1
|
Mohamed RI, Elsamadony HA, Alghamdi RA, Eldin ALAZ, El-Shemy A, Abdel-Moez Amer S, Bahshwan SMA, El-Saadony MT, El-Sayed HS, El-Tarabily KA, Saad ASA. Molecular and pathological screening of the current circulation of fowlpox and pigeon pox virus in backyard birds. Poult Sci 2024; 103:104249. [PMID: 39418793 PMCID: PMC11532475 DOI: 10.1016/j.psj.2024.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 10/19/2024] Open
Abstract
Avian pox is a disease that has devastating impacts on both poultry and wild bird species. Avian pox is caused by various strains of avipoxviruses (APV). Nevertheless, the virus has been detected in pigeons and chickens that are raised in backyard areas, leading to substantial financial damage for small-scale producers. There is a lack of comprehensive information regarding the transmission of APV among birds in the backyards and residential areas. Hence, the present investigation closely monitored and observed APV in domesticated birds residing in backyard areas, with the aim of impeding the transmission of the virus to nearby poultry farms. In 2023, a total of fifty backyard flocks were surveyed for the presence of avian pox disease. Sixteen backyards (14 pigeons and 2 chickens) exhibited warty nodular lesions on their heads and nonfeathered body parts. APV was confirmed in nodular lesions by polymerase chain reaction (PCR) amplification and genetic sequencing. All samples from the lesions showed successful amplification of the p4b locus (core protein p4b). Four confirmed samples were tested for pathogenicity on the chicken embryo chorioallantoic membrane (CAM). Histopathological examination revealed ballooning degeneration and numerous intracytoplasmic inclusion bodies (Bollinger bodies) in the ectoderm of the infected CAM. Phylogenetic analysis revealed that the strains clustered into main clade A, with 11 in subclade A2 and 5 in subclade A1. Amino acid identity showed 100% similarity between the vaccine (fowlpox/VSVRI/Egypt) and some detected strains (PP537574 and PP537575). In addition, the PP537576.1 to PP537580.1 and PP537582.1 to PP537585.1 had 2-point mutations compared to the fowlpox/VSVRI/Egypt vaccine. The overall finding of low biosecurity levels in the investigated backyard birds emphasizes the significance of establishing sanitary measures and control vectors to reduce virus transmission routes and disease severity. In conclusion, it is necessary to emphasize the tracking of APV in backyard birds. Concurrently, we advised enhancing hygiene protocols, vector management, and subsequent vaccination to restrict the occurrence of APV outbreaks and prevent their transmission to neighboring poultry farms. Furthermore, it is crucial to incorporate molecular studies in order to enhance the vaccine seeds for disease management.
Collapse
Affiliation(s)
- Rania I Mohamed
- Department of Pathology, Agricultural Research Center (ARC), Animal Health Research Institute- Mansoura Provincial Laboratory (AHRI-Mansoura), Mansoura, 35511, Egypt
| | - Hanaa A Elsamadony
- Department of Poultry Diseases, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Giza, 12618, Egypt
| | - Rana A Alghamdi
- Department of Chemistry, Science and Arts College, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | | | - Ahmed El-Shemy
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Sameh Abdel-Moez Amer
- Department of Poultry Diseases, Veterinary Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Safia M A Bahshwan
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Hemat S El-Sayed
- Department of Poultry Diseases, Benha-Branch, Agricultural Research Center (ARC), Animal Health Research Institute, Benha, 13511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates.
| | - Aalaa S A Saad
- Department of Biotechnology, Agricultural Research Center (ARC), Animal Health Research Institute (AHRI), Giza, 12618, Egypt
| |
Collapse
|
2
|
McNew SM, Loyola DC, Yepez J, Andreadis C, Gotanda K, Saulsberry A, Fessl B. Transcriptomic responses of Galápagos finches to avian poxvirus infection. Mol Ecol 2022; 31:5552-5567. [PMID: 36086992 DOI: 10.1111/mec.16690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022]
Abstract
Emerging pathogens can have devastating effects on naïve hosts, but disease outcomes often vary among host species. Comparing the cellular response of different hosts to infection can provide insight into mechanisms of host defence. Here, we used RNA-seq to characterize the transcriptomic response of Darwin's finches to avian poxvirus, a disease of concern in the Galápagos Islands. We tested whether gene expression differs between infected and uninfected birds, and whether transcriptomic differences were related either to known antiviral mechanisms and/or the co-option of the host cellular environment by the virus. We compared two species, the medium ground finch (Geospiza fortis) and the vegetarian finch (Platyspiza crassirostris), to determine whether endemic Galápagos species differ in their response to pox. We found that medium ground finches had a strong transcriptomic response to infection, upregulating genes involved in the innate immune response including interferon production, inflammation, and other immune signalling pathways. In contrast, vegetarian finches had a more limited response, and some changes in this species were consistent with viral manipulation of the host's cellular function and metabolism. Many of the transcriptomic changes mirrored responses documented in model and in vitro studies of poxviruses. Our results thus indicate that many pathways of host defence against poxviruses are conserved among vertebrates and present even in hosts without a long evolutionary history with the virus. At the same time, the differences we observed between closely related species suggests that some endemic species of Galápagos finch could be more susceptible to avian pox than others.
