1
|
Iluta S, Nistor M, Buruiana S, Dima D. Notch and Hedgehog Signaling Unveiled: Crosstalk, Roles, and Breakthroughs in Cancer Stem Cell Research. Life (Basel) 2025; 15:228. [PMID: 40003637 PMCID: PMC11856057 DOI: 10.3390/life15020228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/30/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
The development of therapies that target cancer stem cells (CSCs) and bulk tumors is both crucial and urgent. Several signaling pathways, like Notch and Hedgehog (Hh), have been strongly associated with CSC stemness maintenance and metastasis. However, the extensive crosstalk present between these two signaling networks complicates the development of long-term therapies that also minimize adverse effects on healthy tissues and are not overcome by therapy resistance from CSCs. The present work aims to overview the roles of Notch and Hh in cancer outburst and the intersection of the two pathways with one another, as well as with other networks, such as Wnt/β-catenin, TGF, and JAK/STAT3, and to explore the shaping of the tumor microenvironment (TME) with specific influence on CSC development and maintenance.
Collapse
Affiliation(s)
- Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Madalina Nistor
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400124 Cluj Napoca, Romania;
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemitanu University of Medicine and Pharmacy, MD-2004 Chisinau, Moldova;
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj Napoca, Romania
| |
Collapse
|
2
|
Yang C, Wang R, Hardy P. The Multifaceted Roles of MicroRNA-181 in Stem Cell Differentiation and Cancer Stem Cell Plasticity. Cells 2025; 14:132. [PMID: 39851559 PMCID: PMC11763446 DOI: 10.3390/cells14020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Stem cells are undifferentiated or partially differentiated cells with an extraordinary ability to self-renew and differentiate into various cell types during growth and development. The epithelial-mesenchymal transition (EMT), a critical developmental process, enhances stem cell-like properties in cells, and is associated with both normal stem cell function and the formation of cancer stem cells. Cell stemness and the EMT often coexist and are interconnected in various contexts. Cancer stem cells are a critical tumor cell population that drives tumorigenesis, cancer progression, drug resistance, and metastasis. Stem cell differentiation and the generation of cancer stem cells are regulated by numerous molecules, including microRNAs (miRNAs). These miRNAs, particularly through the modulation of EMT-associated factors, play major roles in controlling the stemness of cancer stem cells. This review presents an up-to-date summary of the regulatory roles of miR-181 in human stem cell differentiation and cancer cell stemness. We outline studies from the current literature and summarize the miR-181-controlled signaling pathways responsible for driving human stem cell differentiation or the emergence of cancer stem cells. Given its critical role in regulating cell stemness, miR-181 is a promising target for influencing human cell fate. Modulation of miR-181 expression has been found to be altered in cancer stem cells' biological behaviors and to significantly improve cancer treatment outcomes. Additionally, we discuss challenges in miRNA-based therapies and targeted delivery with nanotechnology-based systems.
Collapse
Affiliation(s)
- Chun Yang
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Rui Wang
- Departments of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Pierre Hardy
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1C5, Canada;
- Departments of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1C5, Canada;
- Departments of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
3
|
Archer M, Lin KM, Kolanukuduru KP, Zhang J, Ben-David R, Kotula L, Kyprianou N. Impact of cell plasticity on prostate tumor heterogeneity and therapeutic response. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:331-351. [PMID: 39839748 PMCID: PMC11744350 DOI: 10.62347/yfrp8901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Epithelial-mesenchymal transition (EMT) is a dynamic process of lineage plasticity in which epithelial cancer cells acquire mesenchymal traits, enabling them to metastasize to distant organs. This review explores the current understanding of how lineage plasticity and phenotypic reprogramming drive prostate cancer progression to lethal stages, contribute to therapeutic resistance, and highlight strategies to overcome the EMT phenotype within the prostate tumor microenvironment (TME). Emerging evidence reveals that prostate tumor cells can undergo lineage switching, adopting alternative growth pathways in response to anti-androgen therapies and taxane-based chemotherapy. These adaptive mechanisms support tumor survival and growth, underscoring the need for deeper insights into the processes driving prostate cancer differentiation, including neuroendocrine differentiation and lineage plasticity. A comprehensive understanding of these mechanisms will pave the way for innovative therapeutic strategies. Effectively targeting prostate cancer cells with heightened plasticity and therapeutic vulnerability holds promise for overcoming treatment resistance and preventing tumor recurrence. Such advancements are critical for developing effective approaches to prostate cancer treatment and improving patient survival outcomes.
