1
|
Muhamad P, Phompradit P, Chaijaroenkul W, Na-Bangchang K. Distribution patterns of molecular markers of antimalarial drug resistance in Plasmodium falciparum isolates on the Thai-Myanmar border during the periods of 1993-1998 and 2002-2008. BMC Genomics 2024; 25:269. [PMID: 38468205 DOI: 10.1186/s12864-023-09814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 11/17/2023] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Polymorphisms of Plasmodium falciparum chloroquine resistance transporter (pfcrt), Plasmodium falciparum multi-drug resistance 1 (pfmdr1) and Plasmodium falciparum kelch 13-propeller (pfk13) genes are accepted as valid molecular markers of quinoline antimalarials and artemisinins. This study investigated the distribution patterns of these genes in P. falciparum isolates from the areas along the Thai-Myanmar border during the two different periods of antimalarial usage in Thailand. RESULTS Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) were used to detect pfcrt mutations at codons 76, 220, 271, 326, 356, and 371 as well as pfmdr1 mutation at codon 86. The prevalence of pfcrt mutations was markedly high (96.4-99.7%) in samples collected during both periods. The proportions of mutant genotypes (number of mutant/total isolate) at codons 76, 220, 271, 326, 356 and 371 in the isolates collected during 1993-1998 (period 1) compared with 2002-2008 (period 2) were 97.9% (137/140) vs. 97.1% (401/413), 97.9% (140/143) vs. 98.8% (171/173), 97.2% (139/143) vs. 97.1% (333/343), 98.6% (140/142) vs. 99.7% (385/386), 96.4% (134/139) vs. 98.2% (378/385) and 97.8% (136/139) vs. 98.9% (375/379), respectively. Most isolates carried pfmdr1 wild-type at codon 86, with a significant difference in proportions genotypes (number of wild type/total sample) in samples collected during period 1 [92.9% (130/140)] compared with period 2 [96.9% (379/391)]. Investigation of pfmdr1 copy number was performed by real-time PCR. The proportions of isolates carried 1, 2, 3 and 4 or more than 4 copies of pfmdr1 (number of isolates carried correspondent copy number/total isolate) were significantly different between the two sample collecting periods (65.7% (90/137) vs. 87.8% (390/444), 18.2% (25/137) vs. 6.3%(28/444), 5.1% (7/137) vs. 1.4% (6/444) and 11.0% (15/137) vs. 4.5% (20/444), for period 1 vs. period 2, respectively). No pfk13 mutation was detected by nested PCR and nucleotide sequencing in all samples with successful analysis (n = 68). CONCLUSIONS The persistence of pfcrt mutations and pfmdr1 wild-types at codon 86, along with gene amplification in P. falciparum, contributes to the continued resistance of chloroquine and mefloquine in P. falciparum isolates in the study area. Regular surveillance of antimalarial drug resistance in P. falciparum, incorporating relevant molecular markers and treatment efficacy assessments, should be conducted.
Collapse
Affiliation(s)
- Phunuch Muhamad
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
| | - Papichaya Phompradit
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Kesara Na-Bangchang
- Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Pathumthani, 12120, Thailand.
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
2
|
Cassiano GC, Martinelli A, Mottin M, Neves BJ, Andrade CH, Ferreira PE, Cravo P. Whole genome sequencing identifies novel mutations in malaria parasites resistant to artesunate (ATN) and to ATN + mefloquine combination. Front Cell Infect Microbiol 2024; 14:1353057. [PMID: 38495651 PMCID: PMC10940360 DOI: 10.3389/fcimb.2024.1353057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction The global evolution of resistance to Artemisinin-based Combination Therapies (ACTs) by malaria parasites, will severely undermine our ability to control this devastating disease. Methods Here, we have used whole genome sequencing to characterize the genetic variation in the experimentally evolved Plasmodium chabaudi parasite clone AS-ATNMF1, which is resistant to artesunate + mefloquine. Results and discussion Five novel single nucleotide polymorphisms (SNPs) were identified, one of which was a previously undescribed E738K mutation in a 26S proteasome subunit that was selected for under artesunate pressure (in AS-ATN) and retained in AS-ATNMF1. The wild type and mutated three-dimensional (3D) structure models and molecular dynamics simulations of the P. falciparum 26S proteasome subunit Rpn2 suggested that the E738K mutation could change the toroidal proteasome/cyclosome domain organization and change the recognition of ubiquitinated proteins. The mutation in the 26S proteasome subunit may therefore contribute to altering oxidation-dependent ubiquitination of the MDR-1 and/or K13 proteins and/or other targets, resulting in changes in protein turnover. In light of the alarming increase in resistance to artemisin derivatives and ACT partner drugs in natural parasite populations, our results shed new light on the biology of resistance and provide information on novel molecular markers of resistance that may be tested (and potentially validated) in the field.
