1
|
Nørkær E, Gobbo S, Roald T, Starrfelt R. Disentangling developmental prosopagnosia: A scoping review of terms, tools and topics. Cortex 2024; 176:161-193. [PMID: 38795651 DOI: 10.1016/j.cortex.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
The goal of this preregistered scoping review is to create an overview of the research on developmental prosopagnosia (DP). Through analysis of all empirical studies of DP in adults, we investigate 1) how DP is conceptualized and defined, 2) how individuals are classified with DP and 3) which aspects of DP are investigated in the literature. We reviewed 224 peer-reviewed studies of DP. Our analysis of the literature reveals that while DP is predominantly defined as a lifelong face recognition impairment in the absence of acquired brain injury and intellectual/cognitive problems, there is far from consensus on the specifics of the definition with some studies emphasizing e.g., deficits in face perception, discrimination and/or matching as core characteristics of DP. These differences in DP definitions is further reflected in the vast heterogeneity in classification procedures. Only about half of the included studies explicitly state how they classify individuals with DP, and these studies adopt 40 different assessment tools. The two most frequently studied aspects of DP are the role of holistic processing and the specificity of face processing, and alongside a substantial body of neuroimaging studies of DP, this paints a picture of a research field whose scientific interests and aims are rooted in cognitive neuropsychology and neuroscience. We argue that these roots - alongside the heterogeneity in DP definition and classification - may have limited the scope and interest of DP research unnecessarily, and we point to new avenues of research for the field.
Collapse
Affiliation(s)
- Erling Nørkær
- Department of Psychology, University of Copenhagen, Denmark.
| | - Silvia Gobbo
- Department of Psychology, Università degli Studi di Milano-Bicocca, Italy
| | - Tone Roald
- Department of Psychology, University of Copenhagen, Denmark
| | | |
Collapse
|
2
|
Sun Y, Men W, Kennerknecht I, Fang W, Zheng HF, Zhang W, Rao Y. Human genetics of face recognition: discovery of MCTP2 mutations in humans with face blindness (congenital prosopagnosia). Genetics 2024; 227:iyae047. [PMID: 38547502 DOI: 10.1093/genetics/iyae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/19/2024] [Indexed: 06/06/2024] Open
Abstract
Face recognition is important for both visual and social cognition. While prosopagnosia or face blindness has been known for seven decades and face-specific neurons for half a century, the molecular genetic mechanism is not clear. Here we report results after 17 years of research with classic genetics and modern genomics. From a large family with 18 congenital prosopagnosia (CP) members with obvious difficulties in face recognition in daily life, we uncovered a fully cosegregating private mutation in the MCTP2 gene which encodes a calcium binding transmembrane protein expressed in the brain. After screening through cohorts of 6589, we found more CPs and their families, allowing detection of more CP associated mutations in MCTP2. Face recognition differences were detected between 14 carriers with the frameshift mutation S80fs in MCTP2 and 19 noncarrying volunteers. Six families including one with 10 members showed the S80fs-CP correlation. Functional magnetic resonance imaging found association of impaired recognition of individual faces by MCTP2 mutant CPs with reduced repetition suppression to repeated facial identities in the right fusiform face area. Our results have revealed genetic predisposition of MCTP2 mutations in CP, 76 years after the initial report of prosopagnosia and 47 years after the report of the first CP. This is the first time a gene required for a higher form of visual social cognition was found in humans.