Collapse
Affiliation(s)
- Maddison Archer
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | - Kevin M Lin
- Department of Urology, SUNY Upstate Medical UniversitySyracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical UniversitySyracuse, NY, USA
| | | | - Joy Zhang
- Department of Urology, SUNY Upstate Medical UniversitySyracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuse, NY, USA
| | - Reuben Ben-David
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| | - Leszek Kotula
- Department of Urology, SUNY Upstate Medical UniversitySyracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical UniversitySyracuse, NY, USA
- Upstate Cancer Center, SUNY Upstate Medical UniversitySyracuse, NY, USA
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount SinaiNew York, NY, USA
- Department of Pathology and Molecular & Cell Based Medicine, Icahn School of Medicine at Mount SinaiNew York, NY, USA
| |
Collapse
|
4
|
Jaygude U, Hughes GM, Simpson JC. Exploring the role of the Rab network in epithelial-to-mesenchymal transition. BIOINFORMATICS ADVANCES 2024; 5:vbae200. [PMID: 39736966 PMCID: PMC11684074 DOI: 10.1093/bioadv/vbae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025]
Abstract
Motivation Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions. Results We examined Rabs and their interactors in the context of epithelial-to-mesenchymal transition (EMT), an indicator of cancer metastasizing to distant organs. A Rab network was first established from analysis of literature and was gradually expanded. Our Python module, resnet, assessed its network resilience and selected an optimally sized, resilient Rab network for further analyses. Pathway enrichment confirmed its role in EMT. We then identified 73 candidate genes showing a strong up-/down-regulation, across 10 cancer types, in patients with metastasized tumours compared to only primary-site tumours. We suggest that their encoded proteins might play a critical role in EMT, and further in vitro studies are needed to confirm their role as predictive markers of cancer metastasis. The use of resnet within the systematic analysis approach described here can be easily applied to assess other gene families and their role in biological events of interest. Availability and implementation Source code for resnet is freely available at https://github.com/Unmani199/resnet.
Collapse
Affiliation(s)
- Unmani Jaygude
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Vlahopoulos SA, Varisli L, Zoumpourlis P, Spandidos DA, Zoumpourlis V. Investigating the biology of microRNA links to ALDH1A1 reveals candidates for preclinical testing in acute myeloid leukemia. Int J Oncol 2024; 65:115. [PMID: 39513593 PMCID: PMC11575927 DOI: 10.3892/ijo.2024.5703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Aldehyde dehydrogenase 1 family member A1 (ALDH1A1) is a member of the aldehyde dehydrogenase gene subfamily that encode enzymes with the ability to oxidize retinaldehyde. It was recently shown that high ALDH1A1 RNA abundance correlates with a poor prognosis in acute myeloid leukemia (AML). AML is a hematopoietic malignancy associated with high morbidity and mortality rates. Although there are a number of agents that inhibit ALDH activity, it would be crucial to develop methodologies for adjustable genetic interference, which would permit interventions on several oncogenic pathways in parallel. Intervention in multiple oncogenic pathways is theoretically possible with microRNAs (miRNAs or miRs), a class of small non‑coding RNAs that have emerged as key regulators of gene expression in AML. A number of miRNAs have shown the ability to interfere with ALDH1A1 gene expression directly in solid tumor cells, and these miRNAs can be evaluated in AML model systems. There are indications that a few of these miRNAs actually do have an association with AML disease course, rendering them a promising target for genetic intervention in AML cells.
Collapse
Affiliation(s)
- Spiros A Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| |
Collapse
|
6
|
Farhangnia P, Ghods R, Falak R, Zarnani AH, Delbandi AA. Identification of placenta-specific protein 1 (PLAC-1) expression on human PC-3 cell line-derived prostate cancer stem cells compared to the tumor parental cells. Discov Oncol 2024; 15:251. [PMID: 38943028 PMCID: PMC11213845 DOI: 10.1007/s12672-024-01121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Placenta-specific protein 1 (PLAC-1) is a gene primarily expressed in the placenta and the testis. Interestingly, it is also found to be expressed in many solid tumors, and it is involved in malignant cell features. However, no evidence has been reported regarding the relationship between PLAC-1 and cancer stem cells (CSCs). In the current research, we explored the expression of the PLAC-1 molecule in prostate cancer stem cells (PCSCs) derived from the human PC-3 cell line. The enrichment of PCSCs was achieved using a three-dimensional cell culture technique known as the sphere-formation assay. To confirm the identity of PCSCs, we examined the expression of genes associated with stemness and pluripotency, such as SOX2, OCT4, Nanog, C-Myc, and KLF-4, as well as stem cell differentiation molecules like CD44 and CD133. These evaluations were conducted in both the PCSCs and the original tumor cells (parental cells) using real-time PCR and flow cytometry. Subsequently, we assessed the expression of the PLAC-1 molecule in both enriched cells and parental tumor cells at the gene and protein levels using the same techniques. The tumor cells from the PC-3 cell line formed spheroids with CSC characteristics in a non-adherent medium. The expression of SOX2, OCT4, Nanog, and C-Myc genes (p < 0.01), and the molecules CD44 and CD133 (p < 0.05) were significantly elevated in PCSCs compared to the parental cells. The expression of the PLAC-1 molecule in PCSCs showed a significant increase compared to the parental cells at both gene (p < 0.01) and protein (p < 0.001) levels. In conclusion, it was indicated for the first time that PLAC-1 is up-regulated in PCSCs derived from human PC-3 cell line. This study may propose PLAC-1 as a potential target in targeted therapies, which should be confirmed through further studies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Wang Y, Chen Y, Zhao M. N6-methyladenosine modification and post-translational modification of epithelial-mesenchymal transition in colorectal cancer. Discov Oncol 2024; 15:209. [PMID: 38834851 DOI: 10.1007/s12672-024-01048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
