit some region specific expression patterns. To visualize real time events, we applied time-lapse movies, confocal microscopy and multiphoton microscopy to analyze the morphogenesis of cultured embryonic chicken skin explants. These modern imaging technologies reveal unexpectedly complex cellular flow and organization of extracellular matrix molecules in three dimensions. While these approaches are in preliminary stages, this perspective highlights the challenges we face and new integrative tools we will use. Future work will follow these leads to develop a systems biology view and understanding in the morphogenetic principles that govern the development and regeneration of ectodermal organs.
Collapse
Affiliation(s)
- Michael W Hughes
- Department of Pathology, School of Medicine, University of Southern California, HMR 315B, 2011 Zonal Ave., Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
McCarthy FM, Gresham CR, Buza TJ, Chouvarine P, Pillai LR, Kumar R, Ozkan S, Wang H, Manda P, Arick T, Bridges SM, Burgess SC. AgBase: supporting functional modeling in agricultural organisms. Nucleic Acids Res 2010; 39:D497-506. [PMID: 21075795 PMCID: PMC3013706 DOI: 10.1093/nar/gkq1115] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AgBase (http://www.agbase.msstate.edu/) provides resources to facilitate modeling of functional genomics data and structural and functional annotation of agriculturally important animal, plant, microbe and parasite genomes. The website is redesigned to improve accessibility and ease of use, including improved search capabilities. Expanded capabilities include new dedicated pages for horse, cat, dog, cotton, rice and soybean. We currently provide 590 240 Gene Ontology (GO) annotations to 105 454 gene products in 64 different species, including GO annotations linked to transcripts represented on agricultural microarrays. For many of these arrays, this provides the only functional annotation available. GO annotations are available for download and we provide comprehensive, species-specific GO annotation files for 18 different organisms. The tools available at AgBase have been expanded and several existing tools improved based upon user feedback. One of seven new tools available at AgBase, GOModeler, supports hypothesis testing from functional genomics data. We host several associated databases and provide genome browsers for three agricultural pathogens. Moreover, we provide comprehensive training resources (including worked examples and tutorials) via links to Educational Resources at the AgBase website.
Collapse
Affiliation(s)
- Fiona M McCarthy
- Department of Basic Sciences, College of Veterinary Medicine, PO Box 6100, Mississippi State University, MS 39762, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|