Collapse
Affiliation(s)
- Yun Sun
- Chinese Institutes for Medical Research, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Beijing Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Ingo Kennerknecht
- Institute of Human Genetics, Westfälische Wilhelms-Universität, Münster 48149, Germany
| | - Wan Fang
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hou-Feng Zheng
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Wenxia Zhang
- Chinese Institutes for Medical Research, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Rao
- Chinese Institutes for Medical Research, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| |
Collapse
|
3
|
Mishra MV, Fry RM, Saad E, Arizpe JM, Ohashi YGB, DeGutis JM. Comparing the sensitivity of face matching assessments to detect face perception impairments. Neuropsychologia 2021; 163:108067. [PMID: 34673046 DOI: 10.1016/j.neuropsychologia.2021.108067] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022]
Abstract
Numerous neurological, developmental, and psychiatric conditions demonstrate impaired face recognition, which can be socially debilitating. These impairments can be caused by either deficient face perception or face memory mechanisms. Though there are well-validated, sensitive measures of face memory impairments, it currently remains unclear which assessments best measure face perception impairments. A sensitive, validated face perception measure could help with diagnosing causes of face recognition deficits and be useful in characterizing individual differences in unimpaired populations. Here, we compared the computerized Benton Face Recognition Test (BFRT-c) and Cambridge Face Perception Test (CFPT) in their ability to differentiate developmental prosopagnosics (DPs, N = 30) and age-matched controls (N = 30). Participants completed the BFRT-c, CFPT, and two additional face perception assessments: the University of Southern California Face Perception Test (USCFPT) and a novel same/different face matching test (SDFMT). Participants were also evaluated on objective and subjective face recognition tasks including the Cambridge Face Memory Test, famous faces test, and Prosopagnosia Index-20. We performed a logistic regression with the perception tests predicting DP vs. control group membership and used multiple linear regressions to predict continuous objective and subjective face recognition memory. Our results show that the BFRT-c performed as well as, if not better than, the CFPT, and that both tests clearly outperformed the USCFPT and SDFMT. Further, exploratory analyses revealed that face lighting-change conditions better predicted DP group membership and face recognition abilities than viewpoint-change conditions. Together, these results support the combined use of the BFRT-c and CFPT to best assess face perception impairments.
Collapse
Affiliation(s)
- Maruti V Mishra
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Boston Attention and Learning Laboratory, VA Boston Healthcare, Jamaica Plain Division, 150 S Huntington Ave., Boston, MA, USA
| | - Regan M Fry
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Boston Attention and Learning Laboratory, VA Boston Healthcare, Jamaica Plain Division, 150 S Huntington Ave., Boston, MA, USA
| | - Elyana Saad
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Joseph M Arizpe
- Science Applications International Corporation (SAIC), Fort Sam Houston, TX, USA
| | - Yuri-Grace B Ohashi
- Department of Psychology, Harvard University, Cambridge, MA, USA; Harvard Decision Science Laboratory, Harvard Kennedy School, Cambridge, MA, USA
| | - Joseph M DeGutis
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Boston Attention and Learning Laboratory, VA Boston Healthcare, Jamaica Plain Division, 150 S Huntington Ave., Boston, MA, USA.
| |
Collapse
|
4
|
Haeger A, Pouzat C, Luecken V, N’Diaye K, Elger C, Kennerknecht I, Axmacher N, Dinkelacker V. Face Processing in Developmental Prosopagnosia: Altered Neural Representations in the Fusiform Face Area. Front Behav Neurosci 2021; 15:744466. [PMID: 34867227 PMCID: PMC8636799 DOI: 10.3389/fnbeh.2021.744466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale: Face expertise is a pivotal social skill. Developmental prosopagnosia (DP), i.e., the inability to recognize faces without a history of brain damage, affects about 2% of the general population, and is a renowned model system of the face-processing network. Within this network, the right Fusiform Face Area (FFA), is particularly involved in face identity processing and may therefore be a key element in DP. Neural representations within the FFA have been examined with Representational Similarity Analysis (RSA), a data-analytical framework in which multi-unit measures of brain activity are assessed with correlation analysis. Objectives: Our study intended to scrutinize modifications of FFA-activation during face encoding and maintenance based on RSA. Methods: Thirteen participants with DP (23-70 years) and 12 healthy control subjects (19-62 years) participated in a functional MRI study, including morphological MRI, a functional FFA-localizer and a modified Sternberg paradigm probing face memory encoding and maintenance. Memory maintenance of one, two, or four faces represented low, medium, and high memory load. We examined conventional activation differences in response to working memory load and applied RSA to compute individual correlation-matrices on the voxel level. Group correlation-matrices were compared via Donsker's random walk analysis. Results: On the functional level, increased memory load entailed both a higher absolute FFA-activation level and a higher degree of correlation between activated voxels. Both aspects were deficient in DP. Interestingly, control participants showed a homogeneous degree of correlation for successful trials during the experiment. In DP-participants, correlation levels between FFA-voxels were significantly lower and were less sustained during the experiment. In behavioral terms, DP-participants performed poorer and had longer reaction times in relation to DP-severity. Furthermore, correlation levels were negatively correlated with reaction times for the most demanding high load condition. Conclusion: We suggest that participants with DP fail to generate robust and maintained neural representations in the FFA during face encoding and maintenance, in line with poorer task performance and prolonged reaction times. In DP, alterations of neural coding in the FFA might therefore explain curtailing in working memory and contribute to impaired long-term memory and mental imagery.