Collapse
Affiliation(s)
- Gustavo Capatti Cassiano
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, (LA-REAL), Instituto de Higiene e Medicina Tropical, (IHMT), Universidade NOVA de Lisboa, (UNL), Lisbon, Portugal
| | | | - Melina Mottin
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bruno Junior Neves
- Laboratory or Cheminformatics (LabChem), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Carolina Horta Andrade
- Laboratory for Molecular Modeling and Drug Design (LabMol), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
- Center for the Research and Advancement in Fragments and Molecular Targets (CRAFT), School of Pharmaceutical Sciences at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Pedro Cravo
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, (LA-REAL), Instituto de Higiene e Medicina Tropical, (IHMT), Universidade NOVA de Lisboa, (UNL), Lisbon, Portugal
| |
Collapse
|
3
|
Cravo P. On the contribution of the rodent model Plasmodium chabaudi for understanding the genetics of drug resistance in malaria. Parasitol Int 2022; 91:102623. [PMID: 35803536 DOI: 10.1016/j.parint.2022.102623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
Malaria is a devastating disease that still claims over half a million lives every year, mostly in sub-Saharan Africa. One of the main barriers to malaria control is the evolution and propagation of drug-resistant mutant parasites. Knowing the genes and respective mutations responsible for drug resistance facilitates the design of drugs with novel modes of action and allows predicting and monitoring drug resistance in natural parasite populations in real-time. The best way to identify these mutations is to experimentally evolve resistance to the drug in question and then comparing the genomes of the drug-resistant mutants to that of the sensitive progenitor parasites. This simple evolutive concept was the starting point for the development of a paradigm over the years, based on the use of the rodent malaria parasite Plasmodium chabaudi to unravel the genetics of drug resistance in malaria. It involves the use of a cloned parasite isolate (P. chabaudi AS) whose genome is well characterized, to artificially select resistance to given drugs through serial passages in mice under slowly increasing drug pressure. The end resulting parasites are cloned and the genetic mutations are then discovered through Linkage Group Selection, a technique conceived by Prof. Richard Carter and his group, and/or Whole Genome Sequencing. The precise role of these mutations can then be interrogated in malaria parasites of humans through allelic replacement experiments and/or genotype-phenotype association studies in natural parasite populations. Using this paradigm, all the mutations underlying resistance to the most important antimalarial drugs were identified, most of which were pioneering and later shown to also play a role in drug resistance in natural infections of human malaria parasites. This supports the use of P. chabaudi a fast-track predictive model to identify candidate genetic markers of resistance to present and future antimalarial drugs and improving our understanding of the biology of resistance.
Collapse
Affiliation(s)
- Pedro Cravo
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira, n° 100, 1349-008 Lisboa, Portugal.
| |
Collapse
|
4
|
Plasmodium falciparum Atg18 localizes to the food vacuole via interaction with the multi-drug resistance protein 1 and phosphatidylinositol 3-phosphate. Biochem J 2021; 478:1705-1732. [PMID: 33843972 DOI: 10.1042/bcj20210001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/27/2022]
Abstract
Autophagy, a lysosome-dependent degradative process, does not appear to be a major degradative process in malaria parasites and has a limited repertoire of genes. To better understand the autophagy process, we investigated Plasmodium falciparum Atg18 (PfAtg18), a PROPPIN family protein, whose members like S. cerevisiae Atg18 (ScAtg18) and human WIPI2 bind PI3P and play an essential role in autophagosome formation. Wild type and mutant PfAtg18 were expressed in P. falciparum and assessed for localization, the effect of various inhibitors and antimalarials on PfAtg18 localization, and identification of PfAtg18-interacting proteins. PfAtg18 is expressed in asexual erythrocytic stages and localized to the food vacuole, which was also observed with other Plasmodium Atg18 proteins, indicating that food vacuole localization is likely a shared feature. Interaction of PfAtg18 with the food vacuole-associated PI3P is essential for localization, as PfAtg18 mutants of PI3P-binding motifs neither bound PI3P nor localized to the food vacuole. Interestingly, wild type ScAtg18 interacted with PI3P, but its expression in P. falciparum showed complete cytoplasmic localization, indicating additional requirement for food vacuole localization. The food vacuole multi-drug resistance protein 1 (MDR1) was consistently identified in the immunoprecipitates of PfAtg18 and P. berghei Atg18, and also interacted with PfAtg18. In contrast with PfAtg18, ScAtg18 did not interact with MDR1, which, in addition to PI3P, could play a critical role in localization of PfAtg18. Chloroquine and amodiaquine caused cytoplasmic localization of PfAtg18, suggesting that these target PfAtg18 transport pathway. Thus, PI3P and MDR1 are critical mediators of PfAtg18 localization.
