1
|
Küffer S, Müller D, Marx A, Ströbel P. Non-Mutational Key Features in the Biology of Thymomas. Cancers (Basel) 2024; 16:942. [PMID: 38473304 DOI: 10.3390/cancers16050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Thymomas (THs) are a unique group of heterogeneous tumors of the thymic epithelium. In particular, the subtypes B2 and B3 tend to be aggressive and metastatic. Radical tumor resection remains the only curative option for localized tumors, while more advanced THs require multimodal treatment. Deep sequencing analyses have failed to identify known oncogenic driver mutations in TH, with the notable exception of the GTF2I mutation, which occurs predominantly in type A and AB THs. However, there are multiple alternative non-mutational mechanisms (e.g., perturbed thymic developmental programs, metabolism, non-coding RNA networks) that control cellular behavior and tumorigenesis through the deregulation of critical molecular pathways. Here, we attempted to show how the results of studies investigating such alternative mechanisms could be integrated into a current model of TH biology. This model could be used to focus ongoing research and therapeutic strategies.
Collapse
Affiliation(s)
- Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Denise Müller
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
2
|
Fujimori S, Ohigashi I. The role of thymic epithelium in thymus development and age-related thymic involution. THE JOURNAL OF MEDICAL INVESTIGATION 2024; 71:29-39. [PMID: 38735722 DOI: 10.2152/jmi.71.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The establishment of an adaptive immune system is critical for protecting our bodies from neoplastic cancers and invading pathogens such as viruses and bacteria. As a primary lymphoid organ, the thymus generates lymphoid T cells that play a major role in the adaptive immune system. T cell generation in the thymus is controlled by interactions between thymocytes and other thymic cells, primarily thymic epithelial cells. Thus, the normal development and function of thymic epithelial cells are important for the generation of immunocompetent and self-tolerant T cells. On the other hand, the degeneration of the thymic epithelium due to thymic aging causes thymic involution, which is associated with the decline of adaptive immune function. Herein we summarize basic and current knowledge of the development and function of thymic epithelial cells and the mechanism of thymic involution. J. Med. Invest. 71 : 29-39, February, 2024.
Collapse
Affiliation(s)
- Sayumi Fujimori
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
3
|
Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal Transduct Target Ther 2023; 8:239. [PMID: 37291105 PMCID: PMC10248351 DOI: 10.1038/s41392-023-01502-8] [Citation(s) in RCA: 249] [Impact Index Per Article: 124.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/26/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Aging is characterized by systemic chronic inflammation, which is accompanied by cellular senescence, immunosenescence, organ dysfunction, and age-related diseases. Given the multidimensional complexity of aging, there is an urgent need for a systematic organization of inflammaging through dimensionality reduction. Factors secreted by senescent cells, known as the senescence-associated secretory phenotype (SASP), promote chronic inflammation and can induce senescence in normal cells. At the same time, chronic inflammation accelerates the senescence of immune cells, resulting in weakened immune function and an inability to clear senescent cells and inflammatory factors, which creates a vicious cycle of inflammation and senescence. Persistently elevated inflammation levels in organs such as the bone marrow, liver, and lungs cannot be eliminated in time, leading to organ damage and aging-related diseases. Therefore, inflammation has been recognized as an endogenous factor in aging, and the elimination of inflammation could be a potential strategy for anti-aging. Here we discuss inflammaging at the molecular, cellular, organ, and disease levels, and review current aging models, the implications of cutting-edge single cell technologies, as well as anti-aging strategies. Since preventing and alleviating aging-related diseases and improving the overall quality of life are the ultimate goals of aging research, our review highlights the critical features and potential mechanisms of inflammation and aging, along with the latest developments and future directions in aging research, providing a theoretical foundation for novel and practical anti-aging strategies.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China
| | - Chentao Li
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Wanying Zhang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yanan Wang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Pengxu Qian
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Jalilian I, Muppala S, Ali M, Anderson JD, Phinney B, Salemi M, Wilmarth PA, Murphy CJ, Thomasy SM, Raghunathan V. Cell derived matrices from bovine corneal endothelial cells as a model to study cellular dysfunction. Exp Eye Res 2023; 226:109303. [PMID: 36343671 PMCID: PMC11349083 DOI: 10.1016/j.exer.2022.109303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/12/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Fuchs endothelial corneal dystrophy (FECD) is a progressive corneal disease that impacts the structure and stiffness of the Descemet's membrane (DM), the substratum for corneal endothelial cells (CECs). These structural alterations of the DM could contribute to the loss of the CECs resulting in corneal edema and blindness. Oxidative stress and transforming growth factor-β (TGF-β) pathways have been implicated in endothelial cell loss and endothelial to mesenchymal transition of CECs in FECD. Ascorbic acid (AA) is found at high concentrations in FECD and its impact on CEC survival has been investigated. However, how TGF-β and AA effect the composition and rigidity of the CEC's matrix remains unknown. METHODS In this study, we investigated the effect of AA, TGF-β1 and TGF-β3 on the deposition, ultrastructure, stiffness, and composition of the extracellular matrix (ECM) secreted by primary bovine corneal endothelial cells (BCECs). RESULTS Immunofluorescence and electron microscopy post-decellularization demonstrated a robust deposition and distinct structure of ECM in response to treatments. AFM measurements showed that the modulus of the matrix in BCECs treated with TGF-β1 and TGF-β3 was significantly lower than the controls. There was no difference in the stiffness of the matrix between the AA-treated cell and controls. Gene Ontology analysis of the proteomics results revealed that AA modulates the oxidative stress pathway in the matrix while TGF-β induces the expression of matrix proteins collagen IV, laminin, and lysyl oxidase homolog 1. CONCLUSIONS Molecular pathways identified in this study demonstrate the differential role of soluble factors in the pathogenesis of FECD.
Collapse
Affiliation(s)
- Iman Jalilian
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Santoshi Muppala
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Maryam Ali
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Johnathon D Anderson
- Department of Otolaryngology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Brett Phinney
- Proteomics Core, University of California, Davis Genome Center, Davis, CA, 95616, USA
| | - Michelle Salemi
- Proteomics Core, University of California, Davis Genome Center, Davis, CA, 95616, USA
| | - Phillip A Wilmarth
- Proteomics Shared Resources, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, Sacramento, CA, 95817, USA
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Ophthalmology & Vision Science, School of Medicine, UC Davis Medical Center, Sacramento, CA, 95817, USA.
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, College of Optometry, University of Houston, Houston, TX, 77204, USA; Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
5
|
Zhang X, Schalke B, Kvell K, Kriegsmann K, Kriegsmann M, Graeter T, Preissler G, Ott G, Kurz K, Bulut E, Ströbel P, Marx A, Belharazem D. WNT4 overexpression and secretion in thymic epithelial tumors drive an autocrine loop in tumor cells in vitro. Front Oncol 2022; 12:920871. [PMID: 35965500 PMCID: PMC9372913 DOI: 10.3389/fonc.2022.920871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundWNT4-driven non-canonical signaling is crucial for homeostasis and age-related involution of the thymus. Abnormal WNT signaling is important in many cancers, but the role of WNT signaling in thymic tumors is largely unknown.Materials & MethodsExpression and function of WNT4 and FZD6 were analyzed using qRT–PCR, Western blot, ELISA, in biopsies of non-neoplastic thymi (NT), thymoma and thymic carcinomas. ShRNA techniques and functional assays were used in primary thymic epithelial cells (pTECs) and TC cell line 1889c. Cells were conventionally (2D) grown and in three-dimensional (3D) spheroids.ResultsIn biopsy, WHO classified B3 thymomas and TCs showed increased WNT4 expression compared with NTs. During short-term 2D culture, WNT4 expression and secretion declined in neoplastic pTECs but not in 3D spheroids or medium supplemented with recombinant WNT4 cultures. Under the latter condition, the growth of pTECs was accompanied by increased expression of non-canonical targets RAC1 and JNK. Down-regulation of WNT4 by shRNA induced cell death in pTECs derived from B3 thymomas and led to decreased RAC1, but not JNK protein phosphorylation. Pharmacological inhibition of NF-κB decreased both RAC1 and JNK phosphorylation in neoplastic pTECs.ConclusionsLack of the age-related decline of non-canonical WNT4 expression in TETs and restoration of declining WNT4 expression through exogeneous WNT4 or 3D culture of pTECs hints at an oncogenic role of WNT4 in TETs and is compatible with the WNT4 autocrine loop model. Crosstalk between WNT4 and NF-κB signaling may present a promising target for combined interventions in TETs.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Institute of Pathology and Medical Research Center, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pecs, Pecs, Hungary
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Mark Kriegsmann
- Translational Lung Research Centre Heidelberg, German Centre for Lung Research, Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Thomas Graeter
- Department of Thoracic Surgery, University Medical Centre Erlangen, Erlangen, Germany
| | - Gerhard Preissler
- Department of Thoraxic Surgery, Clinic Schillerhöhe, Robert-Bosch-Hospital, Gerlingen, Löwenstein, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Hospital, Stuttgart, Germany
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Katrin Kurz
- Department of Clinical Pathology, Robert-Bosch-Hospital, Stuttgart, Germany
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Elena Bulut
- Department of Thoraxic Surgery, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Alexander Marx
- Institute of Pathology and Medical Research Center, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Djeda Belharazem
- Institute of Pathology and Medical Research Center, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- *Correspondence: Djeda Belharazem,
| |
Collapse
|
6
|
Liang Z, Dong X, Zhang Z, Zhang Q, Zhao Y. Age-related thymic involution: Mechanisms and functional impact. Aging Cell 2022; 21:e13671. [PMID: 35822239 PMCID: PMC9381902 DOI: 10.1111/acel.13671] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022] Open
Abstract
The thymus is the primary immune organ responsible for generating self‐tolerant and immunocompetent T cells. However, the thymus gradually involutes during early life resulting in declined naïve T‐cell production, a process known as age‐related thymic involution. Thymic involution has many negative impacts on immune function including reduced pathogen resistance, high autoimmunity incidence, and attenuated tumor immunosurveillance. Age‐related thymic involution leads to a gradual reduction in thymic cellularity and thymic stromal microenvironment disruption, including loss of definite cortical‐medullary junctions, reduction of cortical thymic epithelial cells and medullary thymic epithelial cells, fibroblast expansion, and an increase in perivascular space. The compromised thymic microenvironment in aged individuals substantially disturbs thymocyte development and differentiation. Age‐related thymic involution is regulated by many transcription factors, micro RNAs, growth factors, cytokines, and other factors. In this review, we summarize the current understanding of age‐related thymic involution mechanisms and effects.