Collapse
Affiliation(s)
- Alexa Haeger
- JARA-BRAIN, Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine (INM-11), Jülich, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | | | | | - Karim N’Diaye
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | | | - Ingo Kennerknecht
- Institute of Human Genetics, Westfaelische Wilhelms-Universitaet Muenster, Muenster, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Ruhr University Bochum, Bochum, Germany
| | - Vera Dinkelacker
- Neurology Department, Hautepierre Hospital, University of Strasbourg, Strasbourg, France
- Rothschild Foundation, Neurology Department, Paris, France
| |
Collapse
|
5
|
Barton JJS, Albonico A, Susilo T, Duchaine B, Corrow SL. Object recognition in acquired and developmental prosopagnosia. Cogn Neuropsychol 2019; 36:54-84. [PMID: 30947609 DOI: 10.1080/02643294.2019.1593821] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Whether face and object recognition are dissociated in prosopagnosia continues to be debated: a recent review highlighted deficiencies in prior studies regarding the evidence for such a dissociation. Our goal was to study cohorts with acquired and developmental prosopagnosia with a complementary battery of tests of object recognition that address prior limitations, as well as evaluating for residual effects of object expertise. We studied 15 subjects with acquired and 12 subjects with developmental prosopagnosia on three tests: the Old/New Tests, the Cambridge Bicycle Memory Test, and the Expertise-adjusted Test of Car Recognition. Most subjects with developmental prosopagnosia were normal on the Old/New Tests: for acquired prosopagnosia, subjects with occipitotemporal lesions often showed impairments while those with anterior temporal lesions did not. Ten subjects showed a putative classical dissociation between the Cambridge Face and Bicycle Memory Tests, seven of whom had normal reaction times. Both developmental and acquired groups showed reduced car recognition on the expertise-adjusted test, though residual effects of expertise were still evident. Two subjects with developmental prosopagnosia met criteria for normal object recognition across all tests. We conclude that strong evidence for intact object recognition can be found in a few subjects but the majority show deficits, particularly those with the acquired form. Both acquired and developmental forms show residual but reduced object expertise effects.
Collapse
Affiliation(s)
- Jason J S Barton
- a Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology , University of British Columbia , Vancouver , Canada
| | - Andrea Albonico
- a Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology , University of British Columbia , Vancouver , Canada
| | - Tirta Susilo
- b School of Psychology , Victoria University of Wellington , Wellington , New Zealand
| | - Brad Duchaine
- c Department of Psychological and Brain Sciences , Dartmouth College , Hanover , NH , USA
| | - Sherryse L Corrow
- a Departments of Medicine (Neurology), Ophthalmology and Visual Sciences, Psychology , University of British Columbia , Vancouver , Canada.,d Department of Psychology , Bethel University , Minneapolis , MN , USA
| |
Collapse
|
6
|
Abstract
A longstanding controversy concerns the functional organization of high-level vision, and the extent to which the recognition of different classes of visual stimuli engages a single system or multiple independent systems. We examine this in the context of congenital prosopagnosia (CP), a neurodevelopmental disorder in which individuals, without a history of brain damage, are impaired at face recognition. This paper reviews all CP cases from 1976 to 2016, and explores the evidence for the association or dissociation of face and object recognition. Of the 238 CP cases with data permitting a satisfactory evaluation, 80.3% evinced an association between impaired face and object recognition whereas 19.7% evinced a dissociation. We evaluate the strength of the evidence and correlate the face and object recognition behaviour. We consider the implications for theories of functional organization of the visual system, and offer suggestions for further adjudication of the relationship between face and object recognition.
Collapse
Affiliation(s)
- Jacob Geskin
- a Department of Psychology and Center for the Neural Basis of Cognition , Carnegie Mellon University , Pittsburgh , PA , USA
| | - Marlene Behrmann
- a Department of Psychology and Center for the Neural Basis of Cognition , Carnegie Mellon University , Pittsburgh , PA , USA
| |
Collapse
|
7
|
White D, Rivolta D, Burton AM, Al-Janabi S, Palermo R. Face Matching Impairment in Developmental Prosopagnosia. Q J Exp Psychol (Hove) 2017; 70:287-297. [DOI: 10.1080/17470218.2016.1173076] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Developmental prosopagnosia (DP) is commonly referred to as ‘face blindness’, a term that implies a perceptual basis to the condition. However, DP presents as a deficit in face recognition and is diagnosed using memory-based tasks. Here, we test face identification ability in six people with DP, who are severely impaired on face memory tasks, using tasks that do not rely on memory. First, we compared DP to control participants on a standardized test of unfamiliar face matching using facial images taken on the same day and under standardized studio conditions ( Glasgow Face Matching Test; GFMT). Scores for DP participants did not differ from normative accuracy scores on the GFMT. Second, we tested face matching performance on a test created using images that were sourced from the Internet and so varied substantially due to changes in viewing conditions and in a person's appearance ( Local Heroes Test; LHT). DP participants showed significantly poorer matching accuracy on the LHT than control participants, for both unfamiliar and familiar face matching. Interestingly, this deficit is specific to ‘match’ trials, suggesting that people with DP may have particular difficulty in matching images of the same person that contain natural day-to-day variations in appearance. We discuss these results in the broader context of individual differences in face matching ability.