Colorectal cancer is a leading cause of cancer-related mortality worldwide. Traditionally, colorectal cancer has been recognized as a disease caused by genetic mutations. However, recent studies have revealed the significant role of epigenetic alterations in the progression of colorectal cancer. Epithelial-mesenchymal transition, a critical step in cancer cell metastasis, has been found to be closely associated with the tumor microenvironment and immune factors, thereby playing a crucial role in many kinds of biological behaviors of cancers. In this review, we explored the impact of N6-methyladenosine and post-translational modifications (like methylation, acetylation, ubiquitination, SUMOylation, glycosylation, etc.) on the process of epithelial-mesenchymal transition in colorectal cancer and the epigenetic regulation for the transcription factors and pathways correlated to epithelial-mesenchymal transition. Furthermore, we emphasized that the complex regulation of epithelial-mesenchymal transition by epigenetics can provide new strategies for overcoming drug resistance and improving treatment outcomes. This review aims to provide important scientific evidence for the prevention and treatment of colorectal cancer based on epigenetic modifications.
Collapse
Affiliation(s)
- Yingnan Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Yufan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Miaomiao Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
8
|
Seo Y, Rhim J, Kim JH. RNA-binding proteins and exoribonucleases modulating miRNA in cancer: the enemy within. Exp Mol Med 2024; 56:1080-1106. [PMID: 38689093 PMCID: PMC11148060 DOI: 10.1038/s12276-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 05/02/2024] Open
Abstract
Recent progress in the investigation of microRNA (miRNA) biogenesis and the miRNA processing machinery has revealed previously unknown roles of posttranscriptional regulation in gene expression. The molecular mechanistic interplay between miRNAs and their regulatory factors, RNA-binding proteins (RBPs) and exoribonucleases, has been revealed to play a critical role in tumorigenesis. Moreover, recent studies have shown that the proliferation of hepatocellular carcinoma (HCC)-causing hepatitis C virus (HCV) is also characterized by close crosstalk of a multitude of host RBPs and exoribonucleases with miR-122 and its RNA genome, suggesting the importance of the mechanistic interplay among these factors during the proliferation of HCV. This review primarily aims to comprehensively describe the well-established roles and discuss the recently discovered understanding of miRNA regulators, RBPs and exoribonucleases, in relation to various cancers and the proliferation of a representative cancer-causing RNA virus, HCV. These have also opened the door to the emerging potential for treating cancers as well as HCV infection by targeting miRNAs or their respective cellular modulators.
Collapse
Affiliation(s)
- Yoona Seo
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jiho Rhim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, 10408, Korea.
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Korea.
| |
Collapse
|
9
|
Khan AQ, Hasan A, Mir SS, Rashid K, Uddin S, Steinhoff M. Exploiting transcription factors to target EMT and cancer stem cells for tumor modulation and therapy. Semin Cancer Biol 2024; 100:1-16. [PMID: 38503384 DOI: 10.1016/j.semcancer.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Khalid Rashid
- Department of Urology,Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India; Laboratory Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
10
|
Yang T, Liu T, Lei T, Li T, Liu N, Zhang M. Unveiling the potential of SLURP1 protein as a biomarker for prostate cancer screening. Front Oncol 2024; 14:1365615. [PMID: 38686195 PMCID: PMC11057230 DOI: 10.3389/fonc.2024.1365615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Background Prostate cancer (PCa) develops slowly and lacks obvious symptoms in the early stage, which makes early screening and diagnosis difficult. Urine collection is simple and is an ideal source of biomarkers. In this study, we performed urinary proteomic studies in PCa patients to screen proteins and apply them to the non-invasive early diagnosis of PCa. Method Urine samples from PCa patients, benign prostatic hyperplasia (BPH) patients and normal control group were collected. Mass spectrometry was used for proteomic analysis and screening target proteins. Western blot and enzyme-linked immunosorbent assay (ELISA) were used to verify the results. Correlations with clinical indicators were explored, and receiver operating characteristic (ROC) curves were drawn to evaluate the value of target proteins in PCa. Result A total of 1065 proteins were identified. Urinary SLURP1 protein was significantly elevated in patients with PCa compared with normal controls and patients with BPH patients. Western blot and ELISA further verified the expression changes of SLURP1. The immunohistochemical staining results revealed a substantial increase in positive SLURP1 expression within PCa tumor tissue. Correlation analysis showed a positive correlation between the expression level of urine SLURP1 protein and serum PSA. ROC curve analysis of the SLURP1 protein in the urine of both normal individuals and PCa patients is determined to be 0.853 (95% CI=0.754 to 0.954). Conclusion The concentration of SLURP1 protein in urine of PCa patients is increased, which can serve as a biomarker for screening PCa.