Collapse
Affiliation(s)
- Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Provin N, Giraud M. Differentiation of Pluripotent Stem Cells Into Thymic Epithelial Cells and Generation of Thymic Organoids: Applications for Therapeutic Strategies Against APECED. Front Immunol 2022; 13:930963. [PMID: 35844523 PMCID: PMC9277542 DOI: 10.3389/fimmu.2022.930963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/26/2022] [Indexed: 01/01/2023] Open
Abstract
The thymus is a primary lymphoid organ essential for the induction of central immune tolerance. Maturing T cells undergo several steps of expansion and selection mediated by thymic epithelial cells (TECs). In APECED and other congenital pathologies, a deficiency in genes that regulate TEC development or their ability to select non auto-reactive thymocytes results in a defective immune balance, and consequently in a general autoimmune syndrome. Restoration of thymic function is thus crucial for the emergence of curative treatments. The last decade has seen remarkable progress in both gene editing and pluripotent stem cell differentiation, with the emergence of CRISPR-based gene correction, the trivialization of reprogramming of somatic cells to induced pluripotent stem cells (iPSc) and their subsequent differentiation into multiple cellular fates. The combination of these two approaches has paved the way to the generation of genetically corrected thymic organoids and their use to control thymic genetic pathologies affecting self-tolerance. Here we review the recent advances in differentiation of iPSc into TECs and the ability of the latter to support a proper and efficient maturation of thymocytes into functional and non-autoreactive T cells. A special focus is given on thymus organogenesis and pathway modulation during iPSc differentiation, on the impact of the 2/3D structure on the generated TECs, and on perspectives for therapeutic strategies in APECED based on patient-derived iPSc corrected for AIRE gene mutations.
Collapse
|
8
|
Fujimori S, Ohigashi I, Abe H, Matsushita Y, Katagiri T, Taketo MM, Takahama Y, Takada S. Fine-tuning of β-catenin in mouse thymic epithelial cells is required for postnatal T-cell development. eLife 2022; 11:69088. [PMID: 35042581 PMCID: PMC8769649 DOI: 10.7554/elife.69088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/05/2022] [Indexed: 11/26/2022] Open
Abstract
In the thymus, the thymic epithelium provides a microenvironment essential for the development of functionally competent and self-tolerant T cells. Previous findings showed that modulation of Wnt/β-catenin signaling in mouse thymic epithelial cells (TECs) disrupts embryonic thymus organogenesis. However, the role of β-catenin in TECs for postnatal T-cell development remains to be elucidated. Here, we analyzed gain-of-function (GOF) and loss-of-function (LOF) of β-catenin highly specific in mouse TECs. We found that GOF of β-catenin in TECs results in severe thymic dysplasia and T-cell deficiency beginning from the embryonic period. By contrast, LOF of β-catenin in TECs reduces the number of cortical TECs and thymocytes modestly and only postnatally. These results indicate that fine-tuning of β-catenin expression within a permissive range is required for TECs to generate an optimal microenvironment to support postnatal T-cell development.
Collapse
Affiliation(s)
- Sayumi Fujimori
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University
- National Institute for Basic Biology, National Institutes of Natural Sciences
| | - Izumi Ohigashi
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, Tokushima University
| | - Hayato Abe
- Student Laboratory, School of Medicine, Tokushima University
| | - Yosuke Matsushita
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University
| | - Makoto M Taketo
- Institute for Advancement of Clinical and Translational Science, Kyoto University Hospital
| | - Yousuke Takahama
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health
| | - Shinji Takada
- National Institute for Basic Biology, National Institutes of Natural Sciences
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences
- Department of Basic Biology in the School of Life Science, The Graduate University for Advanced Studies (SOKENDAI)
| |
Collapse
|
9
|
Hu C, Zhang K, Jiang F, Wang H, Shao Q. Epigenetic modifications in thymic epithelial cells: an evolutionary perspective for thymus atrophy. Clin Epigenetics 2021; 13:210. [PMID: 34819170 PMCID: PMC8612001 DOI: 10.1186/s13148-021-01197-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023] Open
Abstract
Background The thymic microenvironment is mainly comprised of thymic epithelial cells, the cytokines, exosomes, surface molecules, and hormones from the cells, and plays a vital role in the development, differentiation, maturation and homeostasis of T lymphocytes. However, the thymus begins to degenerate as early as the second year of life and continues through aging in human beings, leading to a decreased output of naïve T cells, the limited TCR diversity and an expansion of monoclonal memory T cells in the periphery organs. These alternations will reduce the adaptive immune response to tumors and emerging infectious diseases, such as COVID-19, also it is easier to suffer from autoimmune diseases in older people. In the context of global aging, it is important to investigate and clarify the causes and mechanisms of thymus involution. Main body Epigenetics include histone modification, DNA methylation, non-coding RNA effects, and chromatin remodeling. In this review, we discuss how senescent thymic epithelial cells determine and control age-related thymic atrophy, how this process is altered by epigenetic modification. How the thymus adipose influences the dysfunctions of the thymic epithelial cells, and the prospects of targeting thymic epithelial cells for the treatment of thymus atrophy. Conclusion Epigenetic modifications are emerging as key regulators in governing the development and senescence of thymic epithelial cells. It is beneficial to re-establish effective thymopoiesis, identify the potential therapeutic strategy and rejuvenate the immune function in the elderly.
Collapse
Affiliation(s)
- Cexun Hu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Keyu Zhang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Feng Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Hui Wang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Qixiang Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China. .,Jiangsu College of Nursing, School of Medical Science and Laboratory Medicine, Huai'an, 223002, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Chen L, Ren M, Cao J, Sang H, Chen H, Xu A, Zhao M. Zuogui Wan alleviated maternal kidney-yin deficiency-induced thymic epithelial cell dysfunction in newborn rats through Wnt/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114337. [PMID: 34146629 DOI: 10.1016/j.jep.2021.114337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/15/2021] [Accepted: 06/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kidney-yin deficiency (KYD) during pregnancy is common and associated with possibility of thymus hypoplasia in neonates. Zuogui Wan (ZGW) is a classic traditional medicine to treat KYD. AIM OF STUDY The Wnt/β-catenin signaling pathway is essential for thymic epithelial cell (TEC) viability, function and for thymus integrity. We evaluated whether maternal diets with ZGW in KYD rats ameliorates epithelial cell dysfunction in the fetal thymus, and investigated its underlying mechanism in which the Wnt/β-catenin signaling pathway is involved. MATERIALS AND METHODS Rats were randomly assigned to four groups (n = 8). Two experimental groups received KYD induction with or without ZGW supplementation. The other 2 vehicle groups were sham operated and administrated with normal saline or ZGW. KYD was established using periodically chronic shaken stimulus and threaten stress. Success of the model induction was evaluated by the general observation, changing of the body weight and plasma thyroxine level. Then, pregnant of vehicle and KYD rats were fed with or without ZGW-supplemented diet throughout the F1 gestation. Postnatal thymi samples were obtained after delivery for histological examination. In vitro, TECs of the newborn rats whose mother suffered KYD were isolated, and cultured using the serum containing ZGW with or without the supplement of Wnt4/β-catenin pathway inhibitor ICG-001. Cell viability was evaluated by CCK-8 assay. Meanwhile, the thymi tissues and TECs were collected for biochemical analysis. Levels of thymosin β4 (TMSβ4) and thymosin α1 (Tα1) were detected by ELISA assay. The mRNA and protein expression of Wnt4, β-catenin, and Foxn1 were determined by RT-qPCR and Western blot respectively. RESULTS In vivo, KYD resulted in significantly increased apoptosis of TECs and atrophy of the thymi, especially in the medullary zone. The morphological changes observed in KYD rats were ameliorated by ZGW treatment. Meanwhile, the decreased TMSβ4, Tα1, Wnt4, β-catenin, and Foxn1 levels in KYD rats were also significantly alleviated by ZGW administration. In vitro, elevated TMSβ4 and Tα1 levels accompanied with upregulated Wnt4, β-catenin, and Foxn1 expressions in the TECs were observed after ZGW intervention, however, which were significantly downregulated by ICG-001 supplement. CONCLUSIONS Maternal kidney-yin deficiency could result in TEC dysfunction in newborn rats. ZGW was able to improve the growth and development of TEC, potentially by regulating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Longyun Chen
- 1 Huangjiahu Road, Basic Medical Division, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Meirong Ren
- 1 Huangjiahu Road, Basic Medical Division, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Jigang Cao
- 1 Huangjiahu Road, Basic Medical Division, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Hongling Sang
- 1 Huangjiahu Road, Clinical Division, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Huimin Chen
- 1 Huangjiahu Road, Basic Medical Division, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Anli Xu
- 1 Huangjiahu Road, Basic Medical Division, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| | - Min Zhao
- 1 Huangjiahu Road, Basic Medical Division, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China.