Collapse
|
5
|
Abugri J, Ansah F, Asante KP, Opoku CN, Amenga-Etego LA, Awandare GA. Prevalence of chloroquine and antifolate drug resistance alleles in Plasmodium falciparum clinical isolates from three areas in Ghana. AAS Open Res 2018; 1:1. [PMID: 32382694 PMCID: PMC7185243 DOI: 10.12688/aasopenres.12825.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2018] [Indexed: 01/24/2023] Open
Abstract
Background: The emergence and spread of resistance in
Plasmodium falciparum to chloroquine (CQ) necessitated the change from CQ to artemisinin-based combination therapies (ACTs) as first-line drug for the management of uncomplicated malaria in Ghana in 2005. Sulphadoxine-pyrimethamine (SP) which was the second line antimalarial drug in Ghana, was now adopted for intermittent preventive treatment of malaria in pregnancy (IPTp). Methods: To examine the prevalence of molecular markers associated with CQ and antifolate drug resistance in Ghana, we employed restriction fragment length polymorphism polymerase chain reaction to genotype and compare single nucleotide polymorphisms (SNPs) in the
P. falciparum chloroquine resistance transporter (
pfcrt, PF3D7_0709000), multidrug resistance (
pfmdr1, PF3D7_0523000), bifunctional dihydrofolate reductase-thymidylate synthase (
pfdhfr, PF3D7_0417200) and dihydropteroate synthase (
pfdhps, PF3D7_0810800) genes. Parasites were collected from children with malaria reporting to hospitals in three different epidemiological areas of Ghana (Accra, Kintampo and Navrongo) in 2012-2013 and 2016-2017. Results: The overall prevalence of the CQ resistance-associated
pfcrt 76T allele was 8%, whereas
pfmdr1 86Y and 184F alleles were present in 10.2% and 65.1% of infections, respectively. The majority of the isolates harboured the antifolate resistance-associated
pfdhfr alleles 51I (83.4%), 59R (85.9 %) and 108N (90.5%).
Pfdhps 437G and 540E were detected in 90.6% and 0.7% of infections, respectively. We observed no significant difference across the three study sites for all the polymorphisms except for
pfdhps 437G
, which was more common in Accra compared to Kintampo for the 2016-2017 isolates. Across both
pfdhfr and
pfdhps genes, a large proportion (61%) of the isolates harboured the quadruple mutant combination (
I51R59N108/
G437). CQ resistance alleles decreased during the 12 years after CQ withdrawal, but an mediate SP resistance alleles increased. Conclusion: Surveillance of the prevalence of resistance alleles is necessary in monitoring the efficacy of antimalarial drugs.
Collapse
Affiliation(s)
- James Abugri
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Applied Chemistry and Biochemistry, Faculty of Applied Sciences, University for Development Studies, Tamale, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Kwaku P Asante
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana
| | | | - Lucas A Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Navrongo Health Research Centre, Navrongo, Ghana
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana.,Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
6
|
Abugri J, Ansah F, Asante KP, Opoku CN, Amenga-Etego LA, Awandare GA. Prevalence of chloroquine and antifolate drug resistance alleles in Plasmodium falciparum clinical isolates from three areas in Ghana. AAS Open Res 2018; 1:1. [PMID: 32382694 PMCID: PMC7185243 DOI: 10.12688/aasopenres.12825.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2018] [Indexed: 11/25/2023] Open
Abstract
Background: The emergence and spread of resistance in Plasmodium falciparum to chloroquine (CQ) necessitated the change from CQ to artemisinin-based combination therapies (ACTs) as first-line drug for the management of uncomplicated malaria in Ghana in 2005. Sulphadoxine-pyrimethamine (SP) which was the second line antimalarial drug in Ghana, was now adopted for intermittent preventive treatment of malaria in pregnancy (IPTp). Methods: To examine the prevalence of molecular markers associated with CQ and antifolate drug resistance in Ghana, we employed restriction fragment length polymorphism polymerase chain reaction to genotype and compare single nucleotide polymorphisms (SNPs) in the P. falciparum chloroquine resistance transporter ( pfcrt, PF3D7_0709000), multidrug resistance ( pfmdr1, PF3D7_0523000), bifunctional dihydrofolate reductase-thymidylate synthase ( pfdhfr, PF3D7_0417200) and dihydropteroate synthase ( pfdhps, PF3D7_0810800) genes. Parasites were collected from children with malaria reporting to hospitals in three different epidemiological areas of Ghana (Accra, Kintampo and Navrongo) in 2012-2013 and 2016-2017. Results: The overall prevalence of the CQ resistance-associated pfcrt 76T allele was 8%, whereas pfmdr1 86Y and 184F alleles were present in 10.2% and 65.1% of infections, respectively. The majority of the isolates harboured the antifolate resistance-associated pfdhfr alleles 51I (83.4%), 59R (85.9 %) and 108N (90.5%). Pfdhps 437G and 540E were detected in 90.6% and 0.7% of infections, respectively. We observed no significant difference across the three study sites for all the polymorphisms except for pfdhps 437G , which was more common in Accra compared to Kintampo for the 2016-2017 isolates. Across both pfdhfr and pfdhps genes, a large proportion (61%) of the isolates harboured the quadruple mutant combination ( I 51 R 59 N 108/ G 437). CQ resistance alleles decreased during the 12 years after CQ withdrawal, but an mediate SP resistance alleles increased. Conclusion: Surveillance of the prevalence of resistance alleles is necessary in monitoring the efficacy of antimalarial drugs.