Collapse
Affiliation(s)
- Sabrina M McNew
- Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | | | - Janaí Yepez
- Charles Darwin Foundation, Santa Cruz, Galápagos, Ecuador
| | - Catherine Andreadis
- Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA
| | - Kiyoko Gotanda
- Department of Biological Sciences, Brock University, St. Catherines, Ontario, Canada.,Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Birgit Fessl
- Charles Darwin Foundation, Santa Cruz, Galápagos, Ecuador
| |
Collapse
|
3
|
Sheppard EC, Martin CA, Armstrong C, González-Quevedo C, Illera JC, Suh A, Spurgin LG, Richardson DS. Genomic associations with poxvirus across divergent island populations in Berthelot's pipit. Mol Ecol 2022; 31:3154-3173. [PMID: 35395699 PMCID: PMC9321574 DOI: 10.1111/mec.16461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/04/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
Understanding the mechanisms and genes that enable animal populations to adapt to pathogens is important from an evolutionary, health and conservation perspective. Berthelot's pipit (Anthus berthelotii) experiences extensive and consistent spatial heterogeneity in avian pox infection pressure across its range of island populations, thus providing an excellent system with which to examine how pathogen-mediated selection drives spatial variation in immunogenetic diversity. Here we test for evidence of genetic variation associated with avian pox at both an individual and population-level. At the individual level, we find no evidence that variation in MHC class I and TLR4 (both known to be important in recognising viral infection) was associated with pox infection within two separate populations. However, using genotype-environment association (Bayenv) in conjunction with genome-wide (ddRAD-seq) data, we detected strong associations between population-level avian pox prevalence and allele frequencies of single nucleotide polymorphisms (SNPs) at a number of sites across the genome. These sites were located within genes involved in cellular stress signalling and immune responses, many of which have previously been associated with responses to viral infection in humans and other animals. Consequently, our analyses indicates that pathogen-mediated selection may play a role in shaping genomic variation among relatively recently colonised island bird populations and highlights the utility of genotype-environment associations for identifying candidate genes potentially involved in host-pathogen interactions.
Collapse
Affiliation(s)
- Eleanor C Sheppard
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Claire Armstrong
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - Catalina González-Quevedo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.,Grupo Ecología y Evolución de Vertebrados, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Campus of Mieres, Research Building, 5th Floor, c/ Gonzalo Gutiérrez Quirós, s/n, 33600 Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.,Department of Ecology and Genetics - Evolutionary Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| | - David S Richardson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK
| |
Collapse
|
4
|
Baek HE, Bandivadekar RR, Pandit P, Mah M, Sehgal RNM, Tell LA. TaqMan quantitative real-time PCR for detecting Avipoxvirus DNA in various sample types from hummingbirds. PLoS One 2020; 15:e0230701. [PMID: 32526768 PMCID: PMC7289624 DOI: 10.1371/journal.pone.0230701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/25/2020] [Indexed: 11/19/2022] Open
Abstract
Background Avian pox is a viral disease documented in a wide range of bird species. Disease-related detrimental effects can cause dyspnea and dysphagia, and birds with high metabolic requirements, such as hummingbirds, are thus especially vulnerable to the pathogen. Hummingbirds have a strong presence in California, especially in urban environments. However, little is understood regarding the impact of pox virus on hummingbird populations. Currently, diagnosing a pox infection relies on obtaining a tissue biopsy, which poses significant risks to birds and challenges in the field. Understanding the ecology of hummingbird pox viral infections could be advanced by a minimally invasive ante-mortem diagnostic method. Our aim was to address whether pox infections can be diagnosed using integumentary system samples besides tissue biopsies. To meet this goal, we tested multiple integumentary sample types using a quantitative real-time PCR assay. A secondary study goal was to determine which sample types (ranging from minimally to highly invasive sampling) were optimal for identifying infected birds. Methodology and principal findings Pox-like lesion tissue, pectoral muscle, feathers, toenail clippings, blood, and swabs (both pox-like lesion tissue and non pox-like lesion tissue) were taken from live birds and carcasses of two species of hummingbirds found in California. To maximize successful diagnosis, especially for samples with low viral load, a real-time quantitative PCR assay was developed for detecting the hummingbird-specific Avipoxvirus 4b core protein gene. Avipoxvirus DNA was successfully amplified from all sample types obtained from 27 individuals. These results were compared to those of conventional PCR and comparisons were also made among sample types, utilizing lesion tissue samples as the gold standard. Conclusions and significance Hummingbird avian pox can be diagnosed without relying on tissue biopsies. We identify that feather samples, of which contour feathers yielded the best results, can be used for diagnosing infected birds, thus reducing sampling risk. In sum, the real-time PCR assay detected viral DNA in various integumentary system sample types and will be useful in future studies of hummingbird disease ecology.