| |
Collapse
|
11
|
Stojić-Vukanić Z, Pilipović I, Arsenović-Ranin N, Dimitrijević M, Leposavić G. Sex-specific remodeling of T-cell compartment with aging: Implications for rat susceptibility to central nervous system autoimmune diseases. Immunol Lett 2021; 239:42-59. [PMID: 34418487 DOI: 10.1016/j.imlet.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/15/2022]
Abstract
The incidence of multiple sclerosis (MS) and susceptibility of animals to experimental autoimmune encephalomyelitis (EAE), the most commonly used experimental model of MS, decrease with aging. Generally, autoimmune diseases develop as the ultimate outcome of an imbalance between damaging immune responses against self and regulatory immune responses (keeping the former under control). Thus, in this review the age-related changes possibly underlying this balance were discussed. Specifically, considering the central role of T cells in MS/EAE, the impact of aging on overall functional capacity (reflecting both overall count and individual functional cell properties) of self-reactive conventional T cells (Tcons) and FoxP3+ regulatory T cells (Tregs), as the most potent immunoregulatory/suppressive cells, was analyzed, as well. The analysis encompasses three distinct compartments: thymus (the primary lymphoid organ responsible for the elimination of self-reactive T cells - negative selection and the generation of Tregs, compensating for imperfections of the negative selection), peripheral blood/lymphoid tissues ("afferent" compartment), and brain/spinal cord tissues ("target" compartment). Given that the incidence of MS and susceptibility of animals to EAE are greater in women/females than in age-matched men/males, sex as independent variable was also considered. In conclusion, with aging, sex-specific alterations in the balance of self-reactive Tcons/Tregs are likely to occur not only in the thymus/"afferent" compartment, but also in the "target" compartment, reflecting multifaceted changes in both T-cell types. Their in depth understanding is important not only for envisaging effects of aging, but also for designing interventions to slow-down aging without any adverse effect on incidence of autoimmune diseases.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, University of Belgrade - Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| |
Collapse
|
12
|
Budamagunta V, Foster TC, Zhou D. Cellular senescence in lymphoid organs and immunosenescence. Aging (Albany NY) 2021; 13:19920-19941. [PMID: 34382946 PMCID: PMC8386533 DOI: 10.18632/aging.203405] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Immunosenescence is a multi-faceted phenomenon at the root of age-associated immune dysfunction. It can lead to an array of pathological conditions, including but not limited to a decreased capability to surveil and clear senescent cells (SnCs) and cancerous cells, an increased autoimmune responses leading to tissue damage, a reduced ability to tackle pathogens, and a decreased competence to illicit a robust response to vaccination. Cellular senescence is a phenomenon by which oncogene-activated, stressed or damaged cells undergo a stable cell cycle arrest. Failure to efficiently clear SnCs results in their accumulation in an organism as it ages. SnCs actively secrete a myriad of molecules, collectively called senescence-associated secretory phenotype (SASP), which are factors that cause dysfunction in the neighboring tissue. Though both cellular senescence and immunosenescence have been studied extensively and implicated in various pathologies, their relationship has not been greatly explored. In the wake of an ongoing pandemic (COVID-19) that disproportionately affects the elderly, immunosenescence as a function of age has become a topic of great importance. The goal of this review is to explore the role of cellular senescence in age-associated lymphoid organ dysfunction and immunosenescence, and provide a framework to explore therapies to rejuvenate the aged immune system.
Collapse
Affiliation(s)
- Vivekananda Budamagunta
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Thomas C Foster
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Genetics and Genomics Graduate Program, Genetics Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
13
|
Wang X, Li Y, Gong B, Zhang K, Ma Y, Li Y. miR-199b-5p enhances the proliferation of medullary thymic epithelial cells via regulating Wnt signaling by targeting Fzd6. Acta Biochim Biophys Sin (Shanghai) 2021; 53:36-45. [PMID: 33313638 DOI: 10.1093/abbs/gmaa145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 11/14/2022] Open
Abstract
Thymic epithelial cells (TECs) are essential regulators of T-cell development and selection. miRNAs play critical roles in regulating TEC proliferation during the process of thymic aging. Our previous studies revealed that miR-199b-5p was upregulated in TECs from 1- to 3-month-old mice. But its function and potential mechanism are not clear. We hypothesized that miR-199b-5p may play an important role in age-related thymus involution via targeting some genes. To confirm it, the murine thymic epithelial cell line 1 (MTEC1) cells were used. Our results showed that overexpression of miR-199b-5p can enhance MTEC1 cell proliferation. On the contrary, repression of miR-199b-5p can inhibit MTEC1 cell proliferation. Meanwhile, it was confirmed that frizzled receptor 6 (Fzd6) is the direct target gene of miR-199b-5p. Furthermore, overexpression of miR-199b-5p can upregulate the expressions of β-catenin, Tcf7, Wnt4, and C-myc to activate Wnt signaling and cell cycle signaling. Silence of Fzd6 and co-transfection with siFzd6 and miR-199b-5p mimic/inhibitor confirmed that the biological function of miR-199b-5p is indeed by targeting Fzd6 in medullary TECs. Overall, miR-199b-5p is an important regulator in medullary TEC proliferation through targeting Fzd6 to activate Wnt signaling and cell cycle signaling. Our data indicate that miR-199b-5p may block the process of thymic aging and be a potential therapeutic target for thymus involution.
Collapse
Affiliation(s)
| | | | - Bishuang Gong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kaizhao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongjiang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yugu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Tang Y, Zhang X, Ge W, Zhou Y. Knockdown of LAP2α inhibits osteogenic differentiation of human adipose-derived stem cells by activating NF-κB. Stem Cell Res Ther 2020; 11:263. [PMID: 32611381 PMCID: PMC7329510 DOI: 10.1186/s13287-020-01774-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lamina-associated polypeptide 2α (LAP2α) is a nucleoplasmic protein that has been involved in the regulation of the cell cycle, gene transcription, and adult stem cell function. LAP2α down-regulation is linked to age-related osteoporosis and bone deformities; however, the underlying mechanisms remain obscure. The present study aimed to elucidate the function of LAP2α in the osteogenic differentiation of human adipose-derived stem cells (hASCs), which are attractive sources for bone tissue engineering. METHODS The expression of LAP2α during the osteogenic differentiation of hASCs was detected firstly. A loss of function investigation was then carried out to characterize the function of LAP2α in osteogenic differentiation of hASCs both in vitro and in vivo. Moreover, RNA-sequences, western blotting, and confocal analyses were performed to clarify the molecular mechanism of LAP2α-regulated osteogenesis. RESULTS We found that LAP2α expression was upregulated upon osteogenic induction. Both in vitro and in vivo experiments indicated that LAP2α knockdown resulted in impaired osteogenic differentiation of hASCs. Mechanistically, we revealed that LAP2α deficiency activated nuclear factor kappa B (NF-κB) signaling by controlling the cytoplasmic-nuclear translocation of p65. CONCLUSIONS Collectively, our findings revealed that LAP2α functions as an essential regulator for osteogenesis of hASCs by modulating NF-κB signaling, thus providing novel insights for mesenchymal stem cell-mediated bone tissue engineering.
Collapse
Affiliation(s)
- Yiman Tang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,Fourth Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Wenshu Ge
- National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China. .,Department of General Dentistry II, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
15
|
Chen R, Wang K, Feng Z, Zhang MY, Wu J, Geng JJ, Chen ZN. CD147 deficiency in T cells prevents thymic involution by inhibiting the EMT process in TECs in the presence of TGFβ. Cell Mol Immunol 2020; 18:171-181. [PMID: 31900457 PMCID: PMC7853129 DOI: 10.1038/s41423-019-0353-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022] Open
Abstract
Thymic involution during aging is a major cause of decreased T-cell production and reduced immunity. Here, we show that the loss of CD147 on T cells prevents thymic senescence, resulting in slowed shrinkage of the thymus with age and increased production of naive T cells. This phenotype is the result of slowing of the epithelial–mesenchymal transition (EMT) process in thymic epithelial cells (TECs), which eventually leads to reduced adipocyte accumulation. In an in vitro coculture system, we found that TGFβ is an important factor in the EMT process in TECs and that it can reduce the expression of E-cadherin through p-Smad2/FoxC2 signaling. Moreover, CD147 on T cells can accelerate the decline in E-cadherin expression by interacting with Annexin A2 on TECs. In the presence of TGFβ, Annexin A2 and E-cadherin colocalize on TECs. However, CD147 on T cells competitively binds to Annexin A2 on TECs, leading to the isolation of E-cadherin. Then, the isolated E-cadherin is easily phosphorylated by phosphorylated Src kinase, the phosphorylation of which was induced by TGFβ, and finally, p-E-cadherin is degraded. Thus, in the thymus, the interaction between T cells and TECs contributes to thymic involution with age. In this study, we illuminate the mechanism underlying the triggering of the EMT process in TECs and show that inhibiting TGFβ and/or CD147 may serve as a strategy to hinder age-related thymic involution.
Collapse
Affiliation(s)
- Ruo Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong, China.,National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China
| | - Zhuan Feng
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China
| | - Ming-Yang Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China
| | - Jiao Wu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China
| | - Jie-Jie Geng
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China.
| | - Zhi-Nan Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong, China. .,National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China.
| |
Collapse
|
16
|
Nacka-Aleksić M, Pilipović I, Kotur-Stevuljević J, Petrović R, Sopta J, Leposavić G. Sexual dimorphism in rat thymic involution: a correlation with thymic oxidative status and inflammation. Biogerontology 2019; 20:545-569. [DOI: 10.1007/s10522-019-09816-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/12/2019] [Indexed: 01/05/2023]
|
17
|
Banfai K, Garai K, Ernszt D, Pongracz JE, Kvell K. Transgenic Exosomes for Thymus Regeneration. Front Immunol 2019; 10:862. [PMID: 31110503 PMCID: PMC6499203 DOI: 10.3389/fimmu.2019.00862] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 04/04/2019] [Indexed: 01/02/2023] Open
Abstract
During senescence, Wnt4 expression is down-regulated (unlike their Frizzled receptors), while PPARgamma expression increases in the thymus. Together, these changes allow for thymic degeneration to occur, observed as adipose involution. However, when restored, Wnt4 can efficiently counteract PPARgamma and prevent thymic senescence from developing. The Wnt-pathway activator miR27b has also been reported to inhibit PPARgamma. Our goal was to evaluate the Wnt4 and miR27b levels of Wnt4-transgenic thymic epithelial cell (TEC)-derived exosomes, show their regenerative potential against age-related thymic degeneration, and visualize their binding and distribution both in vitro and in vivo. First, transgenic exosomes were harvested from Wnt4 over-expressing TECs and analyzed by transmission electron microscopy. This unveiled exosomes ranging from 50 to 100 nm in size. Exosomal Wnt4 protein content was assayed by ELISA, while miR27b levels were measured by TaqMan qPCR, both showing elevated levels in transgenic exosomes relative to controls. Of note, kit-purified TEI (total exosome isolate) outperformed UC (ultracentrifugation)-purified exosomes in these parameters. In addition, a significant portion of exosomal Wnt4 proved to be displayed on exosomal surfaces. For functional studies, steroid (Dexamethasone or DX)-induced TECs were used as cellular aging models in which DX-triggered cellular aging was efficiently prevented by transgenic exosomes. Finally, DiI lipid-stained exosomes were applied on the mouse thymus sections and also iv-injected into mice, for in vitro binding and in vivo tracking, respectively. We have observed distinct staining patterns using DiI lipid-stained transgenic exosomes on sections of young and aging murine thymus samples. Moreover, in vivo injected DiI lipid-stained transgenic exosomes showed detectable homing to the thymus. Of note, Wnt4-transgenic exosome homing outperformed control (Wnt5a-transgenic) exosome homing. In summary, our findings indicate that exosomal Wnt4 and miR27b can efficiently counteract thymic adipose involution. Although extrapolation of mouse results to the human setting needs caution, our results appoint transgenic TEC exosomes as promising tools of immune rejuvenation and contribute to the characterization of the immune-modulatory effects of extracellular vesicles in the context of regenerative medicine.