Collapse
Affiliation(s)
- James Abugri
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Department of Applied Chemistry and Biochemistry, Faculty of Applied Sciences, University for Development Studies, Tamale, Ghana
| | - Felix Ansah
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | - Kwaku P. Asante
- Kintampo Health Research Centre, Ghana Health Service, Kintampo, Ghana
| | | | - Lucas A. Amenga-Etego
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Navrongo Health Research Centre, Navrongo, Ghana
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| |
Collapse
|
7
|
Dried whole-plant Artemisia annua slows evolution of malaria drug resistance and overcomes resistance to artemisinin. Proc Natl Acad Sci U S A 2015; 112:821-6. [PMID: 25561559 DOI: 10.1073/pnas.1413127112] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pharmaceutical monotherapies against human malaria have proven effective, although ephemeral, owing to the inevitable evolution of resistant parasites. Resistance to two or more drugs delivered in combination will evolve more slowly; hence combination therapies have become the preferred norm in the fight against malaria. At the forefront of these efforts has been the promotion of Artemisinin Combination Therapy, but despite these efforts, resistance to artemisinin has begun to emerge. In 2012, we demonstrated the efficacy of the whole plant (WP)--not a tea, not an infusion--as a malaria therapy and found it to be more effective than a comparable dose of pure artemisinin in a rodent malaria model. Here we show that WP overcomes existing resistance to pure artemisinin in the rodent malaria Plasmodium yoelii. Moreover, in a long-term artificial selection for resistance in Plasmodium chabaudi, we tested resilience of WP against drug resistance in comparison with pure artemisinin (AN). Stable resistance to WP was achieved three times more slowly than stable resistance to AN. WP treatment proved even more resilient than the double dose of AN. The resilience of WP may be attributable to the evolutionary refinement of the plant's secondary metabolic products into a redundant, multicomponent defense system. Efficacy and resilience of WP treatment against rodent malaria provides compelling reasons to further explore the role of nonpharmaceutical forms of AN to treat human malaria.
Collapse
|
8
|
Kiboi D, Irungu B, Orwa J, Kamau L, Ochola-Oyier LI, Ngángá J, Nzila A. Piperaquine and Lumefantrine resistance in Plasmodium berghei ANKA associated with increased expression of Ca2+/H+ antiporter and glutathione associated enzymes. Exp Parasitol 2014; 147:23-32. [PMID: 25448357 DOI: 10.1016/j.exppara.2014.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 09/27/2014] [Accepted: 10/16/2014] [Indexed: 11/16/2022]
Abstract
We investigated the mechanisms of resistance of two antimalarial drugs piperaquine (PQ) and lumefantrine (LM) using the rodent parasite Plasmodium berghei as a surrogate of the human parasite, Plasmodium falciparum. We analyzed the whole coding sequence of Plasmodium berghei chloroquine resistance transporter (Pbcrt) and Plasmodium berghei multidrug resistance gene 1(Pbmdr-1) for polymorphisms. These genes are associated with quinoline resistance in Plasmodium falciparum. No polymorphic changes were detected in the coding sequences of Pbcrt and Pbmdr1 or in the mRNA transcript levels of Pbmdr1. However, our data demonstrated that PQ and LM resistance is achieved by multiple mechanisms that include elevated mRNA transcript levels of V-type H(+) pumping pyrophosphatase (vp2), Ca(2+)/H(+) antiporter (vcx1), gamma glutamylcysteine synthetase (ggcs) and glutathione-S-transferase (gst) genes, mechanisms also known to contribute to chloroquine resistance in P. falciparum and rodent malaria parasites. The increase in ggcs and gst transcript levels was accompanied by high glutathione (GSH) levels and elevated activity of glutathione-S-transferase (GST) enzyme. Taken together, these results demonstrate that Pbcrt and Pbmdr1 are not associated with PQ and LM resistance in P. berghei ANKA, while vp2, vcx1, ggcs and gst may mediate resistance directly or modulate functional mutations in other unknown genes.
Collapse
Affiliation(s)
- Daniel Kiboi
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya; KEMRI-Centre for Traditional Medicine and Drug Research, P.O. Box 54840-00200, Nairobi, Kenya.
| | - Beatrice Irungu
- KEMRI-Centre for Traditional Medicine and Drug Research, P.O. Box 54840-00200, Nairobi, Kenya
| | - Jennifer Orwa
- KEMRI-Centre for Traditional Medicine and Drug Research, P.O. Box 54840-00200, Nairobi, Kenya
| | - Luna Kamau
- KEMRI-Centre for Biotechnology Research and Development, P.O. Box 54840-00200, Nairobi, Kenya
| | | | - Joseph Ngángá
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Alexis Nzila
- Department of Chemistry, King Fahd University of Petroleum and Minerals, P.O. Box 468, Dharan 31261, Saudi Arabia
| |
Collapse
|
9
|
Boya CA, Herrera L, Guzman HM, Gutierrez M. Antiplasmodial activity of bacilosarcin A isolated from the octocoral-associated bacterium Bacillus sp. collected in Panama. J Pharm Bioallied Sci 2013; 4:66-9. [PMID: 22368402 PMCID: PMC3283960 DOI: 10.4103/0975-7406.92739] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 11/24/2022] Open
Abstract
Aim: This study was designed for isolating and characterizing antiplasmodial compounds from marine octocoral-associated bacteria. Materials and Methods: The organic extract of the Bacillus sp. was subjected to purification using several chromatography techniques guided by bioassays to yield three isocoumarin derivatives (1–3). Chemical structures of the compounds were elucidated on the basis of HRMS spectra and NMR spectroscopy. The antiplasmodial activity of the isolated compounds was evaluated in vitro against the chloroquine-resistant Plasmodium falciparum strain W2. Results: Isolated compounds were identified as bacilosarcin A (1), AI77-F (2), and AI77-H (3). Bacilosarcin A (1) displayed a low micromolar activity (IC50 = 2.2 μM) against P. falciparum while compounds 2 and 3 showed no activity. Conclusions: Bacilosarcin A was found to be responsible for the antiplasmodial activity observed in the crude extract obtained from the Bacillus sp.