Collapse
Affiliation(s)
- Tianyin Yang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Tianci Liu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Ting Lei
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Tao Li
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Na Liu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Knopik-Skrocka A, Sempowicz A, Piwocka O. Plasticity and resistance of cancer stem cells as a challenge for innovative anticancer therapies - do we know enough to overcome this? EXCLI JOURNAL 2024; 23:335-355. [PMID: 38655094 PMCID: PMC11036066 DOI: 10.17179/excli2024-6972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
According to the CSC hypothesis, cancer stem cells are pivotal in initiating, developing, and causing cancer recurrence. Since the identification of CSCs in leukemia, breast cancer, glioblastoma, and colorectal cancer in the 1990s, researchers have actively investigated the origin and biology of CSCs. However, the CSC hypothesis and the role of these cells in tumor development model is still in debate. These cells exhibit distinct surface markers, are capable of self-renewal, demonstrate unrestricted proliferation, and display metabolic adaptation. CSC phenotypic plasticity and the capacity to EMT is strictly connected to the stemness state. CSCs show high resistance to chemotherapy, radiotherapy, and immunotherapy. The plasticity of CSCs is significantly influenced by tumor microenvironment factors, such as hypoxia. Targeting the genetic and epigenetic changes of cancer cells, together with interactions with the tumor microenvironment, presents promising avenues for therapeutic strategies. See also the Graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Agnieszka Knopik-Skrocka
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University of Poznań, Poland
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Alicja Sempowicz
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University of Poznań, Poland
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Oliwia Piwocka
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Center, Poznań, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
12
|
Maklad A, Sedeeq M, Chan KM, Gueven N, Azimi I. Exploring Lin28 proteins: Unravelling structure and functions with emphasis on nervous system malignancies. Life Sci 2023; 335:122275. [PMID: 37984514 DOI: 10.1016/j.lfs.2023.122275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Cancer and stem cells share many characteristics related to self-renewal and differentiation. Both cell types express the same critical proteins that govern cellular stemness, which provide cancer cells with the growth and survival benefits of stem cells. LIN28 is an example of one such protein. LIN28 includes two main isoforms, LIN28A and LIN28B, with diverse physiological functions from tissue development to control of pluripotency. In addition to their physiological roles, LIN28A and LIN28B affect the progression of several cancers by regulating multiple cancer hallmarks. Altered expression levels of LIN28A and LIN28B have been proposed as diagnostic and/or prognostic markers for various malignancies. This review discusses the structure and modes of action of the different LIN28 proteins and examines their roles in regulating cancer hallmarks with a focus on malignancies of the nervous system. This review also highlights some gaps in the field that require further exploration to assess the potential of targeting LIN28 proteins for controlling cancer.
Collapse
Affiliation(s)
- Ahmed Maklad
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Mohammed Sedeeq
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Kai Man Chan
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia
| | - Iman Azimi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart 7005, Tasmania, Australia; Monash Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton 3168, Victoria, Australia.
| |
Collapse
|
13
|
Shyam S, Ramu S, Sehgal M, Jolly MK. A systems-level analysis of the mutually antagonistic roles of RKIP and BACH1 in dynamics of cancer cell plasticity. J R Soc Interface 2023; 20:20230389. [PMID: 37963558 PMCID: PMC10645512 DOI: 10.1098/rsif.2023.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important axis of phenotypic plasticity-a hallmark of cancer metastasis. Raf kinase-B inhibitor protein (RKIP) and BTB and CNC homology 1 (BACH1) are reported to influence EMT. In breast cancer, they act antagonistically, but the exact nature of their roles in mediating EMT and associated other axes of plasticity remains unclear. Here, analysing transcriptomic data, we reveal their antagonistic trends in a pan-cancer manner in terms of association with EMT, metabolic reprogramming and immune evasion via PD-L1. Next, we developed and simulated a mechanism-based gene regulatory network that captures how RKIP and BACH1 engage in feedback loops with drivers of EMT and stemness. We found that RKIP and BACH1 belong to two antagonistic 'teams' of players-while BACH1 belonged to the one driving pro-EMT, stem-like and therapy-resistant cell states, RKIP belonged to the one enabling pro-epithelial, less stem-like and therapy-sensitive phenotypes. Finally, we observed that low RKIP levels and upregulated BACH1 levels associated with worse clinical outcomes in many cancer types. Together, our systems-level analysis indicates that the emergent dynamics of underlying regulatory network enable the antagonistic patterns of RKIP and BACH1 with various axes of cancer cell plasticity, and with patient survival data.