Collapse
Affiliation(s)
- Hanna E Baek
- Department of Biology, San Francisco State University, San Francisco, CA, United States of America
| | - Ruta R Bandivadekar
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Pranav Pandit
- EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Michelle Mah
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Ravinder N M Sehgal
- Department of Biology, San Francisco State University, San Francisco, CA, United States of America
| | - Lisa A Tell
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| |
Collapse
|
5
|
Samuel MD, Woodworth BL, Atkinson CT, Hart PJ, LaPointe DA. The epidemiology of avian pox and interaction with avian malaria in Hawaiian forest birds. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michael D. Samuel
- U.S. Geological Survey; Wisconsin Cooperative Wildlife Research Unit; University of Wisconsin; Madison Wisconsin 53706 USA
| | - Bethany L. Woodworth
- U.S. Geological Survey; Pacific Island Ecosystems Research Center; Hawaiʻi National Park; Hawaiʻi 96718 USA
- University of New England; Biddeford Maine 04005 USA
| | - Carter T. Atkinson
- U.S. Geological Survey; Pacific Island Ecosystems Research Center; Hawaiʻi National Park; Hawaiʻi 96718 USA
| | | | - Dennis A. LaPointe
- U.S. Geological Survey; Pacific Island Ecosystems Research Center; Hawaiʻi National Park; Hawaiʻi 96718 USA
| |
Collapse
|
6
|
Gilhare VR, Hirpurkar SD, Kumar A, Naik SK, Sahu T. Pock forming ability of fowl pox virus isolated from layer chicken and its adaptation in chicken embryo fibroblast cell culture. Vet World 2015; 8:245-50. [PMID: 27047081 PMCID: PMC4774827 DOI: 10.14202/vetworld.2015.245-250] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 11/16/2022] Open
Abstract
Aim: The objective of the present study was to examine pock forming ability of field strain and vaccine strain of fowl pox virus (FPV) in chorioallantoic membrane (CAM) of embryonated chicken eggs and its adaptation in chicken embryo fibroblast (CEF) cell culture. Materials and Methods: Dry scabs were collected from 25 affected birds in glycerin-saline and preserved at 4°C until processed. Virus was isolated in 10-day-old embryonated chicken eggs by dropped CAM method. The identity of the virus is confirmed by clinical findings of affected birds, pock morphology and histopathology of infected CAM. In addition one field isolate and vaccine strain of FPV was adapted to CEF cell culture. CEF cell culture was prepared from 9-day-old embryonated chicken eggs. Result: Clinical symptoms observed in affected birds include pox lesion on comb, wattle, eyelids and legs, no internal lesions were observed. All field isolates produced similar findings in CAM. Pocks produced by field isolates ranged from 3 mm to 5 mm at the third passage while initial passages edematous thickening and necrosis of CAM was observed. Pocks formed by lyophilized strain were ranges from 0.5 mm to 2.5 mm in diameter scattered all over the membrane at the first passage. Intra-cytoplasmic inclusion bodies are found on histopathology of CAM. At third passage level, the CEF inoculated with FPV showed characteristic cytopathic effect (CPE) included aggregation of cells, syncytia and plaque formation. Conclusion: FPV field isolates and vaccine strain produced distinct pock lesions on CAMs. Infected CAM showed intracytoplasmic inclusion bodies. The CEF inoculated with FPV field isolate as well as a vaccine strain showed characteristic CPE at third passage level.