Collapse
Affiliation(s)
- Cristopher A Boya
- Center for Drug Discovery, Institute for Scientific Research and Technology Services (INDICASAT), Clayton, City of Knowledge, Republic of Panama
| | | | | | | |
Collapse
|
10
|
Bains RK. African variation at Cytochrome P450 genes: Evolutionary aspects and the implications for the treatment of infectious diseases. EVOLUTION MEDICINE AND PUBLIC HEALTH 2013; 2013:118-34. [PMID: 24481193 PMCID: PMC3868406 DOI: 10.1093/emph/eot010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The genomics revolution has provided a plethora of data from many previously uncharacterized populations. The increase in the amount of genetic data has improved our understanding of why individuals and populations differ in their susceptibility to multiple diseases. It has also enabled researchers to identify how genomic variation, including at the Cytochrome P450 (CYP450) super-family, affects the safety and efficacy of therapeutic drugs. CYP450 metabolize ∼90% of clinically administered drugs. Variability in CYP450 expression is known to affect the safety and efficacy of therapeutic drugs, including many used in the treatment and control of infectious diseases. There are inter-ethnic differences in the frequencies of clinically relevant CYP450 variants which affect CYP450 expression. Comparative studies of African populations have identified population structuring at CYP450 genes. This is associated with intra-African differences in the success of drug therapies used in the treatment of infectious diseases. Therapeutic drugs dominate control strategies for infectious diseases and are widely administered through mass drug administration campaigns. However, resistance to chemotherapy is spreading across endemic regions. The most common response has been to increase chemotherapeutic dosages, and administer combination therapies. However, there are few pharmacovigilance data examining how these changes influence adverse drug reactions. This review provides an overview of current knowledge of intra-Africa CYP450 variation, and the known associations with sub-optimal clinical outcomes in the treatment of infectious diseases. In addition, the potential for evolutionary approaches in the study of CYP450 variation is discussed to examine their potential in preventative medicine and intervention strategies within Africa.
Collapse
Affiliation(s)
- Ripudaman K Bains
- Research Department of Genetics, Evolution and Environment, Darwin Building, University College London, London WC1E 6BT, UK
| |
Collapse
|
11
|
Karunamoorthi K, Sabesan S, Jegajeevanram K, Vijayalakshmi J. Role of traditional antimalarial plants in the battle against the global malaria burden. Vector Borne Zoonotic Dis 2013; 13:521-44. [PMID: 23930972 DOI: 10.1089/vbz.2011.0946] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Malaria continues to be a major global public health problem with 3.3 billion people at risk in 106 endemic countries. Globally, over 1000 plants have been used as potential antimalarials in resource-poor settings due to fragile health-care systems and lack of accessibility and affordability of artemisinin-based combination therapies (ACTs). Although many believe that the use of medicinal plants that have folklore reputations for antimalarial properties is relatively safe, many herbs may be potentially toxic due to their intrinsic adverse side effects. Therefore, herbal-derived remedies require powerful and deep assessment of their pharmacological qualities to establish their mode of action, safety, quality, and efficacy. In addition, the evolution of drug resistance also demands new antimalarial agents. This can be achieved by forming a vibrant antimalarial discovery pipeline among all stakeholders, including traditional healers, ethnobotanists, scientists, entomologists, pharmacists, and research institutions, for the isolation and characterization of the bioactive compounds with the ultimate objective of finding novel modes of action antimalarial compounds that can be used to fight against drug-resistant malarial parasites.
Collapse
Affiliation(s)
- Kaliyaperumal Karunamoorthi
- Department of Environmental Health Science & Technology, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia.
