1
|
Huang J, Zhang L, Fang Y, Jiang W, Du J, Zhu J, Hu M, Shen B. Differentially expressed transcripts and associated protein pathways in basilar artery smooth muscle cells of the high-salt intake-induced hypertensive rat. PeerJ 2020; 8:e9849. [PMID: 33083107 PMCID: PMC7566752 DOI: 10.7717/peerj.9849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/11/2020] [Indexed: 11/20/2022] Open
Abstract
The pathology of cerebrovascular disorders, such as hypertension, is associated with genetic changes and dysfunction of basilar artery smooth muscle cells (BASMCs). Long-term high-salt diets have been associated with the development of hypertension. However, the molecular mechanisms underlying salt-sensitive hypertension-induced BASMC modifications have not been well defined, especially at the level of variations in gene transcription. Here, we utilized high-throughput sequencing and subsequent signaling pathway analyses to find a two–fold change or greater upregulated expression of 203 transcripts and downregulated expression of 165 transcripts in BASMCs derived from rats fed a high-salt diet compared with those from control rats. These differentially expressed transcripts were enriched in pathways involved in cellular, morphological, and structural plasticity, autophagy, and endocrine regulation. These transcripts changes in the BASMCs derived from high-salt intake–induced hypertensive rats may provide critical information about multiple cellular processes and biological functions that occur during the development of cerebrovascular disorders and provide potential new targets to help control or block the development of hypertension.
Collapse
Affiliation(s)
- Junhao Huang
- Guangzhou Sport University, Guangdong Provincial Key Laboratory of Sports and Health Promotion, Guangzhou, Guangdong, China
| | - Lesha Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yang Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Wan Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jinhang Zhu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Min Hu
- Guangzhou Sport University, Guangdong Provincial Key Laboratory of Sports and Health Promotion, Guangzhou, Guangdong, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Aramburu J, López-Rodríguez C. Regulation of Inflammatory Functions of Macrophages and T Lymphocytes by NFAT5. Front Immunol 2019; 10:535. [PMID: 30949179 PMCID: PMC6435587 DOI: 10.3389/fimmu.2019.00535] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/27/2019] [Indexed: 11/13/2022] Open
Abstract
The transcription factor NFAT5, also known as TonEBP, belongs to the family of Rel homology domain-containing factors, which comprises the NF-κB proteins and the calcineurin-dependent NFAT1 to NFAT4. NFAT5 shares several structural and functional features with other Rel-family factors, for instance it recognizes DNA elements with the same core sequence as those bound by NFAT1 to 4, and like NF-κB it responds to Toll-like receptors (TLR) and activates macrophage responses to microbial products. On the other hand, NFAT5 is quite unique among Rel-family factors as it can be activated by hyperosmotic stress caused by elevated concentrations of extracellular sodium ions. NFAT5 regulates specific genes but also others that are inducible by NF-κB and NFAT1 to 4. The ability of NFAT5 to do so in response to hypertonicity, microbial products, and inflammatory stimuli may extend the capabilities of immune cells to mount effective anti-pathogen responses in diverse microenvironment and signaling conditions. Recent studies identifying osmostress-dependent and -independent functions of NFAT5 have broadened our understanding of how NFAT5 may modulate immune function. In this review we focus on the role of NFAT5 in macrophages and T cells in different contexts, discussing findings from in vivo mouse models of NFAT5 deficiency and reviewing current knowledge on its mechanisms of regulation. Finally, we propose several questions for future research.
Collapse
Affiliation(s)
- Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Dumond JF, Zhang X, Izumi Y, Ramkissoon K, Wang G, Gucek M, Wang X, Burg MB, Ferraris JD. Peptide affinity analysis of proteins that bind to an unstructured region containing the transactivating domain of the osmoprotective transcription factor NFAT5. Physiol Genomics 2016; 48:835-849. [PMID: 27764768 DOI: 10.1152/physiolgenomics.00100.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/03/2016] [Indexed: 11/22/2022] Open
Abstract
NFAT5 is a transcription factor originally identified because it is activated by hypertonicity and that activation increases expression of genes that protect against the adverse effects of the hypertonicity. However, its targets also include genes not obviously related to tonicity. The transactivating domain of NFAT5 is contained in its COOH-terminal region, which is predicted to be unstructured. Unstructured regions are common in transcription factors particularly in transactivating domains where they can bind co-regulatory proteins essential to their function. To identify potential binding partners of NFAT5 from either cytoplasmic or nuclear HEK293 cell extracts, we used peptide affinity chromatography followed by mass spectrometry. Peptide aptamer-baits consisted of overlapping 20 amino acid peptides within the predicted COOH-terminal unstructured region of NFAT5. We identify a total of 351 unique protein preys that associate with at least one COOH-terminal peptide bait from NFAT5 in either cytoplasmic or nuclear extracts from cells incubated at various tonicities (NaCl varied). In addition to finding many proteins already known to associate with NFAT5, we found many new ones whose function suggest novel aspects of NFAT5 regulation, interaction, and function. Relatively few of the proteins pulled down by peptide baits from NFAT5 are generally involved in transcription, and most, therefore, are likely to be specifically related to the regulation of NFAT5 or its function. The novel associated proteins are involved with cancer, effects of hypertonicity on chromatin, development, splicing of mRNA, transcription, and vesicle trafficking.
