1
|
Collings CK, Little DW, Schafer SJ, Anderson JN. HIV chromatin is a preferred target for drugs that bind in the DNA minor groove. PLoS One 2019; 14:e0216515. [PMID: 31887110 PMCID: PMC6936835 DOI: 10.1371/journal.pone.0216515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/03/2019] [Indexed: 12/25/2022] Open
Abstract
The HIV genome is rich in A but not G or U and deficient in C. This nucleotide bias controls HIV phenotype by determining the highly unusual composition of all major HIV proteins. The bias is also responsible for the high frequency of narrow DNA minor groove sites in the double-stranded HIV genome as compared to cellular protein coding sequences and the bulk of the human genome. Since drugs that bind in the DNA minor groove disrupt nucleosomes on sequences that contain closely spaced oligo-A tracts which are prevalent in HIV DNA because of its bias, it was of interest to determine if these drugs exert this selective inhibitory effect on HIV chromatin. To test this possibility, nucleosomes were reconstituted onto five double-stranded DNA fragments from the HIV-1 pol gene in the presence and in the absence of several minor groove binding drugs (MGBDs). The results demonstrated that the MGBDs inhibited the assembly of nucleosomes onto all of the HIV-1 segments in a manner that was proportional to the A-bias, but had no detectable effect on the formation of nucleosomes on control cloned fragments or genomic DNA from chicken and human. Nucleosomes preassembled onto HIV DNA were also preferentially destabilized by the drugs as evidenced by enhanced nuclease accessibility in physiological ionic strength and by the preferential loss of the histone octamer in hyper-physiological salt solutions. The drugs also selectively disrupted HIV-containing nucleosomes in yeast as revealed by enhanced nuclease accessibility of the in vivo assembled HIV chromatin and reductions in superhelical densities of plasmid chromatin containing HIV sequences. A comparison of these results to the density of A-tracts in the HIV genome indicates that a large fraction of the nucleosomes that make up HIV chromatin should be preferred in vitro targets for the MGBDs. These results show that the MGBDs preferentially disrupt HIV-1 chromatin in vitro and in vivo and raise the possibility that non-toxic derivatives of certain MGBDs might serve as a novel class of anti-HIV agents.
Collapse
Affiliation(s)
- Clayton K Collings
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America.,Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | - Donald W Little
- University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Samuel J Schafer
- Department of Reproductive and Developmental Sciences, University of British Columbia, Vancouver, BC, Canada
| | - John N Anderson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
2
|
The interaction landscape between transcription factors and the nucleosome. Nature 2018; 562:76-81. [PMID: 30250250 PMCID: PMC6173309 DOI: 10.1038/s41586-018-0549-5] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 08/06/2018] [Indexed: 01/01/2023]
Abstract
Nucleosomes cover most of the genome and are thought to be displaced by transcription factors in regions that direct gene expression. However, the modes of interaction between transcription factors and nucleosomal DNA remain largely unknown. Here we systematically explore interactions between the nucleosome and 220 transcription factors representing diverse structural families. Consistent with earlier observations, we find that the majority of the studied transcription factors have less access to nucleosomal DNA than to free DNA. The motifs recovered from transcription factors bound to nucleosomal and free DNA are generally similar. However, steric hindrance and scaffolding by the nucleosome result in specific positioning and orientation of the motifs. Many transcription factors preferentially bind close to the end of nucleosomal DNA, or to periodic positions on the solvent-exposed side of the DNA. In addition, several transcription factors usually bind to nucleosomal DNA in a particular orientation. Some transcription factors specifically interact with DNA located at the dyad position at which only one DNA gyre is wound, whereas other transcription factors prefer sites spanning two DNA gyres and bind specifically to each of them. Our work reveals notable differences in the binding of transcription factors to free and nucleosomal DNA, and uncovers a diverse interaction landscape between transcription factors and the nucleosome.