| | | | | | | |
Collapse
|
12
|
MDR1-associated resistance to artesunate+mefloquine does not impair blood-stage parasite fitness in a rodent malaria model. INFECTION GENETICS AND EVOLUTION 2013; 14:340-6. [PMID: 23318648 DOI: 10.1016/j.meegid.2012.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 11/20/2022]
Abstract
If drug-resistant malaria mutants are less fit than sensitive forms, they will wane over time when active drug pressure is removed and the overall sensitivity to the drug may be restored. However, most studies addressing this issue have been largely retrospective. Here, we undertook a predictive study, using mutant rodent malaria parasites resistant to the Artemisinin combination treatment (ACT) version of artesunate+mefloquine (ATN+MF) to gain insights about their ability to compete with ATN+MF-sensitive forms in untreated hosts. Previously, Plasmodium chabaudi parasites resistant to ATN+MF were selected in vivo through prolonged passaging in mice under increasing doses of the two drugs, and shown to harbour duplication of the mdr1 gene. Here, the resistant parasite, AS-ATNMF1, was mixed with its progenitor AS-ATN in different proportions and each mixture was injected into mice that were left untreated. Absolute percentage parasitaemias and the proportion of each parasite were then monitored by microscopy and proportional sequencing, respectively, every two days for a period of 14days. AS-ATNMF1 outperformed its progenitor AS-ATN over the whole sampling period regardless of the relative starting proportion of each parasite clone. In order to assess if consecutive sub-inoculations could have been responsible for the apparent fitness gain of the resistant parasite, its growth was compared to that of AS-ATN27P, a parasite which was passaged the same number of times as AS-ATNMF1, but left untreated. Although small fluctuations in the proportion of each parasite were observed through time, the relative abundance of each on the last day of sampling (Day 14) was virtually identical to that of the starting inoculum. We conclude that there is no fitness cost associated with MDR1-associated ATN+MF resistance in vivo. These observations offer the first insights about the within-host dynamics between ACT-resistant and -sensitive parasites in absence of drug pressure.
Collapse
|
13
|
Schneider P, Bell AS, Sim DG, O'Donnell AJ, Blanford S, Paaijmans KP, Read AF, Reece SE. Virulence, drug sensitivity and transmission success in the rodent malaria, Plasmodium chabaudi. Proc Biol Sci 2012; 279:4677-85. [PMID: 23015626 PMCID: PMC3479731 DOI: 10.1098/rspb.2012.1792] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we test the hypothesis that virulent malaria parasites are less susceptible to drug treatment than less virulent parasites. If true, drug treatment might promote the evolution of more virulent parasites (defined here as those doing more harm to hosts). Drug-resistance mechanisms that protect parasites through interactions with drug molecules at the sub-cellular level are well known. However, parasite phenotypes associated with virulence might also help parasites survive in the presence of drugs. For example, rapidly replicating parasites might be better able to recover in the host if drug treatment fails to eliminate parasites. We quantified the effects of drug treatment on the in-host survival and between-host transmission of rodent malaria (Plasmodium chabaudi) parasites which differed in virulence and had never been previously exposed to drugs. In all our treatment regimens and in single- and mixed-genotype infections, virulent parasites were less sensitive to pyrimethamine and artemisinin, the two antimalarial drugs we tested. Virulent parasites also achieved disproportionately greater transmission when exposed to pyrimethamine. Overall, our data suggest that drug treatment can select for more virulent parasites. Drugs targeting transmission stages (such as artemisinin) may minimize the evolutionary advantage of virulence in drug-treated infections.
Collapse
Affiliation(s)
- Petra Schneider
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Cui L, Wang Z, Miao J, Miao M, Chandra R, Jiang H, Su XZ, Cui L. Mechanisms of in vitro resistance to dihydroartemisinin in Plasmodium falciparum. Mol Microbiol 2012; 86:111-28. [PMID: 22812578 DOI: 10.1111/j.1365-2958.2012.08180.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The recent reports of artemisinin (ART) resistance in the Thai-Cambodian border area raise a serious concern on the long-term efficacy of ARTs. To elucidate the resistance mechanisms, we performed in vitro selection with dihydroartemisinin (DHA) and obtained two parasite clones from Dd2 with more than 25-fold decrease in susceptibility to DHA. The DHA-resistant clones were more tolerant of stressful growth conditions and more resistant to several commonly used antimalarial drugs than Dd2. The result is worrisome as many of the drugs are currently used as ART partners in malaria control. This study showed that the DHA resistance is not limited to ring stage, but also occurred in trophozoites and schizonts. Microarray and biochemical analyses revealed pfmdr1 amplification, elevation of the antioxidant defence network, and increased expression of many chaperones in the DHA-resistant parasites. Without drug pressure, the DHA-resistant parasites reverted to sensitivity in approximately 8 weeks, accompanied by de-amplification of pfmdr1 and reduced antioxidant activities. The parallel decrease and increase in pfmdr1 copy number and antioxidant activity and the up and down of DHA sensitivity strongly suggest that pfmdr1 and antioxidant defence play a role in in vitro resistance to DHA, providing potential molecular markers for ART resistance.