Collapse
Affiliation(s)
- Sai Shyam
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Soundharya Ramu
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Manas Sehgal
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
14
|
Jamal Eddin TM, Nasr SM, Gupta I, Zayed H, Al Moustafa AE. Helicobacter pylori and epithelial mesenchymal transition in human gastric cancers: An update of the literature. Heliyon 2023; 9:e18945. [PMID: 37609398 PMCID: PMC10440535 DOI: 10.1016/j.heliyon.2023.e18945] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
Gastric cancer, a multifactorial disease, is considered one of the most common malignancies worldwide. In addition to genetic and environmental risk factors, infectious agents, such as Epstein-Barr virus (EBV) and Helicobacter pylori (H.pylori) contribute to the onset and development of gastric cancer. H. pylori is a type I carcinogen that colonizes the gastric epithelium of approximately 50% of the world's population, thus increasing the risk of gastric cancer development. On the other hand, epithelial mesenchymal transition (EMT) is a fundamental process crucial to embryogenic growth, wound healing, organ fibrosis and cancer progression. Several studies associate gastric pathogen infection of the epithelium with EMT initiation, provoking cancer metastasis in the gastric mucosa through various molecular signaling pathways. Additionally, EMT is implicated in the progression and development of H. pylori-associated gastric cancer. In this review, we recapitulate recent findings elucidating the association between H. pylori infection in EMT promotion leading to gastric cancer progression and metastasis.
Collapse
Affiliation(s)
- Tala M. Jamal Eddin
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Shahd M.O. Nasr
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ishita Gupta
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Hatem Zayed
- College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
- Oncology Department, Faculty of Medicine, McGill University, Montreal, QC, H3G 2M1, Canada
| |
Collapse
|
15
|
Feng P, Zhu L, Jie J, Yang P, Sheng N, Chen X, Chen X. Cannabidiol inhibits invasion and metastasis in colorectal cancer cells by reversing epithelial-mesenchymal transition through the Wnt/β-catenin signaling pathway. J Cancer Res Clin Oncol 2023; 149:3587-3598. [PMID: 35960375 DOI: 10.1007/s00432-022-04265-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
Abstract
Colorectal cancer (CRC) is the leading cause of cancer deaths worldwide, wherein distant metastasis is the main reason for death. The non-psychoactive phytocannabinoid cannabidiol (CBD) effectively induces the apoptosis of CRC cells. We investigated the role of CBD in the migration and metastasis of CRC cells. CBD significantly inhibited proliferation, migration, and invasion of colon cancer cells in a dose- or time-dependent manner. CBD could also inhibit epithelial-mesenchymal transition (EMT) by upregulating epithelial markers such as E-cadherin and downregulating mesenchymal markers such as N-cadherin, Snail, Vimentin, and HIF-1α. CBD could suppress the activation of the Wnt/β-catenin signaling pathway, inhibit the expression of β-catenin target genes such as APC and CK1, and increase the expression of Axin1. Compared to the control group, the volume and weight of orthotopic xenograft tumors significantly decreased after the CBD treatment. The results demonstrated that CBD inhibits invasion and metastasis in CRC cells. This was the first study elucidating the underlying molecular mechanism of CBD in inhibiting EMT and metastasis via the Wnt/β-catenin signaling pathway in CRC cells. The molecular mechanism by which CBD inhibits EMT and metastasis of CRC cells was shown to be through the Wnt/β-catenin signaling pathway for the first time.
Collapse
Affiliation(s)
- PanFeng Feng
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - LongXun Zhu
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jing Jie
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - PengXiang Yang
- Institute of Cancer Prevention and Treatment, Heilongjiang Academy of Medical Science, Harbin Medical University, Harbin, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Nan Sheng
- Department of Clinical Laboratory, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - XiangFan Chen
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Xia Chen
- Department of Pharmacy, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong City, No. 6, Haierxiang North Road, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Verstappe J, Berx G. A role for partial epithelial-to-mesenchymal transition in enabling stemness in homeostasis and cancer. Semin Cancer Biol 2023; 90:15-28. [PMID: 36773819 DOI: 10.1016/j.semcancer.2023.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Stem cells have self-renewal capacities and the ability to give rise to differentiated cells thereby sustaining tissues during homeostasis and injury. This structural hierarchy extends to tumours which harbor stem-like cells deemed cancer stem cells that propagate the tumour and drive metastasis and relapse. The process of epithelial-to-mesenchymal transition (EMT), which plays an important role in development and cancer cell migration, was shown to be correlated with stemness in both homeostasis and cancer indicating that stemness can be acquired and is not necessarily an intrinsic trait. Nowadays it is experimentally proven that the activation of an EMT program does not necessarily drive cells towards a fully mesenchymal phenotype but rather to hybrid E/M states. This review offers the latest advances in connecting the EMT status and stem-cell state of both non-transformed and cancer cells. Recent literature clearly shows that hybrid EMT states have a higher probability of acquiring stem cell traits. The position of a cell along the EMT-axis which coincides with a stem cell-like state is known as the stemness window. We show how the original EMT-state of a cell dictates the EMT/MET inducing programmes required to reach stemness. Lastly we present the mechanism of stemness regulation and the regulatory feedback loops which position cells at a certain EMT state along the EMT axis.