Collapse
|
3
|
Shukla A, Bhargava P. Regulation of tRNA gene transcription by the chromatin structure and nucleosome dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:295-309. [PMID: 29313808 DOI: 10.1016/j.bbagrm.2017.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 01/19/2023]
Abstract
The short, non-coding genes transcribed by the RNA polymerase (pol) III, necessary for survival of a cell, need to be repressed under the stress conditions in vivo. The pol III-transcribed genes have adopted several novel chromatin-based regulatory mechanisms to their advantage. In the budding yeast, the sub-nucleosomal size tRNA genes are found in the nucleosome-free regions, flanked by positioned nucleosomes at both the ends. With their chromosomes-wide distribution, all tRNA genes have a different chromatin context. A single nucleosome dynamics controls the accessibility of the genes for transcription. This dynamics operates under the influence of several chromatin modifiers in a gene-specific manner, giving the scope for differential regulation of even the isogenes within a tRNA gene family. The chromatin structure around the pol III-transcribed genes provides a context conducive for steady-state transcription as well as gene-specific transcriptional regulation upon signaling from the environmental cues. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Ashutosh Shukla
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
4
|
Wondergem JAJ, Schiessel H, Tompitak M. Performing SELEX experimentsin silico. J Chem Phys 2017; 147:174101. [DOI: 10.1063/1.5001394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- J. A. J. Wondergem
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - H. Schiessel
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - M. Tompitak
- Institute Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| |
Collapse
|
5
|
Collings CK, Anderson JN. Links between DNA methylation and nucleosome occupancy in the human genome. Epigenetics Chromatin 2017; 10:18. [PMID: 28413449 PMCID: PMC5387343 DOI: 10.1186/s13072-017-0125-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
Background DNA methylation is an epigenetic modification that is enriched in heterochromatin but depleted at active promoters and enhancers. However, the debate on whether or not DNA methylation is a reliable indicator of high nucleosome occupancy has not been settled. For example, the methylation levels of DNA flanking CTCF sites are higher in linker DNA than in nucleosomal DNA, while other studies have shown that the nucleosome core is the preferred site of methylation. In this study, we make progress toward understanding these conflicting phenomena by implementing a bioinformatics approach that combines MNase-seq and NOMe-seq data and by comprehensively profiling DNA methylation and nucleosome occupancy throughout the human genome. Results The results demonstrated that increasing methylated CpG density is correlated with nucleosome occupancy in the total genome and within nearly all subgenomic regions. Features with elevated methylated CpG density such as exons, SINE-Alu sequences, H3K36-trimethylated peaks, and methylated CpG islands are among the highest nucleosome occupied elements in the genome, while some of the lowest occupancies are displayed by unmethylated CpG islands and unmethylated transcription factor binding sites. Additionally, outside of CpG islands, the density of CpGs within nucleosomes was shown to be important for the nucleosomal location of DNA methylation with low CpG frequencies favoring linker methylation and high CpG frequencies favoring core particle methylation. Prominent exceptions to the correlations between methylated CpG density and nucleosome occupancy include CpG islands marked by H3K27me3 and CpG-poor heterochromatin marked by H3K9me3, and these modifications, along with DNA methylation, distinguish the major silencing mechanisms of the human epigenome. Conclusions Thus, the relationship between DNA methylation and nucleosome occupancy is influenced by the density of methylated CpG dinucleotides and by other epigenomic components in chromatin. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0125-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clayton K Collings
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611 USA
| | - John N Anderson
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907 USA
| |
Collapse
|
6
|
Yang D, Ioshikhes I. Drosophila H2A and H2A.Z Nucleosome Sequences Reveal Different Nucleosome Positioning Sequence Patterns. J Comput Biol 2016; 24:289-298. [PMID: 27992255 DOI: 10.1089/cmb.2016.0173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nucleosomes are implicated in transcriptional regulation as well as in packing and stabilizing the DNA. Nucleosome positions affect the transcription by impeding or facilitating the binding of transcription factors. The DNA sequence, especially the periodic occurrences of dinucleotides, is a major factor that affects the nucleosome positioning. We analyzed the Drosophila DNA sequences bound by H2A and H2A.Z nucleosomes. Periodic patterns of dinucleotides (weak-weak/strong-strong or purine-purine/pyrimidine-pyrimidine) were identified as WW/SS and RR/YY nucleosome positioning sequence (NPS) patterns. The WW/SS NPS pattern of the H2A nucleosome has a 10-bp period of weak-weak/strong-strong (W = A or T; S = G or C) dinucleotides. The 10-bp periodicity, however, is disrupted in the middle of the sequence. At the dyad, the SS dinucleotide is preferred. On the other hand, the RR/YY NPS pattern has an 18-bp periodicity of purine-purine/pyrimidine-pyrimidine (R = A or G; Y = T or C) dinucleotides. The NPS patterns from H2A.Z nucleosomes differ from the NPS patterns from H2A nucleosomes. The RR/YY pattern of H2A.Z nucleosomes has major peaks shifted by 10 bp deviated from the H2A nucleosome pattern. The H2A and H2A.Z nucleosomes have different sequence preferences. The shifted peaks coincide with DNA regions interacting with the histone loops.