Collapse
Affiliation(s)
- David White
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Davide Rivolta
- School of Psychology, University of East London, London, UK
| | | | - Shahd Al-Janabi
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Romina Palermo
- ARC Centre of Excellence in Cognition and its Disorders, and School of Psychology, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
8
|
Impairments in the Face-Processing Network in Developmental Prosopagnosia and Semantic Dementia. Cogn Behav Neurol 2016; 28:188-97. [PMID: 26705265 DOI: 10.1097/wnn.0000000000000077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Developmental prosopagnosia (DP) and semantic dementia (SD) may be the two most common neurologic disorders of face processing, but their main clinical and pathophysiologic differences have not been established. To identify those features, we compared patients with DP and SD. METHODS Five patients with DP, five with right temporal-predominant SD, and ten normal controls underwent cognitive, visual perceptual, and face-processing tasks. RESULTS Although the patients with SD were more cognitively impaired than those with DP, the two groups did not differ statistically on the visual perceptual tests. On the face-processing tasks, the DP group had difficulty with configural analysis and they reported relying on serial, feature-by-feature analysis or awareness of salient features to recognize faces. By contrast, the SD group had problems with person knowledge and made semantically related errors. The SD group had better face familiarity scores, suggesting a potentially useful clinical test for distinguishing SD from DP. CONCLUSIONS These two disorders of face processing represent clinically distinguishable disturbances along a right hemisphere face-processing network: DP, characterized by early configural agnosia for faces, and SD, characterized primarily by a multimodal person knowledge disorder. We discuss these preliminary findings in the context of the current literature on the face-processing network; recent studies suggest an additional right anterior temporal, unimodal face familiarity-memory deficit consistent with an "associative prosopagnosia."
Collapse
|
9
|
Ramon M. Perception of global facial geometry is modulated through experience. PeerJ 2015; 3:e850. [PMID: 25825678 PMCID: PMC4375970 DOI: 10.7717/peerj.850] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/03/2015] [Indexed: 12/05/2022] Open
Abstract
Identification of personally familiar faces is highly efficient across various viewing conditions. While the presence of robust facial representations stored in memory is considered to aid this process, the mechanisms underlying invariant identification remain unclear. Two experiments tested the hypothesis that facial representations stored in memory are associated with differential perceptual processing of the overall facial geometry. Subjects who were personally familiar or unfamiliar with the identities presented discriminated between stimuli whose overall facial geometry had been manipulated to maintain or alter the original facial configuration (see Barton, Zhao & Keenan, 2003). The results demonstrate that familiarity gives rise to more efficient processing of global facial geometry, and are interpreted in terms of increased holistic processing of facial information that is maintained across viewing distances.