Collapse
Affiliation(s)
- Long Cui
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Phenotypic and genotypic analysis of in vitro-selected artemisinin-resistant progeny of Plasmodium falciparum. Antimicrob Agents Chemother 2011; 56:302-14. [PMID: 22083467 DOI: 10.1128/aac.05540-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Emergence of artemisinin resistance in Cambodia highlights the importance of characterizing resistance to this class of drugs. Previously, intermediate levels of resistance in Plasmodium falciparum were generated in vitro for artelinic acid (AL) and artemisinin (QHS). Here we expanded on earlier selection efforts to produce levels of clinically relevant concentrations, and the resulting lines were characterized genotypically and phenotypically. Recrudescence assays determined the ability of resistant and parent lines to recover following exposure to clinically relevant levels of drugs. Interestingly, the parent clone (D6) tolerated up to 1,500 ng/ml QHS, but the resistant parasite, D6.QHS340×3, recovered following exposure to 2,400 ng/ml QHS. Resistant D6, W2, and TM91c235 parasites all exhibited elevated 50% inhibitory concentrations (IC(50)s) to multiple artemisinin drugs, with >3-fold resistance to QHS and AL; however, the degree of resistance obtained with standard methods was remarkably less than expected for parasite lines that recovered from 2,400-ng/ml drug pressure. A novel assay format with radiolabeled hypoxanthine demonstrated a greater degree of resistance in vitro than the standard SYBR green method. Analysis of merozoite number in resistant parasites found D6 and TM91c235 resistant progeny had significantly fewer merozoites than parent strains, whereas W2 resistant progeny had significantly more. Amplification of pfmdr1 increased proportionately to the increased drug levels tolerated by W2 and TM91c235, but not in resistant D6. In summary, we define the artemisinin resistance phenotype as a decrease in susceptibility to artemisinins along with the ability to recover from drug-induced dormancy following supraclinical concentrations of the drug.
Collapse
|
16
|
Muhamad P, Phompradit P, Sornjai W, Maensathian T, Chaijaroenkul W, Rueangweerayut R, Na-Bangchang K. Polymorphisms of molecular markers of antimalarial drug resistance and relationship with artesunate-mefloquine combination therapy in patients with uncomplicated Plasmodium falciparum malaria in Thailand. Am J Trop Med Hyg 2011; 85:568-72. [PMID: 21896824 DOI: 10.4269/ajtmh.2011.11-0194] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The aim of this study was to investigate the association between genetic polymorphisms of Plasmodium falciparum chloroquine resistance transporter (pfcrt), P. falciparum multidrug resistance 1 (pfmdr1), and P. falciparum ATPase (pfatp6) and clinical outcome after a three-day mefloquine-artesunate combination therapy in 134 patients with uncomplicated Plasmodium falciparum malaria in an area with multidrug resistance along the Thailand-Myanmar border. Analysis of gene mutation and amplification were performed by nested real-time polymerase chain reaction and SYBR Green I real-time polymerase chain reaction, respectively. The mutation for pfcrt (codons 76, 220, 271, 326, 356, and 371) was found in all isolates (100%), whereas no mutation of pfmdr1 (codon 86) and pfatp6 (codons 37, 693, 769, 898) was found. The Pfmdr1 copy number was significantly higher in isolates with recrudescence (median number = 2.44) compared with a sensitive response (median number = 1.44). The gene copy number was also found to be significantly higher in paired isolates collected before treatment and at the time of recrudescence. All isolates carried one pfatp6 gene copy.
Collapse
Affiliation(s)
- Poonuch Muhamad
- Thailand Center of Excellence on Drug Discovery and Development, Thammasat University, Rangsit Campus, Klong Luang District, Pathumtani, Thailand; Mae-Sot General Hospital, Mae-Sot, Tak Province, Thailand
| | | | | | | | | | | | | |
Collapse
|
17
|
Genomewide scan reveals amplification of mdr1 as a common denominator of resistance to mefloquine, lumefantrine, and artemisinin in Plasmodium chabaudi malaria parasites. Antimicrob Agents Chemother 2011; 55:4858-65. [PMID: 21709099 DOI: 10.1128/aac.01748-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multidrug-resistant Plasmodium falciparum malaria parasites pose a threat to effective drug control, even to artemisinin-based combination therapies (ACTs). Here we used linkage group selection and Solexa whole-genome resequencing to investigate the genetic basis of resistance to component drugs of ACTs. Using the rodent malaria parasite P. chabaudi, we analyzed the uncloned progeny of a genetic backcross between the mefloquine-, lumefantrine-, and artemisinin-resistant mutant AS-15MF and a genetically distinct sensitive clone, AJ, following drug treatment. Genomewide scans of selection showed that parasites surviving each drug treatment bore a duplication of a segment of chromosome 12 (translocated to chromosome 04) present in AS-15MF. Whole-genome resequencing identified the size of the duplicated segment and its position on chromosome 4. The duplicated fragment extends for ∼393 kbp and contains over 100 genes, including mdr1, encoding the multidrug resistance P-glycoprotein homologue 1. We therefore show that resistance to chemically distinct components of ACTs is mediated by the same genetic mutation, highlighting a possible limitation of these therapies.