Collapse
Affiliation(s)
- Jeroen Verstappe
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
17
|
GEWALT TABEA, NOH KAWON, MEDER LYDIA. The role of LIN28B in tumor progression and metastasis in solid tumor entities. Oncol Res 2023; 31:101-115. [PMID: 37304235 PMCID: PMC10208000 DOI: 10.32604/or.2023.028105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 06/13/2023] Open
Abstract
LIN28B is an RNA-binding protein that targets a broad range of microRNAs and modulates their maturation and activity. Under normal conditions, LIN28B is exclusively expressed in embryogenic stem cells, blocking differentiation and promoting proliferation. In addition, it can play a role in epithelial-to-mesenchymal transition by repressing the biogenesis of let-7 microRNAs. In malignancies, LIN28B is frequently overexpressed, which is associated with increased tumor aggressiveness and metastatic properties. In this review, we discuss the molecular mechanisms of LIN28B in promoting tumor progression and metastasis in solid tumor entities and its potential use as a clinical therapeutic target and biomarker.
Collapse
Affiliation(s)
- TABEA GEWALT
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - KA-WON NOH
- Institute for Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - LYDIA MEDER
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Ramesh S, Selvakumar P, Ameer MY, Lian S, Abdullah Alzarooni AIM, Ojha S, Mishra A, Tiwari A, Kaushik A, Jung YD, Chouaib S, Lakshmanan VK. State-of-the-art therapeutic strategies for targeting cancer stem cells in prostate cancer. Front Oncol 2023; 13:1059441. [PMID: 36969009 PMCID: PMC10035756 DOI: 10.3389/fonc.2023.1059441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023] Open
Abstract
The development of new therapeutic strategies is on the increase for prostate cancer stem cells, owing to current standardized therapies for prostate cancer, including chemotherapy, androgen deprivation therapy (ADT), radiotherapy, and surgery, often failing because of tumor relapse ability. Ultimately, tumor relapse develops into advanced castration-resistant prostate cancer (CRPC), which becomes an irreversible and systemic disease. Hence, early identification of the intracellular components and molecular networks that promote prostate cancer is crucial for disease management and therapeutic intervention. One of the potential therapeutic methods for aggressive prostate cancer is to target prostate cancer stem cells (PCSCs), which appear to be a primary focal point of cancer metastasis and recurrence and are resistant to standardized therapies. PCSCs have also been documented to play a major role in regulating tumorigenesis, sphere formation, and the metastasis ability of prostate cancer with their stemness features. Therefore, the current review highlights the origin and identification of PCSCs and their role in anti-androgen resistance, as well as stemness-related signaling pathways. In addition, the review focuses on the current advanced therapeutic strategies for targeting PCSCs that are helping to prevent prostate cancer initiation and progression, such as microRNAs (miRNAs), nanotechnology, chemotherapy, immunotherapy, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing system, and photothermal ablation (PTA) therapy.
Collapse
Affiliation(s)
- Saravanan Ramesh
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Preethi Selvakumar
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Mohamed Yazeer Ameer
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | | | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anshuman Mishra
- Translational Research & Sustainable Healthcare Management, Institute of Advanced Materials, IAAM, Ulrika, Sweden
| | - Ashutosh Tiwari
- Translational Research & Sustainable Healthcare Management, Institute of Advanced Materials, IAAM, Ulrika, Sweden
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, United States
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, India
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Equipe Labellisée par la Ligue Contre le Cancer, EPHE, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Vinoth-Kumar Lakshmanan
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
- Translational Research & Sustainable Healthcare Management, Institute of Advanced Materials, IAAM, Ulrika, Sweden
- *Correspondence: Vinoth-Kumar Lakshmanan,
| |
Collapse
|
19
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
20
|
Aguilar-Cazares D, Chavez-Dominguez R, Marroquin-Muciño M, Perez-Medina M, Benito-Lopez JJ, Camarena A, Rumbo-Nava U, Lopez-Gonzalez JS. The systemic-level repercussions of cancer-associated inflammation mediators produced in the tumor microenvironment. Front Endocrinol (Lausanne) 2022; 13:929572. [PMID: 36072935 PMCID: PMC9441602 DOI: 10.3389/fendo.2022.929572] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment is a dynamic, complex, and redundant network of interactions between tumor, immune, and stromal cells. In this intricate environment, cells communicate through membrane-membrane, ligand-receptor, exosome, soluble factors, and transporter interactions that govern cell fate. These interactions activate the diverse and superfluous signaling pathways involved in tumor promotion and progression and induce subtle changes in the functional activity of infiltrating immune cells. The immune response participates as a selective pressure in tumor development. In the early stages of tumor development, the immune response exerts anti-tumor activity, whereas during the advanced stages, the tumor establishes mechanisms to evade the immune response, eliciting a chronic inflammation process that shows a pro-tumor effect. The