Collapse
Affiliation(s)
- Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.,Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.,Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - David Ernszt
- Szentagothai Research Center, University of Pécs, Pécs, Hungary.,Faculty of Medicine, Institute of Physiology, University of Pécs, Pécs, Hungary
| | - Judit E Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.,Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.,Szentagothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
18
|
Banfai K, Ernszt D, Pap A, Bai P, Garai K, Belharazem D, Pongracz JE, Kvell K. "Beige" Cross Talk Between the Immune System and Metabolism. Front Endocrinol (Lausanne) 2019; 10:369. [PMID: 31275241 PMCID: PMC6591453 DOI: 10.3389/fendo.2019.00369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022] Open
Abstract
With thymic senescence the epithelial network shrinks to be replaced by adipose tissue. Transcription factor TBX-1 controls thymus organogenesis, however, the same TBX-1 has also been reported to orchestrate beige adipose tissue development. Given these different roles of TBX-1, we have assessed if thymic TBX-1 expression persists and demonstrates this dualism during adulthood. We have also checked whether thymic adipose involution could yield beige adipose tissue. We have used adult mouse and human thymus tissue from various ages to evaluate the kinetics of TBX-1 expression, as well as mouse (TEP1) and human (1889c) thymic epithelial cells (TECs) for our studies. Electron micrographs show multi-locular lipid deposits typical of beige adipose cells. Histology staining shows the accumulation of neutral lipid deposits. qPCR measurements show persistent and/or elevating levels of beige-specific and beige-indicative markers (TBX-1, EAR-2, UCP-1, PPAR-gamma). We have performed miRNome profiling using qPCR-based QuantStudio platform and amplification-free NanoString platform. We have observed characteristic alterations, including increased miR21 level (promoting adipose tissue development) and decreased miR34a level (bias toward beige adipose tissue differentiation). Finally, using the Seahorse metabolic platform we have recorded a metabolic profile (OCR/ECAR ratio) indicative of beige adipose tissue. In summary, our results support that thymic adipose tissue emerging with senescence is bona fide beige adipose tissue. Our data show how the borders blur between a key immune tissue (the thymus) and a key metabolic tissue (beige adipose tissue) with senescence. Our work contributes to the understanding of cross talk between the immune system and metabolism.
Collapse
Affiliation(s)
- Krisztina Banfai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - David Ernszt
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
- Department of Physiology, Medical School, University of Pécs, Pécs, Hungary
| | - Attila Pap
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Bai
- Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary
- MTA-DE Lendulet Laboratory of Cellular Metabolism, Debrecen, Hungary
- Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Kitti Garai
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Djeda Belharazem
- Department of Pathology, University Hospital of Mannheim, Mannheim, Germany
| | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
- Szentagothai Research Center, University of Pécs, Pécs, Hungary
- *Correspondence: Krisztian Kvell
| |
Collapse
|
19
|
Brown BA, Williams H, Bond AR, Angelini GD, Johnson JL, George SJ. Carotid artery ligation induced intimal thickening and proliferation is unaffected by ageing. J Cell Commun Signal 2018; 12:529-537. [PMID: 29185213 PMCID: PMC6039339 DOI: 10.1007/s12079-017-0431-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/27/2017] [Indexed: 01/20/2023] Open
Abstract
Following interventions to treat atherosclerosis, such as coronary artery bypass graft surgery, restenosis occurs in approximately 40% of patients. Identification of proteins regulating intimal thickening could represent targets to prevent restenosis. Our group previously demonstrated that in a murine model of vascular occlusion, Wnt4 protein expression and β-catenin signalling was upregulated which promoted vascular smooth muscle cell (VSMC) proliferation and intimal thickening. In this study, the effect of age on VSMC proliferation, intimal hyperplasia and Wnt4 expression was investigated. In vitro proliferation of VSMCs isolated from young (2 month) or old (18-20 month) C57BL6/J mice was assessed by immunocytochemistry for EdU incorporation. As previously reported, 400 ng/mL recombinant Wnt4 protein increased proliferation of VSMCs from young mice. However, this response was absent in VSMCs from old mice. As our group previously reported reduced intimal hyperplasia in Wnt4+/- mice compared to wildtype controls, we hypothesised that impaired Wnt4 signalling with age may result in reduced neointimal formation. To investigate this, carotid artery ligation was performed in young and old mice and neointimal area was assessed 21 days later. Surprisingly, neointimal area and percentage lumen occlusion were not significantly affected by age. Furthermore, neointimal cell density and proliferation were also unchanged. These data suggest that although Wnt4-mediated proliferation was impaired with age in primary VSMCs, carotid artery ligation induced neointimal formation and proliferation were unchanged in old mice. These results imply that Wnt4-mediated proliferation is unaffected by age in vivo, suggesting that therapeutic Wnt4 inhibition could inhibit restenosis in patients of all ages.
Collapse
Affiliation(s)
- B A Brown
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - H Williams
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - A R Bond
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - G D Angelini
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - J L Johnson
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - S J George
- Bristol Medical School, , University of Bristol, Research Floor Level Seven, Bristol Royal Infirmary, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
20
|
Jia HL, Zeng XQ, Huang F, Liu YM, Gong BS, Zhang KZ, Zeng JH, Guo DG, Wang ZY, Li YG. Integrated microRNA and mRNA sequencing analysis of age-related changes to mouse thymic epithelial cells. IUBMB Life 2018; 70:678-690. [DOI: 10.1002/iub.1864] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/06/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Hong-Ling Jia
- College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Xiao-Qin Zeng
- Guangzhou Women and Children's Medical Center; Guangzhou Guangdong China
| | - Feng Huang
- Guangzhou Women and Children's Medical Center; Guangzhou Guangdong China
| | - Ya-Meng Liu
- College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Bi-Shuang Gong
- College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Kai-Zhao Zhang
- College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| | - Jiang-Hui Zeng
- Department of Clinical Laboratory; The Third Affiliated Hospital of Guangxi Medical University; Nanning Guangxi Zhuang Autonomous Region China
| | - Dong-Guang Guo
- Biotechnology Research Center, School of Life Science and Technology; Xinxiang University; Xinxiang Henan Province China
| | - Zhuo-Ya Wang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Courses; Guangdong Pharmaceutical University; Guangzhou Guangdong China
| | - Yu-Gu Li
- College of Veterinary Medicine; South China Agricultural University; Guangzhou China
| |
Collapse
|
21
|
Cepeda S, Griffith AV. Thymic stromal cells: Roles in atrophy and age-associated dysfunction of the thymus. Exp Gerontol 2018; 105:113-117. [PMID: 29278750 PMCID: PMC5869099 DOI: 10.1016/j.exger.2017.12.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 11/25/2022]
Abstract
Atrophy of the thymus, the primary site of T lymphocyte generation, is a hallmark of the aging immune system. Age-associated thymic atrophy results in diminished output of new, naïve T cells, with immune sequelae that include diminished responses to novel pathogenic challenge and vaccines, as well as diminished tumor surveillance. Although a variety of stimuli are known to regulate transient thymic atrophy, mechanisms governing progressive age-associated atrophy have been difficult to resolve. This has been due in part to the fact that one of the primary targets of age-associated thymic atrophy is a relatively rare population, thymic stromal cells. This review focuses on changes in thymic stromal cells during aging and on the contributions of periodic, stochastic, and progressive causes of thymic atrophy.
Collapse
Affiliation(s)
- Sergio Cepeda
- Microbiology, Immunology, and Molecular Genetics, School of Medicine, UT Health San Antonio, San Antonio, TX, United States
| | - Ann V Griffith
- Microbiology, Immunology, and Molecular Genetics, School of Medicine, UT Health San Antonio, San Antonio, TX, United States.