Collapse
Affiliation(s)
- Meike Ramon
- Institute of Research in Psychology, Institute of Neuroscience, Université catholique de Louvain , Louvain-La-Neuve , Belgium
| |
Collapse
|
10
|
Huis in 't Veld E, Van den Stock J, de Gelder B. Configuration perception and face memory, and face context effects in developmental prosopagnosia. Cogn Neuropsychol 2012. [DOI: 10.1080/02643294.2012.732051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Jan Van den Stock
- b Brain and Emotion Laboratory Leuven (BELL), Division of Psychiatry, Department of Neurosciences , KU Leuven, Leuven , Belgium
| | - Beatrice de Gelder
- a Cognitive and Affective Neuroscience Laboratory , Tilburg University , Tilburg , The Netherlands
- b Brain and Emotion Laboratory Leuven (BELL), Division of Psychiatry, Department of Neurosciences , KU Leuven, Leuven , Belgium
- c Faculty of Psychology and Neuroscience , Maastricht University , Maastricht , The Netherlands
| |
Collapse
|
11
|
Dering B, Martin CD, Moro S, Pegna AJ, Thierry G. Face-sensitive processes one hundred milliseconds after picture onset. Front Hum Neurosci 2011; 5:93. [PMID: 21954382 PMCID: PMC3173839 DOI: 10.3389/fnhum.2011.00093] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 08/13/2011] [Indexed: 11/13/2022] Open
Abstract
The human face is the most studied object category in visual neuroscience. In a quest for markers of face processing, event-related potential (ERP) studies have debated whether two peaks of activity – P1 and N170 – are category-selective. Whilst most studies have used photographs of unaltered images of faces, others have used cropped faces in an attempt to reduce the influence of features surrounding the “face–object” sensu stricto. However, results from studies comparing cropped faces with unaltered objects from other categories are inconsistent with results from studies comparing whole faces and objects. Here, we recorded ERPs elicited by full front views of faces and cars, either unaltered or cropped. We found that cropping artificially enhanced the N170 whereas it did not significantly modulate P1. In a second experiment, we compared faces and butterflies, either unaltered or cropped, matched for size and luminance across conditions, and within a narrow contrast bracket. Results of Experiment 2 replicated the main findings of Experiment 1. We then used face–car morphs in a third experiment to manipulate the perceived face-likeness of stimuli (100% face, 70% face and 30% car, 30% face and 70% car, or 100% car) and the N170 failed to differentiate between faces and cars. Critically, in all three experiments, P1 amplitude was modulated in a face-sensitive fashion independent of cropping or morphing. Therefore, P1 is a reliable event sensitive to face processing as early as 100 ms after picture onset.
Collapse
|
12
|
Stollhoff R, Kennerknecht I, Elze T, Jost J. A computational model of dysfunctional facial encoding in congenital prosopagnosia. Neural Netw 2011; 24:652-64. [DOI: 10.1016/j.neunet.2011.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 02/14/2011] [Accepted: 03/06/2011] [Indexed: 11/15/2022]
|
13
|
Stollhoff R, Jost J, Elze T, Kennerknecht I. Deficits in long-term recognition memory reveal dissociated subtypes in congenital prosopagnosia. PLoS One 2011; 6:e15702. [PMID: 21283572 PMCID: PMC3026793 DOI: 10.1371/journal.pone.0015702] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/22/2010] [Indexed: 11/29/2022] Open
Abstract
The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.
Collapse
Affiliation(s)
- Rainer Stollhoff
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.
| | | | | | | |
Collapse
|
14
|
Dinkelacker V, Grüter M, Klaver P, Grüter T, Specht K, Weis S, Kennerknecht I, Elger CE, Fernandez G. Congenital prosopagnosia: multistage anatomical and functional deficits in face processing circuitry. J Neurol 2010; 258:770-82. [PMID: 21120515 PMCID: PMC3090571 DOI: 10.1007/s00415-010-5828-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 10/30/2010] [Accepted: 11/03/2010] [Indexed: 11/27/2022]
Abstract
Face recognition is a primary social skill which depends on a distributed neural network. A pronounced face recognition deficit in the absence of any lesion is seen in congenital prosopagnosia. This study investigating 24 congenital prosopagnosic subjects and 25 control subjects aims at elucidating its neural basis with fMRI and voxel-based morphometry. We found a comprehensive behavioral pattern, an impairment in visual recognition for faces and buildings that spared long-term memory for faces with negative valence. Anatomical analysis revealed diminished gray matter density in the bilateral lingual gyrus, the right middle temporal gyrus, and the dorsolateral prefrontal cortex. In most of these areas, gray matter density correlated with memory success. Decreased functional activation was found in the left fusiform gyrus, a crucial area for face processing, and in the dorsolateral prefrontal cortex, whereas activation of the medial prefrontal cortex was enhanced. Hence, our data lend strength to the hypothesis that congenital prosopagnosia is explained by network dysfunction and suggest that anatomic curtailing of visual processing in the lingual gyrus plays a substantial role. The dysfunctional circuitry further encompasses the fusiform gyrus and the dorsolateral prefrontal cortex, which may contribute to their difficulties in long-term memory for complex visual information. Despite their deficits in face identity recognition, processing of emotion related information is preserved and possibly mediated by the medial prefrontal cortex. Congenital prosopagnosia may, therefore, be a blueprint of differential curtailing in networks of visual cognition.
Collapse
|