Collapse
Affiliation(s)
- Doo Yang
- 1 Ottawa Institute of Systems Biology, University of Ottawa , Ottawa, Ontario, Canada .,2 Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, Ontario, Canada
| | - Ilya Ioshikhes
- 1 Ottawa Institute of Systems Biology, University of Ottawa , Ottawa, Ontario, Canada .,2 Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa , Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Wight A, Yang D, Ioshikhes I, Makrigiannis AP. Nucleosome Presence at AML-1 Binding Sites Inversely Correlates with Ly49 Expression: Revelations from an Informatics Analysis of Nucleosomes and Immune Cell Transcription Factors. PLoS Comput Biol 2016; 12:e1004894. [PMID: 27124577 PMCID: PMC4849748 DOI: 10.1371/journal.pcbi.1004894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/31/2016] [Indexed: 12/28/2022] Open
Abstract
Beyond its role in genomic organization and compaction, the nucleosome is believed to participate in the regulation of gene transcription. Here, we report a computational method to evaluate the nucleosome sensitivity for a transcription factor over a given stretch of the genome. Sensitive factors are predicted to be those with binding sites preferentially contained within nucleosome boundaries and lacking 10 bp periodicity. Based on these criteria, the Acute Myeloid Leukemia-1a (AML-1a) transcription factor, a regulator of immune gene expression, was identified as potentially sensitive to nucleosomal regulation within the mouse Ly49 gene family. This result was confirmed in RMA, a cell line with natural expression of Ly49, using MNase-Seq to generate a nucleosome map of chromosome 6, where the Ly49 gene family is located. Analysis of this map revealed a specific depletion of nucleosomes at AML-1a binding sites in the expressed Ly49A when compared to the other, silent Ly49 genes. Our data suggest that nucleosome-based regulation contributes to the expression of Ly49 genes, and we propose that this method of predicting nucleosome sensitivity could aid in dissecting the regulatory role of nucleosomes in general. The nucleosome—a large protein complex with DNA wound around it—is the fundamental unit of genomic organization in the eukaryotic cell. More than just a DNA organizer, however, nucleosomes may control gene expression by interfering with the cell’s ability to access the wound-up DNA, as shown by recent research. In this report, we demonstrate a computational method for predicting which elements of the genome are sensitive to regulation by nucleosomes. As a proof-of-concept, we identify AML-1a binding sites—important sequences in DNA regulation—as being specifically nucleosome sensitive. We then show that AML-1a sites are specifically depleted of nucleosomes when a gene is expressed, indicating the ability for nucleosomes to suppress the expression of that gene. This finding confirms that nucleosomes are likely involved in genome regulation, and provides a method for predicting which areas of the genome are probably affected most by nucleosomes. This paper also highlights the usefulness of the Ly49 gene family in testing computer-derived genomic predictions, and is of interest to anyone studying how gene expression is regulated from cell to cell.
Collapse
Affiliation(s)
- Andrew Wight
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Doo Yang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ilya Ioshikhes
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail: (II); (APM)
| | - Andrew P. Makrigiannis
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (II); (APM)
| |
Collapse
|
8
|
Pedersen JS, Valen E, Velazquez AMV, Parker BJ, Rasmussen M, Lindgreen S, Lilje B, Tobin DJ, Kelly TK, Vang S, Andersson R, Jones PA, Hoover CA, Tikhonov A, Prokhortchouk E, Rubin EM, Sandelin A, Gilbert MTP, Krogh A, Willerslev E, Orlando L. Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome. Genome Res 2013; 24:454-66. [PMID: 24299735 PMCID: PMC3941110 DOI: 10.1101/gr.163592.113] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time. Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to 130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics.