| |
Collapse
|
22
|
Chen Y, Zhang P, Tang P, Lv P, Li X, Wang Y, Lv Y, Liu Y. Wnt4 overexpression promotes thymoma development through a JNK-mediated planar cell polarity-like pathway. Oncol Lett 2018; 15:83-90. [PMID: 29387212 PMCID: PMC5769365 DOI: 10.3892/ol.2017.7266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 06/09/2017] [Indexed: 01/11/2023] Open
Abstract
Thymoma is the most common neoplasm of the anterosuperior mediastinum. Activation of the Wnt signaling pathway has a role in a variety of human cancers. The present objective was to examine c-Jun N-terminal kinase (JNK) mRNA and protein expression in thymoma cells undergoing apoptosis subsequent to downregulation of Wnt4. Wnt4 and JNK mRNA and protein expression was analyzed by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively, in 15 thymoma tissues and 6 thymus cyst tissues. Thymoma cells were cultured and transfected with shRNA plasmids targeting the Wnt4 gene. Wnt4 and JNK protein expression was detected by western blot analysis. Apoptosis was analyzed using Wright-Giemsa staining, Hoechst-33342/propidium iodine double staining and flow cytometry. The results showed that Wnt4 and JNK mRNA and protein expression were significantly increased in thymoma compared with normal thymus tissue. Subsequent to transfection, thymoma Wnt4 and JNK mRNA and protein expression were significantly decreased in shRNA-treated groups, with the strongest inhibition being 52.37%. Characteristic apoptotic morphological changes were observed and apoptosis increased. Overall, the present concluded that Wnt4 has an important role in thymoma development, which appears to be activated through a JNK mediated planar cell polarity-like pathway.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Peiyuan Tang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Peng Lv
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xin Li
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yuanguo Wang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Lv
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yimei Liu
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
23
|
Ernszt D, Banfai K, Kellermayer Z, Pap A, Lord JM, Pongracz JE, Kvell K. PPARgamma Deficiency Counteracts Thymic Senescence. Front Immunol 2017; 8:1515. [PMID: 29163553 PMCID: PMC5681731 DOI: 10.3389/fimmu.2017.01515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Thymic senescence contributes to increased incidence of infection, cancer and autoimmunity at senior ages. This process manifests as adipose involution. As with other adipose tissues, thymic adipose involution is also controlled by PPARgamma. This is supported by observations reporting that systemic PPARgamma activation accelerates thymic adipose involution. Therefore, we hypothesized that decreased PPARgamma activity could prevent thymic adipose involution, although it may trigger metabolic adverse effects. We have confirmed that both human and murine thymic sections show marked staining for PPARgamma at senior ages. We have also tested the thymic lobes of PPARgamma haplo-insufficient and null mice. Supporting our working hypothesis both adult PPARgamma haplo-insufficient and null mice show delayed thymic senescence by thymus histology, thymocyte mouse T-cell recombination excision circle qPCR and peripheral blood naive T-cell ratio by flow-cytometry. Delayed senescence showed dose-response with respect to PPARgamma deficiency. Functional immune parameters were also evaluated at senior ages in PPARgamma haplo-insufficient mice (null mice do not reach senior ages due to metabolic adverse affects). As expected, sustained and elevated T-cell production conferred oral tolerance and enhanced vaccination efficiency in senior PPARgamma haplo-insufficient, but not in senior wild-type littermates according to ELISA IgG measurements. Of note, humans also show increased oral intolerance issues and decreased protection by vaccines at senior ages. Moreover, PPARgamma haplo-insufficiency also exists in human known as a rare disease (FPLD3) causing metabolic adverse effects, similar to the mouse. When compared to age- and metabolic disorder-matched other patient samples (FPLD2 not affecting PPARgamma activity), FPLD3 patients showed increased human Trec (hTrec) values by qPCR (within healthy human range) suggesting delayed thymic senescence, in accordance with mouse results and supporting our working hypothesis. In summary, our experiments prove that systemic decrease of PPARgamma activity prevents thymic senescence, albeit with metabolic drawbacks. However, thymic tissue-specific PPARgamma antagonism would likely solve the issue.
Collapse
Affiliation(s)
- David Ernszt
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Krisztina Banfai
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Zoltan Kellermayer
- Faculty of Medicine, Department of Immunology and Biotechnology, University of Pecs, Pecs, Hungary
| | - Attila Pap
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Janet M Lord
- College of Medical and Dental Sciences, Institute of Inflammation and Aging, University of Birmingham, Birmingham, United Kingdom
| | - Judit E Pongracz
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Krisztian Kvell
- Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, University of Pecs, Pecs, Hungary.,Szentagothai Research Center, University of Pecs, Pecs, Hungary
| |
Collapse
|
24
|
Chen Y, Liu X, Liu Y, Wang Y, Wang H, Lu C, Zhang P. Decreased Wnt4 expression inhibits thymoma development through downregulation of FoxN1. J Thorac Dis 2017; 9:1574-1583. [PMID: 28740671 DOI: 10.21037/jtd.2017.05.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The Wnt signaling pathway controls the development of thymic epithelial cells by regulating the expression of FoxN1. Thymoma is a type of malignant tumor arising from the thymic epithelial cells. To determine whether Wnt4 and FoxN1 are involved in the pathogenesis of thymoma, this study determined the mRNA and protein levels of Wnt4 and Foxn1 in thymoma, and analyzed the effect of thymoma cell apoptosis and tumor growth in nude mice after Wnt4 and FoxN1 downregulation. METHODS Wnt4 and FoxN1 mRNA and protein levels in thymoma tissues were analyzed by RT-qPCR and immunohistochemistry, respectively. Thymoma cells were cultured and transfected with siRNA targeting the Wnt4, JNK, and FoxN1 genes. Apoptosis of thymoma cells were analyzed after Wnt4 and FoxN1 downregulation. In addition, thymoma cells were inoculated into nude mice and tumor growth was analyzed. RESULTS The rates of expression of Wnt4 and FoxN1 protein were 64.3% and 58.9%, while the levels of mRNA expression were 2.56±0.04 and 1.83±0.11, respectively. With increasing malignancy of thymoma, the rates of positivity for Wnt4 and FoxN1 mRNA and protein expression gradually increased. Upon interfering with Wnt4, JNK, and FoxN1 gene expression by using siRNA technology, the inhibition rates were 56.7%, 72.6%, and 63.2%, respectively. The expression of FoxN1 mRNA and protein was decreased after Wnt4 and JNK downregulation. After downregulation of Wnt4 and FoxN1 gene expression, the apoptosis rate of thymoma cells increased and the tumor volume decreased in nude mice. CONCLUSIONS High expression of Wnt4 and FoxN1 may play an important role in the generation and development of thymoma. The FoxN1 gene produced a marked downstream effect through the regulation of Wnt4. Determining the positivity for both Wnt4 and FoxN1 can help us to evaluate the level of malignancy of thymoma.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Liu
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yimei Liu
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuanguo Wang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Hai Wang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chao Lu
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
25
|
Increased epithelial-free areas in thymuses with altered EphB-mediated thymocyte–thymic epithelial cell interactions. Histochem Cell Biol 2017; 148:381-394. [DOI: 10.1007/s00418-017-1583-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2017] [Indexed: 01/06/2023]
|
26
|
Elevated levels of Wnt signaling disrupt thymus morphogenesis and function. Sci Rep 2017; 7:785. [PMID: 28400578 PMCID: PMC5429746 DOI: 10.1038/s41598-017-00842-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023] Open
Abstract
All vertebrates possess a thymus, whose epithelial microenvironment is essential for T cell development and maturation. Despite the importance of the thymus for cellular immune defense, many questions surrounding its morphogenesis remain unanswered. Here, we demonstrate that, in contrast to the situation in many other epithelial cell types, differentiation of thymic epithelial cells (TECs) proceeds normally in the absence of canonical Wnt signaling and the classical adhesion molecule E-cadherin. By contrast, TEC-intrinsic activation of β-catenin-dependent Wnt signaling blocks the morphogenesis of the thymus, and overexpression of a secreted Wnt ligand by TECs dominantly modifies the morphogenesis not only of the thymus, but also of the parathyroid and thyroid. These observations indicate that Wnt signaling activity in the thymus needs to be precisely controlled to support normal TEC differentiation, and suggest possible mechanisms underlying anatomical variations of the thymus, parathyroid and thyroid in humans.
Collapse
|
27
|
Tan J, Wang Y, Zhang N, Zhu X. Induction of epithelial to mesenchymal transition (EMT) and inhibition on adipogenesis: Two different sides of the same coin? Feasible roles and mechanisms of transforming growth factor β1 (TGF-β1) in age-related thymic involution. Cell Biol Int 2016; 40:842-6. [PMID: 27189906 DOI: 10.1002/cbin.10625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/08/2016] [Accepted: 05/14/2016] [Indexed: 12/16/2022]
Abstract
Age-related thymic involution is characterized by a loss of thymic epithelial cells (TECs) and a concomitant increase in adipocytes, but the mechanisms involved in thymic adipogenesis are still not clear. Transforming growth factor β1 (TGF-β1) is a pleiotropic cytokine that has been reported to be up-regulated with age in thymic stromal cells in both human and mouse. However, the exact role of TGF-β1 in age-related thymic involution remains to be further elucidated. On the basis of previous findings, we propose a novel hypothesis that TGF-β1 functions a dual role in age-related thymic involution. On one hand, up-regulation of TGF-β1 promotes epithelial to mesenchymal transition (EMT) process in TECs via activating forkhead box protein C2 (FoxC2). On the other hand, TGF-β1 inhibits the transdifferentiation of EMT-derived mesenchymal cells to adipocytes in the thymus. If confirmed, our hypothesis will not only provide further evidence supporting that the transdifferentiation of TECs into pre-adipocytes represents a source of thymic adiposity during age-related thymic involution, but also uncover a unique role of TGF-β1 in the transdifferentiation of TECs into pre-adipocytes. Collectively, the inhibition of TGF-β1 may serve as a strategy to hinder age-related thymic involution or even to restore thymic function in the elderly.
Collapse
Affiliation(s)
- Jianxin Tan
- Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yajun Wang
- Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Nannan Zhang
- Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.,Department of Nerve Function, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xike Zhu
- Research Center, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
28
|
Ohigashi I, Kozai M, Takahama Y. Development and developmental potential of cortical thymic epithelial cells. Immunol Rev 2016; 271:10-22. [DOI: 10.1111/imr.12404] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Izumi Ohigashi
- Division of Experimental Immunology; Institute for Genome Research; University of Tokushima; Tokushima Japan
| | - Mina Kozai
- Division of Experimental Immunology; Institute for Genome Research; University of Tokushima; Tokushima Japan
| | - Yousuke Takahama
- Division of Experimental Immunology; Institute for Genome Research; University of Tokushima; Tokushima Japan
| |
Collapse
|
29
|
Decline of FOXN1 gene expression in human thymus correlates with age: possible epigenetic regulation. IMMUNITY & AGEING 2015; 12:18. [PMID: 26516334 PMCID: PMC4625732 DOI: 10.1186/s12979-015-0045-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/15/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Thymic involution is thought to be an important factor of age related immunodeficiency. Understanding the molecular mechanisms of human thymic senescence may lead to the discovery of novel therapeutic approaches aimed at the reestablishment of central and peripheral T cell repertoire. RESULTS As an initial approach, here we report that the decline of human thymic FOXN1 transcription correlates with age, while other genes, DLL1, DLL4 and WNT4, essential for thymopoiesis, are constitutively transcribed. Using a human thymic epithelial cell line (hTEC), we show that FOXN1 expression is refractory to signals that induce FOXN1 transcription in primary 3D culture conditions and by stimulation of the canonical WNT signaling pathway. Blockage of FOXN1 induceability in the hTEC line may be mediated by an epigenetic mechanism, the CpG methylation of the FOXN1 gene. CONCLUSION We showed a suppression of FOXN1 transcription both in cultured human thymic epithelial cells and in the aging thymus. We hypothesize that the underlying mechanism may be associated with changes of the DNA methylation state of the FOXN1 gene.