Collapse
|
18
|
Muhamad P, Chaijaroenkul W, Congpuong K, Na-Bangchang K. SYBR Green I and TaqMan quantitative real-time polymerase chain reaction methods for the determination of amplification of Plasmodium falciparum multidrug resistance-1 gene (pfmdr1). J Parasitol 2011; 97:939-42. [PMID: 21554069 DOI: 10.1645/ge-2792.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The pfmdr1 gene, which encodes P-glycoprotein homolog 1, has been shown to be a reliable marker of resistance for Plasmodium falciparum related to artesunate and mefloquine combination therapy. The aims of this study are to investigate the copy number of pfmdr1 in P. falciparum isolates collected from the 4 malaria-endemic areas of Thailand (Kanchanaburi, Mae Hongson, Ranong, and Tak) along the Thailand-Myanmar (Burma) border (Thai-Myanmar border) by using SYBR Green I and the standard method TaqMan real-time polymerase chain reaction (RT-PCR) and to compare the efficiency (sensitivity and specificity) of SYBR Green I with TaqMan RT-quantitative (q)PCR methods in determining pfmdr1 gene copy number. Ninety-six blood samples were collected onto filter paper from patients with uncomplicated falciparum malaria who attended malaria clinics in the Kanchanaburi (n = 45), Mae Hongson (n = 18), Ranong (n = 11), and Tak (n = 22) provinces in Thailand. Parasite genomic DNA was extracted from dried blood spots by using QIAcube™ automated sample preparation. Pfmdr1 gene copy number was determined by TaqMan (63 samples) and SYBR Green I (96 samples) real-time PCR. Seventy-one (74.0%), 14 (14.6%), 10 (10.4%), and 1 (1%) isolates carried 1, 2, 3, and 4 pfmdr1 gene copies, respectively. Forty-three of 48 (89.6%), 6 of 11 (54.5%), and 3 of 4 (75.0%) samples, respectively, showed agreement with results of 1, 2, and 3 pfmdr1 gene copies as determined by both methods. The efficiency of SYBR Green I in identifying pfmdr1 gene copy number was found to be significantly correlated with that of TaqMan. Considering its simplicity and relatively low cost, SYBR Green I RT-qPCR is therefore a promising alternative technique for the determination of pfmdr1 copy number.
Collapse
Affiliation(s)
- Poonuch Muhamad
- Thailand Center of Excellence on Discovery and Development, Thammasat University (Rangsit Campus), Paholyothin Road, Klong Luang District, Pathumtanee, Thailand
| | | | | | | |
Collapse
|
19
|
Kayano ACAV, Lopes SCP, Bueno FG, Cabral EC, Souza-Neiras WC, Yamauchi LM, Foglio MA, Eberlin MN, Mello JCP, Costa FTM. In vitro and in vivo assessment of the anti-malarial activity of Caesalpinia pluviosa. Malar J 2011; 10:112. [PMID: 21535894 PMCID: PMC3112450 DOI: 10.1186/1475-2875-10-112] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/02/2011] [Indexed: 11/10/2022] Open
Abstract
Background To overcome the problem of increasing drug resistance, traditional medicines are an important source for potential new anti-malarials. Caesalpinia pluviosa, commonly named "sibipiruna", originates from Brazil and possess multiple therapeutic properties, including anti-malarial activity. Methods Crude extract (CE) was obtained from stem bark by purification using different solvents, resulting in seven fractions. An MTT assay was performed to evaluate cytotoxicity in MCF-7 cells. The CE and its fractions were tested in vitro against chloroquine-sensitive (3D7) and -resistant (S20) strains of Plasmodium falciparum and in vivo in Plasmodium chabaudi-infected mice. In vitro interaction with artesunate and the active C. pluviosa fractions was assessed, and mass spectrometry analyses were conducted. Results At non-toxic concentrations, the 100% ethanolic (F4) and 50% methanolic (F5) fractions possessed significant anti-malarial activity against both 3D7 and S20 strains. Drug interaction assays with artesunate showed a synergistic interaction with the F4. Four days of treatment with this fraction significantly inhibited parasitaemia in mice in a dose-dependent manner. Mass spectrometry analyses revealed the presence of an ion corresponding to m/z 303.0450, suggesting the presence of quercetin. However, a second set of analyses, with a quercetin standard, showed distinct ions of m/z 137 and 153. Conclusions The findings show that the F4 fraction of C. pluviosa exhibits anti-malarial activity in vitro at non-toxic concentrations, which was potentiated in the presence of artesunate. Moreover, this anti-malarial activity was also sustained in vivo after treatment of infected mice. Finally, mass spectrometry analyses suggest that a new compound, most likely an isomer of quercetin, is responsible for the anti-malarial activity of the F4.
Collapse
Affiliation(s)
- Ana Carolina A V Kayano
- Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ding XC, Beck HP, Raso G. Plasmodium sensitivity to artemisinins: magic bullets hit elusive targets. Trends Parasitol 2010; 27:73-81. [PMID: 21169061 DOI: 10.1016/j.pt.2010.11.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 11/14/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
Abstract
Artemisinins are efficacious antimalarial drugs widely employed as first-line treatment in endemic countries under the form of combined therapies. Different molecular modes of action have been postulated to explain the parasiticidal effect of these compounds; however, none has been unequivocally accepted, and their physiological relevance is still questioned. Similarly, no definite genetic determinant of Plasmodium sensitivity to artemisinins has been identified so far. A better understanding of the mode of action of artemisinins and the genetic basis of laboratory-induced or field-observed altered susceptibility is crucial for malaria control. In this review different models of artemisinins' molecular action are briefly presented, focusing on recent advances, and the evidence of potential association between various gene polymorphisms and artemisinin resistance is comprehensively reviewed.
Collapse
Affiliation(s)
- Xavier C Ding
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire.
| | | | | |
Collapse
|