Collapse
Affiliation(s)
- Varsha Rani Gilhare
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anjora Durg, Chhattisgarh, India
| | - S D Hirpurkar
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anjora Durg, Chhattisgarh, India
| | - Ashish Kumar
- Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Anjora Durg, Chhattisgarh, India
| | - Surendra Kumar Naik
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Anjora Durg, Chhattisgarh, India
| | - Tarini Sahu
- Department of Animal Nutrition, College of Veterinary Science and Animal Husbandry, Anjora Durg, Chhattisgarh, India
| |
Collapse
|
7
|
Williams RAJ, Escudero Duch C, Pérez-Tris J, Benítez L. Polymerase chain reaction detection of avipox and avian papillomavirus in naturally infected wild birds: comparisons of blood, swab and tissue samples. Avian Pathol 2014; 43:130-4. [PMID: 24456300 DOI: 10.1080/03079457.2014.886326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Avian poxvirus (avipox) is widely reported from avian species, causing cutaneous or mucosal lesions. Mortality rates of up to 100% are recorded in some hosts. Three major avipox clades are recognized. Several diagnostic techniques have been reported, with molecular techniques used only recently. Avipox has been reported from 278 different avian species, but only 111 of these involved sequence and/or strain identification. Collecting samples from wild birds is challenging as only few wild bird individuals or species may be symptomatic. Also, sampling regimes are tightly regulated and the most efficient sampling method, whole bird collection, is ethically challenging. In this study, three alternative sampling techniques (blood, cutaneous swabs and tissue biopsies) from symptomatic wild birds were examined. Polymerase chain reaction was used to detect avipoxvirus and avian papillomavirus (which also induces cutaneous lesions in birds). Four out of 14 tissue samples were positive but all 29 blood samples and 22 swab samples were negative for papillomavirus. All 29 blood samples were negative but 6/22 swabs and 9/14 tissue samples were avipox-positive. The difference between the numbers of positives generated from tissue samples and from swabs was not significant. The difference in the avipox-positive specimens in paired swab (4/6) and tissue samples (6/6) was also not significant. These results therefore do not show the superiority of swab or tissue samples over each other. However, both swab (6/22) and tissue (8/9) samples yielded significantly more avipox-positive cases than blood samples, which are therefore not recommended for sampling these viruses.
Collapse
Affiliation(s)
- Richard A J Williams
- a Department of Zoology and Physical Anthropology, Faculty of Biological Sciences , Universidad Complutense de Madrid , Madrid , Spain
| | | | | | | |
Collapse
|
8
|
Iniesta V, Belinchón-Lorenzo S, Soto M, Fernández-Cotrina J, Muñoz-Madrid R, Monroy I, Baz V, Gómez-Luque A, Parejo JC, Alonso C, Nieto LCG. Detection and chronology of parasitic kinetoplast DNA presence in hair of experimental Leishmania major infected BALB/c mice by Real Time PCR. Acta Trop 2013; 128:468-72. [PMID: 23916508 DOI: 10.1016/j.actatropica.2013.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/10/2013] [Accepted: 07/13/2013] [Indexed: 11/19/2022]
Abstract
Hair can accumulate foreign chemical or biological substances. Recently, it has been reported that parasite DNA can also be detected in the hair of Leishmania infantum infected dogs. The aim of this work has been to find out whether parasite DNA incorporates in the hair of Leishmania major experimentally infected animals. For this purpose, a group of 4 BALB/c mice, intradermally inoculated in both ears with 1000 L. major V1 strain promastigote forms, was monitored for parameters associated to the infection during 35 days. Weekly, ear swelling was measured, and hair samples from ears and leg were collected. Blood samples were obtained before challenge and at day 35 post infection, when parasite load was measured in ear, lymph node and spleen by limit dilution. Ear swelling and other parameters observed in the infected mice were consistent with those described for this model. The presence of parasite kinetoplast DNA (kDNA) was detected by Real Time PCR in all ear and leg hair samples at the final timepoint. These data suggests that hair is a specialized tissue in the sequestration and removal of foreign DNA. Detection of DNA in hair could be, therefore, a useful tool to chronologically record the infection process during experimental mice assays.
Collapse
Affiliation(s)
- Virginia Iniesta
- LeishmanCeres Laboratory (GLP Compliance Certified). Parasitology Unit. Veterinary Faculty, University of Extremadura, Avenida de la Universidad s/n, 10003 Cáceres, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pello SJ, Olsen GH. Emerging and reemerging diseases of avian wildlife. Vet Clin North Am Exot Anim Pract 2013; 16:357-81. [PMID: 23642867 DOI: 10.1016/j.cvex.2013.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Of the many important avian wildlife diseases, aspergillosis, West Nile virus, avipoxvirus, Wellfleet Bay virus, avian influenza, and inclusion body disease of cranes are covered in this article. Wellfleet Bay virus, first identified in 2010, is considered an emerging disease. Avian influenza and West Nile virus have recently been in the public eye because of their zoonotic potential and links to wildlife. Several diseases labeled as reemerging are included because of recent outbreaks or, more importantly, recent research in areas such as genomics, which shed light on the mechanisms whereby these adaptable, persistent pathogens continue to spread and thrive.
Collapse
Affiliation(s)
- Susan J Pello
- Animal & Bird Health Care Center, Cherry Hill, NJ 08003, USA.
| | | |
Collapse
|
10
|
Abstract
Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.
Collapse
|