Collapse
|
30
|
Langhi LGP, Andrade LR, Shimabukuro MK, van Ewijk W, Taub DD, Borojevic R, de Mello Coelho V. Lipid-Laden Multilocular Cells in the Aging Thymus Are Phenotypically Heterogeneous. PLoS One 2015; 10:e0141516. [PMID: 26509710 PMCID: PMC4624951 DOI: 10.1371/journal.pone.0141516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/07/2015] [Indexed: 12/25/2022] Open
Abstract
Intrathymic lipid-laden multilocular cells (LLMC) are known to express pro-inflammatory factors that might regulate functional activity of the thymus. However, the phenotype of age-associated intrathymic LLMC is still controversial. In this study, we evaluated LLMC density in the aging thymus and better characterized their distribution, ultrastructure and phenotype. Our results show an increased density of LLMC in the thymus from 03 to 24 months of age. Morphologically, intrathymic LLMC exhibit fibroblastoid fusiform, globular or stellate shapes and can be found in the subcapsular region as well as deeper in the parenchyma, including the perivascular area. Some parenchymal LLMC were like telocytes accumulating lipids. We identified lipid droplets with different electrondensities, lipofuscin granules and autolipophagosome-like structures, indicating heterogeneous lipid content in these cells. Autophagosome formation in intrathymic LLMC was confirmed by positive staining for beclin-1 and perilipin (PLIN), marker for lipid droplet-associated proteins. We also found LLMC in close apposition to thymic stromal cells, endothelial cells, mast cells and lymphocytes. Phenotypically, we identified intrathymic LLMC as preadipocytes (PLIN+PPARγ2+), brown adipocytes (PLIN+UCP1+), macrophages (PLIN+Iba-1+) or pericytes (PLIN+NG2+) but not epithelial cells (PLIN- panCK+). These data indicate that intrathymic LLMC are already present in the young thymus and their density significantly increases with age. We also suggest that LLMC, which are morphologically distinct, establish direct contact with lymphocytes and interact with stromal cells. Finally, we evidence that intrathymic LLMC correspond to not only one but to distinct cell types accumulating lipids.
Collapse
Affiliation(s)
- Larissa G. P. Langhi
- Institute of Biomedical Sciences, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo R. Andrade
- Institute of Biomedical Sciences, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marilia Kimie Shimabukuro
- Institute of Biomedical Sciences, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Willem van Ewijk
- Department of Immunology, Erasmus University, Rotterdam, Netherlands
| | - Dennis D. Taub
- Department of Veterans Affairs, Medical Services, Veterans Affairs Medical Center, Washington, District of Columbia, United States of America
| | - Radovan Borojevic
- Institute of Biomedical Sciences, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valeria de Mello Coelho
- Institute of Biomedical Sciences, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
31
|
WEI TIANLI, ZHANG NANNAN, GUO ZHIBIN, CHI FENG, SONG YAN, ZHU XIKE. Wnt4 signaling is associated with the decrease of proliferation and increase of apoptosis during age-related thymic involution. Mol Med Rep 2015; 12:7568-76. [DOI: 10.3892/mmr.2015.4343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 09/01/2015] [Indexed: 11/06/2022] Open
|
32
|
Thymic Atrophy and Apoptosis of CD4+CD8+ Thymocytes in the Cuprizone Model of Multiple Sclerosis. PLoS One 2015; 10:e0129217. [PMID: 26053248 PMCID: PMC4460035 DOI: 10.1371/journal.pone.0129217] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/06/2015] [Indexed: 01/08/2023] Open
Abstract
Previous studies on the degenerative animal model of multiple sclerosis suggested that the copper-chelator cuprizone might directly suppress T-cell functions. Peripheral T-cell function in the cuprizone model has already been explored; therefore, in the present study, we investigated, for the first time, how cuprizone feeding affects the thymus, the organ of T-cell maturation and selection. We found that even one week of cuprizone treatment induced significant thymic atrophy, affecting the cortex over the medulla. Fluorescent microscopy and flow-cytometric analyses of thymi from cuprizone- and vehicle-treated mice indicated that eradication of the cluster of the differentiation-4 (CD4)-CD8 double-positive T-cell subset was behind the substantial cell loss. This result was confirmed with CD3-CD4-CD8 triple-staining experiments. Ultrastructurally, we observed degraded as well as enlarged mitochondria, myelin-bodies, large lipid droplets, and large lysosomes in the thymi of cuprizone-treated mice. Some of these features were similar to those in physiological and steroid-induced accelerated aging. According to our results, apoptosis was mainly of mitochondrial origin mediated by both caspase-3- and apoptosis inducing factor-mediated mechanisms. Additionally, mitogen activated protein kinase activation and increased pro-apoptotic B cell lymphoma-2 family protein expression were the major underlying processes. Our results do not indicate a functional relationship between cuprizone-induced thymus involution and the absence of inflammatory responses or the selective demyelination observed in the cuprizone model. On the other hand, due to the reversible nature of cuprizone’s deleterious effects, the cuprizone model could be valuable in studying thymus regeneration as well as remyelination processes.
Collapse
|
33
|
Lepletier A, Chidgey AP, Savino W. Perspectives for Improvement of the Thymic Microenvironment through Manipulation of Thymic Epithelial Cells: A Mini-Review. Gerontology 2015; 61:504-14. [DOI: 10.1159/000375160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 01/13/2015] [Indexed: 11/19/2022] Open
|
34
|
Active Wnt/beta-catenin signaling is required for embryonic thymic epithelial development and functionality ex vivo. Immunobiology 2014; 219:644-52. [PMID: 24768153 DOI: 10.1016/j.imbio.2014.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 03/25/2014] [Indexed: 12/21/2022]
Abstract
The Wnt/beta-catenin signaling pathway plays an important role in the commitment and development of thymic epithelial precursors. Here we document similarities of thymic epithelial development during embryogenesis in human and mouse. We stained for thymic epithelial surface markers (EpCAM1, Ly51, K8) and ligand/receptor pair (Wnt4, Fz4). Our results confirm the relevance of using murine test systems to model human embryonic thymic epithelial cell development. We have efficiently transduced murine embryonic epithelial cells using mock (GFP) and Wnt/beta-catenin-inhibiting (ICAT-encoding) recombinant adenoviral vectors. The effect of Wnt4 was assayed in the form of Wnt4-containing supernatant. Gene expressional changes were assessed by Q-PCR and also morphology using conventional and confocal fluorescent microscopy. Functional aberration caused by ICAT was assessed through evaluation of thymocyte maturation. Our results demonstrate that ICAT and Wnt4 have reciprocal effects during embryonic thymic epithelial cell development. While Wnt4 is capable of increasing the expression level of characteristic intracellular (FoxN1), surface (MHCII) and secreted (IL7) molecules, Wnt/beta-catenin inhibition through ICAT can moderately decrease their expression. Morphological changes induced by ICAT resulted in the development of hollow, inflated thymic lobes with reduced epithelial cell numbers. The ICAT-treated thymic lobes also showed significant impairment in supporting thymocyte development and maturation.
Collapse
|
35
|
Ferrando-Martínez S, Ruiz-Mateos E, Dudakov JA, Velardi E, Grillari J, Kreil DP, Muñoz-Fernandez MÁ, van den Brink MRM, Leal M. WNT signaling suppression in the senescent human thymus. J Gerontol A Biol Sci Med Sci 2014; 70:273-81. [PMID: 24657825 DOI: 10.1093/gerona/glu030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human thymus is completely developed in late fetal stages and its function peaks in newborns. After the first year of life, the thymus undergoes a progressive atrophy that dramatically decreases de novo T-lymphocyte maturation. Hormonal signaling and changes in the microRNA expression network are identified as underlying causes of human thymus involution. However, specific pathways involved in the age-related loss of thymic function remain unknown. In this study, we analyzed differential gene-expression profile and microRNA expression in elderly (70 years old) and young (less than 10 months old and 11 years old) human thymic samples. Our data have shown that WNT pathway deregulation through the overexpression of different inhibitors by the nonadipocytic component of the human thymus stimulates the age-related involution. These results are of particular interest because interference of WNT signaling has been demonstrated in both animal models and in vitro studies, with the three major hallmarks of thymic involution: (i) epithelial structure disruption, (ii) adipogenic process, and (iii) thymocyte development arrest. Thus, our results suggest that secreted inhibitors of the WNT pathway could be explored as a novel therapeutical target in the reversal of the age-related thymic involution.
Collapse
Affiliation(s)
- Sara Ferrando-Martínez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain. Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine. Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain.
| | - Ezequiel Ruiz-Mateos
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine. Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| | - Jarrod A Dudakov
- Department of Immunology and Medicine, Sloan Kettering Institute, New York City, USA
| | - Enrico Velardi
- Department of Immunology and Medicine, Sloan Kettering Institute, New York City, USA
| | - Johannes Grillari
- Department of Biotechnology, VIBT-BOKU, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - David P Kreil
- Chair of Bioinformatics, BOKU University Vienna, Austria and Life Sciences, University of Warwick, UK
| | - M Ángeles Muñoz-Fernandez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain. Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | | | - Manuel Leal
- Laboratory of Immunovirology, Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine. Institute of Biomedicine of Seville, IBiS, Virgen del Rocío University Hospital/CSIC/University of Seville, Spain
| |
Collapse
|
36
|
Thymic epithelial cell development and its dysfunction in human diseases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:206929. [PMID: 24672784 PMCID: PMC3929497 DOI: 10.1155/2014/206929] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 11/28/2013] [Indexed: 12/01/2022]
Abstract
Thymic epithelial cells (TECs) are the key components in thymic microenvironment for T cells development. TECs, composed of cortical and medullary TECs, are derived from a common bipotent progenitor and undergo a stepwise development controlled by multiple levels of signals to be functionally mature for supporting thymocyte development. Tumor necrosis factor receptor (TNFR) family members including the receptor activator for NFκB (RANK), CD40, and lymphotoxin β receptor (LTβR) cooperatively control the thymic medullary microenvironment and self-tolerance establishment. In addition, fibroblast growth factors (FGFs), Wnt, and Notch signals are essential for establishment of functional thymic microenvironment. Transcription factors Foxn1 and autoimmune regulator (Aire) are powerful modulators of TEC development, differentiation, and self-tolerance. Dysfunction in thymic microenvironment including defects of TEC and thymocyte development would cause physiological disorders such as tumor, infectious diseases, and autoimmune diseases. In the present review, we will summarize our current understanding on TEC development and the underlying molecular signals pathways and the involvement of thymus dysfunction in human diseases.