Collapse
Affiliation(s)
- Jakob Skou Pedersen
- Department of Molecular Medicine (MOMA), Aarhus University Hospital, Skejby, DK-8200 Aarhus N, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Xing YQ, Liu GQ, Zhao XJ, Cai L. An analysis and prediction of nucleosome positioning based on information content. Chromosome Res 2013; 21:63-74. [PMID: 23435498 DOI: 10.1007/s10577-013-9338-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/20/2013] [Accepted: 01/24/2013] [Indexed: 11/26/2022]
Abstract
Nucleosome positioning plays a key role in the regulation of many biological processes. In this study, the statistical difference of information content was investigated in nucleosome and linker DNA regions across eukaryotic organisms. By analyzing the information redundancy, D k , in Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans genomes, the short-range dominance of nucleotide correlation in nucleosome and linker DNA regions was confirmed. Significant difference of the D k value between the nucleosome and linker DNA regions was also found. The underlying reason for many successful oligonucleotide-based predictions of nucleosome positioning in eukaryotic model organisms may be attributed to the short-range dominance of nucleotide correlation in the nucleosome and linker DNA regions. When applying power spectrum analysis to the nucleosome and linker DNA regions, some obvious differences in sequence periodic signals were observed. The parameter F k was introduced to describe particular base correlation. Furthermore, the support vector machine combining F k was used to classify nucleosome and linker DNA regions in Homo sapiens, Oryzias latipes, C. elegans, Candida albicans, and S. cerevisiae. Independent test demonstrated that a good performance can be achieved by using this algorithm. This result further revealed that base correlation information has an important role in nucleosome positioning.
Collapse
Affiliation(s)
- Yong-qiang Xing
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China
| | | | | | | |
Collapse
|
10
|
Collings CK, Waddell PJ, Anderson JN. Effects of DNA methylation on nucleosome stability. Nucleic Acids Res 2013; 41:2918-31. [PMID: 23355616 PMCID: PMC3597673 DOI: 10.1093/nar/gks893] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Methylation of DNA at CpG dinucleotides represents one of the most important epigenetic mechanisms involved in the control of gene expression in vertebrate cells. In this report, we conducted nucleosome reconstitution experiments in conjunction with high-throughput sequencing on 572 KB of human DNA and 668 KB of mouse DNA that was unmethylated or methylated in order to investigate the effects of this epigenetic modification on the positioning and stability of nucleosomes. The results demonstrated that a subset of nucleosomes positioned by nucleotide sequence was sensitive to methylation where the modification increased the affinity of these sequences for the histone octamer. The features that distinguished these nucleosomes from the bulk of the methylation-insensitive nucleosomes were an increase in the frequency of CpG dinucleotides and a unique rotational orientation of CpGs such that their minor grooves tended to face toward the histones in the nucleosome rather than away. These methylation-sensitive nucleosomes were preferentially associated with exons as compared to introns while unmethylated CpG islands near transcription start sites became enriched in nucleosomes upon methylation. The results of this study suggest that the effects of DNA methylation on nucleosome stability in vitro can recapitulate what has been observed in the cell and provide a direct link between DNA methylation and the structure and function of chromatin.