deregulated inflammatory state, in addition to acting locally, also triggers systemic inflammation that has repercussions in various organs and tissues that are distant from the tumor site, causing the emergence of various symptoms designated as paraneoplastic syndromes, which compromise the response to treatment, quality of life, and survival of cancer patients. Considering the tumor-host relationship as an integral and dynamic biological system, the chronic inflammation generated by the tumor is a communication mechanism among tissues and organs that is primarily orchestrated through different signals, such as cytokines, chemokines, growth factors, and exosomes, to provide the tumor with energetic components that allow it to continue proliferating. In this review, we aim to provide a succinct overview of the involvement of cancer-related inflammation at the local and systemic level throughout tumor development and the emergence of some paraneoplastic syndromes and their main clinical manifestations. In addition, the involvement of these signals throughout tumor development will be discussed based on the physiological/biological activities of innate and adaptive immune cells. These cellular interactions require a metabolic reprogramming program for the full activation of the various cells; thus, these requirements and the by-products released into the microenvironment will be considered. In addition, the systemic impact of cancer-related proinflammatory cytokines on the liver-as a critical organ that produces the leading inflammatory markers described to date-will be summarized. Finally, the contribution of cancer-related inflammation to the development of two paraneoplastic syndromes, myelopoiesis and cachexia, will be discussed.
Collapse
Affiliation(s)
- Dolores Aguilar-Cazares
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Marroquin-Muciño
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Mario Perez-Medina
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Jesus J. Benito-Lopez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Human Leukocyte Antigen (HLA), Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Uriel Rumbo-Nava
- Clinica de Neumo-Oncologia, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| |
Collapse
|
21
|
Cytokine chemokine network in tumor microenvironment: Impact on CSC properties and therapeutic applications. Cytokine 2022; 156:155916. [DOI: 10.1016/j.cyto.2022.155916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022]
|
22
|
LIN28 Family in Testis: Control of Cell Renewal, Maturation, Fertility and Aging. Int J Mol Sci 2022; 23:ijms23137245. [PMID: 35806250 PMCID: PMC9266904 DOI: 10.3390/ijms23137245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 12/12/2022] Open
Abstract
Male reproductive development starts early in the embryogenesis with somatic and germ cell differentiation in the testis. The LIN28 family of RNA-binding proteins promoting pluripotency has two members—LIN28A and LIN28B. Their function in the testis has been investigated but many questions about their exact role based on the expression patterns remain unclear. LIN28 expression is detected in the gonocytes and the migrating, mitotically active germ cells of the fetal testis. Postnatal expression of LIN28 A and B showed differential expression, with LIN28A expressed in the undifferentiated spermatogonia and LIN28B in the elongating spermatids and Leydig cells. LIN28 interferes with many signaling pathways, leading to cell proliferation, and it is involved in important testicular physiological processes, such as cell renewal, maturation, fertility, and aging. In addition, aberrant LIN28 expression is associated with testicular cancer and testicular disorders, such as hypogonadotropic hypogonadism and Klinefelter’s syndrome. This comprehensive review encompasses current knowledge of the function of LIN28 paralogs in testis and other tissues and cells because many studies suggest LIN28AB as a promising target for developing novel therapeutic agents.
Collapse
|
23
|
Vasefifar P, Motafakkerazad R, Maleki LA, Najafi S, Ghrobaninezhad F, Najafzadeh B, Alemohammad H, Amini M, Baghbanzadeh A, Baradaran B. Nanog, as a key cancer stem cell marker in tumor progression. Gene X 2022; 827:146448. [PMID: 35337852 DOI: 10.1016/j.gene.2022.146448] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cells (CSCs) are a small population of malignant cells that induce tumor onset and development. CSCs share similar features with normal stem cells in the case of self-renewal and differentiation. They also contribute to chemoresistance and metastasis of cancer cells, leading to therapeutic failure. To identify CSCs, multiple cell surface markers have been characterized, including Nanog, which is found at high levels in different cancers. Recent studies have revealed that Nanog upregulation has a substantial association with the advanced stages and poor prognosis of malignancies, playing a pivotal role through tumorigenesis of multiple human cancers, including leukemia, liver, colorectal, prostate, ovarian, lung, head and neck, brain, pancreatic, gastric and breast cancers. Nanog through different signaling pathways, like JAK/STAT and Wnt/β-catenin pathways, induces stemness, self-renewal, metastasis, invasiveness, and chemoresistance of cancer cells. Some of these signaling pathways are common in various types of cancers, but some have been found in one or two cancers. Therefore, this review aimed to focus on the function of Nanog in multiple cancers based on recent studies surveying the suitable approaches to target Nanog and inhibit CSCs residing in tumors to gain favorable results from cancer treatments.