Collapse
|
37
|
Rezzani R, Nardo L, Favero G, Peroni M, Rodella LF. Thymus and aging: morphological, radiological, and functional overview. AGE (DORDRECHT, NETHERLANDS) 2014; 36:313-51. [PMID: 23877171 PMCID: PMC3889907 DOI: 10.1007/s11357-013-9564-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 07/01/2013] [Indexed: 05/20/2023]
Abstract
Aging is a continuous process that induces many alterations in the cytoarchitecture of different organs and systems both in humans and animals. Moreover, it is associated with increased susceptibility to infectious, autoimmune, and neoplastic processes. The thymus is a primary lymphoid organ responsible for the production of immunocompetent T cells and, with aging, it atrophies and declines in functions. Universality of thymic involution in all species possessing thymus, including human, indicates it as a long-standing evolutionary event. Although it is accepted that many factors contribute to age-associated thymic involution, little is known about the mechanisms involved in the process. The exact time point of the initiation is not well defined. To address the issue, we report the exact age of thymus throughout the review so that readers can have a nicely pictured synoptic view of the process. Focusing our attention on the different stages of the development of the thymus gland (natal, postnatal, adult, and old), we describe chronologically the morphological changes of the gland. We report that the thymic morphology and cell types are evolutionarily preserved in several vertebrate species. This finding is important in understanding the similar problems caused by senescence and other diseases. Another point that we considered very important is to indicate the assessment of the thymus through radiological images to highlight its variability in shape, size, and anatomical conformation.
Collapse
Affiliation(s)
- Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, Viale Europa 11, 25123, Brescia, Italy,
| | | | | | | | | |
Collapse
|
38
|
Obukhova LA, Vais VB, Bakeeva LE, Sergeeva SV, Kolosova NG. Structural and functional basis of accelerated involution of the thymus in OXYS rats. ADVANCES IN GERONTOLOGY 2014. [DOI: 10.1134/s2079057014010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Osada M, Singh VJ, Wu K, Sant’Angelo DB, Pezzano M. Label retention identifies a multipotent mesenchymal stem cell-like population in the postnatal thymus. PLoS One 2013; 8:e83024. [PMID: 24340075 PMCID: PMC3858364 DOI: 10.1371/journal.pone.0083024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/29/2013] [Indexed: 02/06/2023] Open
Abstract
Thymic microenvironments are essential for the proper development and selection of T cells critical for a functional and self-tolerant adaptive immune response. While significant turnover occurs, it is unclear whether populations of adult stem cells contribute to the maintenance of postnatal thymic epithelial microenvironments. Here, the slow cycling characteristic of stem cells and their property of label-retention were used to identify a K5-expressing thymic stromal cell population capable of generating clonal cell lines that retain the capacity to differentiate into a number of mesenchymal lineages including adipocytes, chondrocytes and osteoblasts suggesting a mesenchymal stem cell-like phenotype. Using cell surface analysis both culture expanded LRCs and clonal thymic mesenchymal cell lines were found to express Sca1, PDGFRα, PDGFRβ,CD29, CD44, CD49F, and CD90 similar to MSCs. Sorted GFP-expressing stroma, that give rise to TMSC lines, contribute to thymic architecture when reaggregated with fetal stroma and transplanted under the kidney capsule of nude mice. Together these results show that the postnatal thymus contains a population of mesenchymal stem cells that can be maintained in culture and suggests they may contribute to the maintenance of functional thymic microenvironments.
Collapse
Affiliation(s)
- Masako Osada
- Department of Biology, The City College of New York, CUNY, New York, New York, United States of America
| | - Varan J. Singh
- Department of Biology, The City College of New York, CUNY, New York, New York, United States of America
| | - Kenmin Wu
- Department of Biology, The City College of New York, CUNY, New York, New York, United States of America
| | - Derek B. Sant’Angelo
- Child Health Institute of New Jersey, Department of Pediatrics, Rutgers, Robert Wood Johnson Medical School, New Brunswick, New Jersey, United States of America
| | - Mark Pezzano
- Department of Biology, The City College of New York, CUNY, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
40
|
Boehm T, Swann JB. Thymus involution and regeneration: two sides of the same coin? Nat Rev Immunol 2013; 13:831-8. [DOI: 10.1038/nri3534] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
GUO ZHIBIN, CHI FENG, SONG YAN, WANG CHANGSHAN, YU RUOXING, WEI TIANLI, GUI JINGANG, ZHU XIKE. Transcriptome analysis of murine thymic epithelial cells reveals age-associated changes in microRNA expression. Int J Mol Med 2013; 32:835-42. [DOI: 10.3892/ijmm.2013.1471] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/19/2013] [Indexed: 11/05/2022] Open
|
42
|
Sun L, Luo H, Li H, Zhao Y. Thymic epithelial cell development and differentiation: cellular and molecular regulation. Protein Cell 2013; 4:342-55. [PMID: 23589020 DOI: 10.1007/s13238-013-3014-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/11/2013] [Indexed: 11/26/2022] Open
Abstract
Thymic epithelial cells (TECs) are one of the most important components in thymic microenvironment supporting thymocyte development and maturation. TECs, composed of cortical and medullary TECs, are derived from a common bipotent progenitor, mediating thymocyte positive and negative selections. Multiple levels of signals including intracellular signaling networks and cell-cell interaction are required for TEC development and differentiation. Transcription factors Foxn1 and autoimmune regulator (Aire) are powerful regulators promoting TEC development and differentiation. Crosstalks with thymocytes and other stromal cells for extrinsic signals like RANKL, CD40L, lymphotoxin, fibroblast growth factor (FGF) and Wnt are also definitely required to establish a functional thymic microenvironment. In this review, we will summarize our current understanding about TEC development and differentiation, and its underlying multiple signal pathways.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
43
|
Ma D, Wei Y, Liu F. Regulatory mechanisms of thymus and T cell development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:91-102. [PMID: 22227346 DOI: 10.1016/j.dci.2011.12.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 12/22/2011] [Accepted: 12/22/2011] [Indexed: 05/31/2023]
Abstract
The thymus is a central hematopoietic organ which produces mature T lymphocytes with diverse antigen specificity. During development, the thymus primordium is derived from the third pharyngeal endodermal pouch, and then differentiates into cortical and medullary thymic epithelial cells (TECs). TECs represent the primary functional cell type that forms the unique thymic epithelial microenvironment which is essential for intrathymic T-cell development, including positive selection, negative selection and emigration out of the thymus. Our understanding of thymopoiesis has been greatly advanced by using several important animal models. This review will describe progress on the molecular mechanisms involved in thymus and T cell development with particular focus on the signaling and transcription factors involved in this process in mouse and zebrafish.
Collapse
Affiliation(s)
- Dongyuan Ma
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
44
|
Seach N, Wong K, Hammett M, Boyd RL, Chidgey AP. Purified enzymes improve isolation and characterization of the adult thymic epithelium. J Immunol Methods 2012; 385:23-34. [PMID: 22910002 DOI: 10.1016/j.jim.2012.07.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 07/28/2012] [Accepted: 07/31/2012] [Indexed: 11/30/2022]
Abstract
The reproducible isolation and accurate characterization of thymic epithelial cell (TEC) subsets is of critical importance to the ongoing study of thymopoiesis and its functional decline with age. The study of adult TEC, however, is significantly hampered due to the severely low stromal to hematopoietic cell ratio. Non-biased digestion and enrichment protocols are thus essential to ensure optimal cell yield and accurate representation of stromal subsets, as close as possible to their in vivo representation. Current digestion protocols predominantly involve diverse, relatively impure enzymatic variants of crude collagenase and collagenase/dispase (col/disp) preparations, which have variable efficacy and are often suboptimal in their ability to mediate complete digestion of thymus tissue. To address these issues we compared traditional col/disp preparations with the latest panel of Liberase products that contain a blend of highly purified collagenase and neutral protease enzymes. Liberase enzymes revealed a more rapid, complete dissociation of thymus tissue; minimizing loss of viability and increasing recovery of thymic stromal cell (TSC) elements. In particular, the recovery and viability of TEC, notably the rare cortical subsets, were significantly enhanced with Liberase products containing medium to high levels of thermolysin. The improved stromal dissociation led to numerically increased TEC yield and total TEC RNA isolated from pooled digests of adult thymus. Furthermore, the increased recovery of TEC enhanced resolution and quantification of TEC subsets in both adult and aged mice, facilitating flow cytometric analysis on a per thymus basis. We further refined the adult TEC phenotype by correlating surface expression of known TEC markers, with expression of intracellular epithelial lineage markers, Keratin 5 and Keratin 8. The data reveal more extensive expression of K8 than previously recognized and indicates considerable heterogeneity still exists within currently defined adult TEC subsets.
Collapse
Affiliation(s)
- Natalie Seach
- Monash Immunology and Stem Cell Laboratories, Level 3, STRIP-1, Building 75, Monash University, Wellington Rd. Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
45
|
Gui J, Mustachio LM, Su DM, Craig RW. Thymus Size and Age-related Thymic Involution: Early Programming, Sexual Dimorphism, Progenitors and Stroma. Aging Dis 2012; 3:280-290. [PMID: 22724086 PMCID: PMC3375084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 06/01/2023] Open
Abstract
Age-related thymic involution is characterized by a progressive regression in thymus size and a diminishment of thymic structure. A decrease in thymic compartments leads to the reduction of thymopoiesis. Thymic involution is closely associated with immunosenescence, a degeneration of the immune system primarily due to the alterations in T-cell composition. Strategies to improve the consequences of the aging thymus are currently under investigation. A wide array of knowledge has revealed a series of factors that are essential in the overall determination of thymic function and immune response. Evidence indicates that early programming of the thymus, sexual dimorphism, and the efficiency of specific T-cell progenitors and the thymic microenvironment are all crucial determinants of immune activity from early life through advanced ages. To fully understand the processes involved in age-related thymic involution, such determinants must be considered. The central purpose of this review is to emphasize previous and most recent evidence suggesting that these factors contribute to the influence of long-term immunity and ultimately shape the progression of thymic involution in advanced age.