Collapse
Affiliation(s)
- Jenna F Dumond
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Xue Zhang
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Yuichiro Izumi
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and.,Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Kevin Ramkissoon
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Guanghui Wang
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Marjan Gucek
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Xujing Wang
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Maurice B Burg
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Joan D Ferraris
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| |
Collapse
|
4
|
Xiao Y, Pollack D, Andrusier M, Levy A, Callaway M, Nieves E, Reddi P, Vigodner M. Identification of cell-specific targets of sumoylation during mouse spermatogenesis. Reproduction 2016; 151:149-66. [PMID: 26701181 DOI: 10.1530/rep-15-0239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent findings suggest diverse and potentially multiple roles of small ubiquitin-like modifier (SUMO) in testicular function and spermatogenesis. However, SUMO targets remain uncharacterized in the testis due to the complex multicellular nature of testicular tissue, the inability to maintain and manipulate spermatogenesis in vitro, and the technical challenges involved in identifying low-abundance endogenous SUMO targets. In this study, we performed cell-specific identification of sumoylated proteins using concentrated cell lysates prepared with de-sumoylation inhibitors from freshly purified spermatocytes and spermatids. One-hundred and twenty proteins were uniquely identified in the spermatocyte and/or spermatid fractions. The identified proteins are involved in the regulation of transcription, stress response, microRNA biogenesis, regulation of major enzymatic pathways, nuclear-cytoplasmic transport, cell-cycle control, acrosome biogenesis, and other processes. Several proteins with important roles during spermatogenesis were chosen for further characterization by co-immunoprecipitation, co-localization, and in vitro sumoylation studies. GPS-SUMO Software was used to identify consensus and non-consensus sumoylation sites within the amino acid sequences of the proteins. The analyses confirmed the cell-specific sumoylation and/or SUMO interaction of several novel, previously uncharacterized SUMO targets such as CDK1, RNAP II, CDC5, MILI, DDX4, TDP-43, and STK31. Furthermore, several proteins that were previously identified as SUMO targets in somatic cells (KAP1 and MDC1) were identified as SUMO targets in germ cells. Many of these proteins have a unique role in spermatogenesis and during meiotic progression. This research opens a novel avenue for further studies of SUMO at the level of individual targets.
Collapse
Affiliation(s)
| | | | | | | | - Myrasol Callaway
- Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA
| | - Edward Nieves
- Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA
| | - Prabhakara Reddi
- Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA
| | - Margarita Vigodner
- Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA Department of BiologyStern College, Yeshiva University, New York, New York, USALaboratory for Macromolecular Analysis and ProteomicsAlbert Einstein College of Medicine, Bronx, New York, USADepartment of BiologyStern College, Yeshiva University, 245 Lexington Avenue, New York, New York 10016, USADepartment of Developmental and Molecular BiologyAlbert Einstein College of Medicine, Bronx, New York, USADepartment of PathologyUniversity of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Warcoin E, Clouzeau C, Brignole-Baudouin F, Baudouin C. Hyperosmolarité : effets intracellulaires et implication dans la sécheresse oculaire. J Fr Ophtalmol 2016; 39:641-51. [DOI: 10.1016/j.jfo.2016.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 11/26/2022]
|
6
|
DuMond JF, Ramkissoon K, Zhang X, Izumi Y, Wang X, Eguchi K, Gao S, Mukoyama M, Burg MB, Ferraris JD. Peptide affinity analysis of proteins that bind to an unstructured NH2-terminal region of the osmoprotective transcription factor NFAT5. Physiol Genomics 2016; 48:290-305. [PMID: 26757802 DOI: 10.1152/physiolgenomics.00110.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/09/2016] [Indexed: 11/22/2022] Open
Abstract
NFAT5 is an osmoregulated transcription factor that particularly increases expression of genes involved in protection against hypertonicity. Transcription factors often contain unstructured regions that bind co-regulatory proteins that are crucial for their function. The NH2-terminal region of NFAT5 contains regions predicted to be intrinsically disordered. We used peptide aptamer-based affinity chromatography coupled with mass spectrometry to identify protein preys pulled down by one or more overlapping 20 amino acid peptide baits within a predicted NH2-terminal unstructured region of NFAT5. We identify a total of 467 unique protein preys that associate with at least one NH2-terminal peptide bait from NFAT5 in either cytoplasmic or nuclear extracts from HEK293 cells treated with elevated, normal, or reduced NaCl concentrations. Different sets of proteins are pulled down from nuclear vs. cytoplasmic extracts. We used GeneCards to ascertain known functions of the protein preys. The protein preys include many that were previously known, but also many novel ones. Consideration of the novel ones suggests many aspects of NFAT5 regulation, interaction and function that were not previously appreciated, for example, hypertonicity inhibits NFAT5 by sumoylating it and the NFAT5 protein preys include components of the CHTOP complex that desumoylate proteins, an action that should contribute to activation of NFAT5.