Collapse
Affiliation(s)
- Clayton K Collings
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
11
|
Predicting nucleosome binding motif set and analyzing their distributions around functional sites of human genes. Chromosome Res 2012; 20:685-98. [DOI: 10.1007/s10577-012-9305-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 01/30/2023]
|
12
|
Teif VB, Shkrabkou AV, Egorova VP, Krot VI. Nucleosomes in gene regulation: Theoretical approaches. Mol Biol 2012. [DOI: 10.1134/s002689331106015x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Frenkel ZM, Trifonov EN, Volkovich Z, Bettecken T. Nucleosome Positioning Patterns Derived from Human Apoptotic Nucleosomes. J Biomol Struct Dyn 2011; 29:577-83. [DOI: 10.1080/073911011010524995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Xing Y, Zhao X, Cai L. Prediction of nucleosome occupancy in Saccharomyces cerevisiae using position-correlation scoring function. Genomics 2011; 98:359-66. [DOI: 10.1016/j.ygeno.2011.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/16/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
|
15
|
Grishkevich V, Hashimshony T, Yanai I. Core promoter T-blocks correlate with gene expression levels in C. elegans. Genome Res 2011; 21:707-17. [PMID: 21367940 PMCID: PMC3083087 DOI: 10.1101/gr.113381.110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 02/17/2011] [Indexed: 02/01/2023]
Abstract
Core promoters mediate transcription initiation by the integration of diverse regulatory signals encoded in the proximal promoter and enhancers. It has been suggested that genes under simple regulation may have low-complexity permissive promoters. For these genes, the core promoter may serve as the principal regulatory element; however, the mechanism by which this occurs is unclear. We report here a periodic poly-thymine motif, which we term T-blocks, enriched in occurrences within core promoter forward strands in Caenorhabditis elegans. An increasing number of T-blocks on either strand is associated with increasing nucleosome eviction. Strikingly, only forward strand T-blocks are correlated with expression levels, whereby genes with ≥6 T-blocks have fivefold higher expression levels than genes with ≤3 T-blocks. We further demonstrate that differences in T-block numbers between strains predictably affect expression levels of orthologs. Highly expressed genes and genes in operons tend to have a large number of T-blocks, as well as the previously characterized SL1 motif involved in trans-splicing. The presence of T-blocks thus correlates with low nucleosome occupancy and the precision of a trans-splicing motif, suggesting its role at both the DNA and RNA levels. Collectively, our results suggest that core promoters may tune gene expression levels through the occurrences of T-blocks, independently of the spatio-temporal regulation mediated by the proximal promoter.
Collapse
Affiliation(s)
| | - Tamar Hashimshony
- Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel
| | - Itai Yanai
- Department of Biology, Technion–Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
16
|
Yi X, Cai YD, He Z, Cui W, Kong X. Prediction of nucleosome positioning based on transcription factor binding sites. PLoS One 2010; 5:e12495. [PMID: 20824131 PMCID: PMC2931695 DOI: 10.1371/journal.pone.0012495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 07/31/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The DNA of all eukaryotic organisms is packaged into nucleosomes, the basic repeating units of chromatin. The nucleosome consists of a histone octamer around which a DNA core is wrapped and the linker histone H1, which is associated with linker DNA. By altering the accessibility of DNA sequences, the nucleosome has profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is of great importance for the study of genomic control mechanisms. Transcription factors (TFs) have been suggested to play a role in nucleosome positioning in vivo. PRINCIPAL FINDINGS Here, the minimum redundancy maximum relevance (mRMR) feature selection algorithm, the nearest neighbor algorithm (NNA), and the incremental feature selection (IFS) method were used to identify the most important TFs that either favor or inhibit nucleosome positioning by analyzing the numbers of transcription factor binding sites (TFBSs) in 53,021 nucleosomal DNA sequences and 50,299 linker DNA sequences. A total of nine important families of TFs were extracted from 35 families, and the overall prediction accuracy was 87.4% as evaluated by the jackknife cross-validation test. CONCLUSIONS Our results are consistent with the notion that TFs are more likely to bind linker DNA sequences than the sequences in the nucleosomes. In addition, our results imply that there may be some TFs that are important for nucleosome positioning but that play an insignificant role in discriminating nucleosome-forming DNA sequences from nucleosome-inhibiting DNA sequences. The hypothesis that TFs play a role in nucleosome positioning is, thus, confirmed by the results of this study.
Collapse
Affiliation(s)
- Xianfu Yi
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yu-Dong Cai
- Institute of System Biology, Shanghai University, Shanghai, China
- Centre for Computational Systems Biology, Fudan University, Shanghai, China
| | - Zhisong He
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - WeiRen Cui
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiangyin Kong
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|