Collapse
Affiliation(s)
- Jingang Gui
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Lisa Maria Mustachio
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Dong-Ming Su
- Department of Molecular Biology and Immunology, The University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| | - Ruth W. Craig
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA
| |
Collapse
|
46
|
Griffith AV, Fallahi M, Venables T, Petrie HT. Persistent degenerative changes in thymic organ function revealed by an inducible model of organ regrowth. Aging Cell 2012; 11:169-77. [PMID: 22103718 DOI: 10.1111/j.1474-9726.2011.00773.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The thymus is the most rapidly aging tissue in the body, with progressive atrophy beginning as early as birth and not later than adolescence. Latent regenerative potential exists in the atrophic thymus, because certain stimuli can induce quantitative regrowth, but qualitative function of T lymphocytes produced by the regenerated organ has not been fully assessed. Using a genome-wide computational approach, we show that accelerated thymic aging is primarily a function of stromal cells, and that while overall cellularity of the thymus can be restored, many other aspects of thymic function cannot. Medullary islet complexity and tissue-restricted antigen expression decrease with age, representing potential mechanisms for age-related increases in autoimmune disease, but neither of these is restored by induced regrowth, suggesting that new T cells produced by the regrown thymus will probably include more autoreactive cells. Global analysis of stromal gene expression profiles implicates widespread changes in Wnt signaling as the most significant hallmark of degeneration, changes that once again persist even at peak regrowth. Consistent with the permanent nature of age-related molecular changes in stromal cells, induced thymic regrowth is not durable, with the regrown organ returning to an atrophic state within 2 weeks of reaching peak size. Our findings indicate that while quantitative regrowth of the thymus is achievable, the changes associated with aging persist, including potential negative implications for autoimmunity.
Collapse
Affiliation(s)
- Ann V Griffith
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | |
Collapse
|
47
|
Wnt4 regulates thymic cellularity through the expansion of thymic epithelial cells and early thymic progenitors. Blood 2011; 118:5163-73. [PMID: 21937690 DOI: 10.1182/blood-2011-04-350553] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thymus atrophy is the most common immunopathology in humans, and its occurrence is hastened by several factors that coalesce in patients receiving chemotherapy and most of all in recipients of hematopoietic cell transplantation. We have shown previously that posthematopoietic cell transplantation thymic function was improved by retroviral overexpression of Wnt4 in donor hematopoietic cells. Here, by using both conventional and conditional null mutant mice, we show that Wnt4 regulates steady-state thymic cellularity by a thymic epithelial cell (TEC)-dependent mechanism. The absence of Wnt4 suppressed fetal and postnatal thymic expansion and resulted in decreased TEC numbers, an alteration of the medullary-to-cortical TEC ratio, and a disproportionate loss of the most immature cKit(hi) thymocyte precursors. Wnt4 also is implicated in the maintenance of adult thymopoiesis, although the impact of its deletion once thymic involution has been initiated is more subtle. Together, our results show that Wnt4 controls thymic size by modulating TEC expansion and the earliest, TEC-dependent steps of thymocyte development both in the fetal and postnatal thymus. Wnt4 and its downstream signaling pathways could thus represent interesting candidates to improve thymic output in subjects with thymic atrophy.
Collapse
|
48
|
Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells. Blood 2011; 118:5723-31. [PMID: 21908422 DOI: 10.1182/blood-2011-03-342097] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The forkhead box n1 (Foxn1) transcription factor is essential for thymic organogenesis during embryonic development; however, a functional role of Foxn1 in the postnatal thymus is less well understood. We developed Foxn1 transgenic mice (Foxn1Tg), in which overexpression of Foxn1 is driven by the human keratin-14 promoter. Expression of the Foxn1 transgene increased the endogenous Foxn1 levels. In aged mice, overexpression of Foxn1 in the thymus attenuated the decline in thymocyte numbers, prevented the decline in frequency of early thymic progenitors, and generated a higher number of signal joint TCR excised circle. Histologic studies revealed that structural alterations associated with thymic involution were diminished in aged Foxn1 Tg. Total numbers of EpCAM+ MHC II+ and MHC II(hi) thymic epithelial cells were higher in young and old Foxn1Tg and more EpCAM+ MHC II(hi) TEC expressed Ki-67 in aged Foxn1Tg compared with WT. Furthermore, Foxn1Tg displayed a significant reduction in the expansion of splenic CD4+ memory compartments and attenuated the decline in CD4+ and CD8+ naive compartments. Our data indicate that manipulation of Foxn1 expression in the thymus ameliorates thymopoiesis in aged mice and offer a strategy to combat the age-associated decline in naive T-cell production and CD4 naive/memory ratios in the elderly.
Collapse
|
49
|
Talaber G, Kvell K, Varecza Z, Boldizsar F, Parnell SM, Jenkinson EJ, Anderson G, Berki T, Pongracz JE. Wnt-4 protects thymic epithelial cells against dexamethasone-induced senescence. Rejuvenation Res 2011; 14:241-8. [PMID: 21453014 PMCID: PMC3136744 DOI: 10.1089/rej.2010.1110] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 09/11/2010] [Indexed: 01/01/2023] Open
Abstract
Glucocorticoids are widely used immunosuppressive drugs in treatment of autoimmune diseases and hematological malignancies. Glucocorticoids are particularly effective immune suppressants, because they induce rapid peripheral T cell and thymocyte apoptosis resulting in impaired T cell-dependent immune responses. Although glucocorticoids can induce apoptotic cell death directly in developing thymocytes, how exogenous glucocorticoids affect the thymic epithelial network that provides the microenvironment for T cell development is still largely unknown. In the present work, we show that primary thymic epithelial cells (TECs) express glucocorticoid receptors and that high-dosage dexamethasone induces degeneration of the thymic epithelium within 24 h of treatment. Changes in organ morphology are accompanied by a decrease in the TEC transcription factor FoxN1 and its regulator Wnt-4 parallel with upregulation of lamina-associated polypeptide 2α and peroxisome proliferator activator receptor γ, two characteristic molecular markers for adipose thymic involution. Overexpression of Wnt-4, however, can prevent upregulation of adipose differentiation-related aging markers, suggesting an important role of Wnt-4 in thymic senescence.
Collapse
Affiliation(s)
- Gergely Talaber
- Department of Immunology and Biotechnology, University of Pecs, Faculty of Medicine, Pecs, Hungary
| | - Krisztian Kvell
- Department of Immunology and Biotechnology, University of Pecs, Faculty of Medicine, Pecs, Hungary
| | - Zoltan Varecza
- Department of Immunology and Biotechnology, University of Pecs, Faculty of Medicine, Pecs, Hungary
| | - Ferenc Boldizsar
- Department of Immunology and Biotechnology, University of Pecs, Faculty of Medicine, Pecs, Hungary
| | - Sonia M. Parnell
- Department of Anatomy, Institute for Biomedical Research, Faculty of Medicine, University of Birmingham, United Kingdom
| | - Eric J. Jenkinson
- Department of Anatomy, Institute for Biomedical Research, Faculty of Medicine, University of Birmingham, United Kingdom
| | - Graham Anderson
- Department of Anatomy, Institute for Biomedical Research, Faculty of Medicine, University of Birmingham, United Kingdom
| | - Timea Berki
- Department of Immunology and Biotechnology, University of Pecs, Faculty of Medicine, Pecs, Hungary
| | - Judit E. Pongracz
- Department of Immunology and Biotechnology, University of Pecs, Faculty of Medicine, Pecs, Hungary
| |
Collapse
|
50
|
Varecza Z, Kvell K, Talabér G, Miskei G, Csongei V, Bartis D, Anderson G, Jenkinson EJ, Pongracz JE. Multiple suppression pathways of canonical Wnt signalling control thymic epithelial senescence. Mech Ageing Dev 2011; 132:249-56. [PMID: 21549744 PMCID: PMC3146701 DOI: 10.1016/j.mad.2011.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/25/2011] [Accepted: 04/14/2011] [Indexed: 01/06/2023]
Abstract
Members of the Wnt family of secreted glyco-lipo-proteins affect intrathymic T-cell development and are abundantly secreted by thymic epithelial cells (TECs) that create the specific microenvironment for thymocytes to develop into mature T-cells. During ageing, Wnt expression declines allowing adipoid involution of the thymic epithelium leading to reduced naïve T-cell output. The protein kinase C (PKC) family of serine-threonine kinases is involved in numerous intracellular biochemical processes, including Wnt signal transduction. In the present study, PKCδ expression is shown to increase with age and to co-localise with Wnt receptors Frizzled (Fz)-4 and -6. It is also demonstrated that connective tissue growth factor (CTGF) is a Wnt-4 target gene and is potentially involved in a negative feed-back loop of Wnt signal regulation. Down-regulation of Wnt-4 expression and activation of multiple repressor pathways suppressing β-catenin dependent signalling in TECs contribute to the initiation of thymic senescence.
Collapse
Affiliation(s)
- Zoltan Varecza
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Krisztian Kvell
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Gergely Talabér
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Gyorgy Miskei
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Veronika Csongei
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Domokos Bartis
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Graham Anderson
- Institute for Biomedical Research, Faculty of Medicine, University of Birmingham, Birmingham, UK
| | - Eric J. Jenkinson
- Institute for Biomedical Research, Faculty of Medicine, University of Birmingham, Birmingham, UK
| | - Judit E. Pongracz
- Department of Medical Biotechnology, Institute for Immunology and Biotechnology, Faculty of Medicine, University of Pécs, Pécs, Hungary
| |
Collapse
|