Collapse
Affiliation(s)
- Jenna F DuMond
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda Maryland; and
| | - Kevin Ramkissoon
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda Maryland; and
| | - Xue Zhang
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda Maryland; and
| | - Yuichiro Izumi
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda Maryland; and Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Xujing Wang
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda Maryland; and
| | - Koji Eguchi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Shouguo Gao
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda Maryland; and
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Maurice B Burg
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda Maryland; and
| | - Joan D Ferraris
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda Maryland; and
| |
Collapse
|
7
|
Cheung CY, Ko BC. NFAT5 in cellular adaptation to hypertonic stress - regulations and functional significance. J Mol Signal 2013; 8:5. [PMID: 23618372 PMCID: PMC3655004 DOI: 10.1186/1750-2187-8-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/11/2013] [Indexed: 12/22/2022] Open
Abstract
The Nuclear Factor of Activated T Cells-5 (NFAT5), also known as OREBP or TonEBP, is a member of the nuclear factors of the activated T cells family of transcription factors. It is also the only known tonicity-regulated transcription factor in mammals. NFAT5 was initially known for its role in the hypertonic kidney inner medulla for orchestrating a genetic program to restore the cellular homeostasis. Emerging evidence, however, suggests that NFAT5 might play a more diverse functional role, including a pivotal role in blood pressure regulation and the development of autoimmune diseases. Despite the growing significance of NFAT5 in physiology and diseases, our understanding of how its activity is regulated remains very limited. Furthermore, how changes in tonicities are converted into functional outputs via NFAT5 remains elusive. Therefore, this review aims to summarize our current knowledge on the functional roles of NFAT5 in osmotic stress adaptation and the signaling pathways that regulate its activity.
Collapse
Affiliation(s)
- Chris Yk Cheung
- Department of Anatomical and Cellular Pathology, and The State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, The Prince of Wales Hospital, Rm 38019, Clinical Sciences Building, Shatin, Hong Kong, China.
| | | |
Collapse
|
8
|
Gallazzini M, Heussler GE, Kunin M, Izumi Y, Burg MB, Ferraris JD. High NaCl-induced activation of CDK5 increases phosphorylation of the osmoprotective transcription factor TonEBP/OREBP at threonine 135, which contributes to its rapid nuclear localization. Mol Biol Cell 2011; 22:703-14. [PMID: 21209322 PMCID: PMC3046065 DOI: 10.1091/mbc.e10-08-0681] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
When activated by high NaCl, the transcription factor TonEBP/OREBP increases transcription of osmoprotective genes. High NaCl activates CDK5 kinase, which directly phosphorylates TonEBP/OREBP on threonine 135. This contributes to rapid nuclear translocation of TonEBP/OREBP, accelerating transcription of its osmoprotective target genes. When activated by high NaCl, tonicity-responsive enhancer–binding protein/osmotic response element–binding protein (TonEBP/OREBP) increases transcription of osmoprotective genes. High NaCl activates TonEBP/OREBP by increasing its phosphorylation, nuclear localization, and transactivating activity. In HEK293 cells, mass spectrometry shows phosphorylation of TonEBP/OREBP-S120, -S134, -T135, and -S155. When those residues are individually mutated to alanine, nuclear localization is greater for S155A, less for S134A and T135A, and unchanged for S120A. High osmolality increases phosphorylation at T135 in HEK293 cells and in rat renal inner medullas in vivo. In HEK293 cells, high NaCl activates cyclin-dependent kinase 5 (CDK5), which directly phosphorylates TonEBP/OREBP-T135. Inhibition of CDK5 activity reduces the rapid high NaCl–induced nuclear localization of TonEBP/OREBP but does not affect its transactivating activity. High NaCl induces nuclear localization of TonEBP/OREBP faster (≤2 h) than it increases its overall protein abundance (≥6 h). Inhibition of CDK5 reduces the increase in TonEBP/OREBP transcriptional activity that has occurred by 4 h after NaCl is raised, associated with less nuclear TonEBP/OREBP at that time, but does not reduce either activity or nuclear TonEBP/OREBP after 16 h. Thus high NaCl–induced increase of the overall abundance of TonEBP/OREBP, by itself, eventually raises its effective level in the nucleus, but its rapid CDK5-dependent nuclear localization accelerates the process, speeding transcription of osmoprotective target genes.
Collapse
Affiliation(s)
- Morgan Gallazzini
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|