Collapse
Affiliation(s)
- Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
24
|
CD73/Adenosine Pathway Involvement in the Interaction of Non-Small Cell Lung Cancer Stem Cells and Bone Cells in the Pre-Metastatic Niche. Int J Mol Sci 2022; 23:ijms23095126. [PMID: 35563517 PMCID: PMC9104817 DOI: 10.3390/ijms23095126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Adenosinergic signaling is an important regulator of tissue homeostasis and extracellular accumulation of adenosine (Ado) and is associated with different pathologies, such as cancer. In non-small-cell lung cancer (NSCLC), a subset of CD133/CXCR4+ cancer stem cell (CSCs) has been demonstrated to initiate bone metastases. Here we investigated how NSCLC CSCs interact with osteoclasts (OCs) and osteoblasts (OBs) by modulating Ado production and OC activity. We proved that CSC-spheres, generated in vitro from NSCLC cell lines, express CD38, PC-1, and CD73, enzymes of the non-canonical adenosinergic pathway, produce high level of Ado, and down-regulate A1R and A3R inhibitory receptors, while expressing A2AR and A2BR. To address the Ado role and modulation of the in-bone pre-metastatic niche, we performed co-cultures of CSC-spheres with OCs and OBs cells. Firstly, we verified that active OCs do not activate non-canonical the adenosinergic pathway, conversely to OBs. OCs co-cultured with CSC-spheres increase Ado production that is related to the OC resorption activity and contributes to T-cell suppression. Finally, we proved the efficacy of anti-CD73 agents in blocking NSCLC cell migration. Overall, we assessed the importance of adenosinergic signaling in the interaction between CSCs and OCs at the pre-metastatic niche, with therapeutic implications related to Ado production.
Collapse
|
25
|
Qiao L, Chen Y, Liang N, Xie J, Deng G, Chen F, Wang X, Liu F, Li Y, Zhang J. Targeting Epithelial-to-Mesenchymal Transition in Radioresistance: Crosslinked Mechanisms and Strategies. Front Oncol 2022; 12:775238. [PMID: 35251963 PMCID: PMC8888452 DOI: 10.3389/fonc.2022.775238] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy exerts a crucial role in curing cancer, however, its treatment efficiency is mostly limited due to the presence of radioresistance. Epithelial-to-mesenchymal transition (EMT) is a biological process that endows the cancer cells with invasive and metastatic properties, as well as radioresistance. Many potential mechanisms of EMT-related radioresistance being reported have broaden our cognition, and hint us the importance of an overall understanding of the relationship between EMT and radioresistance. This review focuses on the recent progresses involved in EMT-related mechanisms in regulating radioresistance, irradiation-mediated EMT program, and the intervention strategies to increase tumor radiosensitivity, in order to improve radiotherapy efficiency and clinical outcomes of cancer patients.
Collapse
Affiliation(s)
- Lili Qiao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Yanfei Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Jian Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Guodong Deng
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Fangjie Chen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Xiaojuan Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Fengjun Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| | - Yupeng Li
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Province Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China.,Department of Oncology, Shandong First Medical University, Jinan, China
| |
Collapse
|
26
|
Strategies for Isolating and Propagating Circulating Tumor Cells in Men with Metastatic Prostate Cancer. Diagnostics (Basel) 2022; 12:diagnostics12020497. [PMID: 35204587 PMCID: PMC8870963 DOI: 10.3390/diagnostics12020497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
Selecting a well-suited method for isolating/characterizing circulating tumor cells (CTCs) is challenging. Evaluating sensitive and specific markers for prostate cancer (PCa)-specific CTC identification and analysis is crucial. We used the CellCollector EpCAM-functionalized system (CC-EpCAM) and evaluated and developed a PCa-functionalized version (CC-PCa); we then compared CTC isolation techniques that exploit the physical and biological properties of CTCs. We established two cohorts of metastatic PCa patients (mPCa; 15 in cohort 1 and 10 in cohort 2). CTC cultivation experiments were conducted with two capturing methods (Ficoll and ScreenCell). The most sensitive detection rates and highest CTC counts were reached with the CC-PCa and ScreenCell system. Patients with ≥5 CTCs isolated with CC-EpCAM had an overall survival (OS) of 0.93 years, and patients with ≥5 CTCs isolated with CC-PCa had an OS of 1.5 years in cohort 1. Nevertheless, we observed the highest sensitivity and specificity for 24-month survival by the Ficoll with CD45 depletion and ScreenCell system with May-Grunwald Giemsa (MGG) staining. The EpCAM molecule is an essential factor related to OS for CTC isolation based on biological properties in mPCa patients. The best-suited CTC capture system is not limited to one characteristic of cells but adapted to downstream analysis.
Collapse
|
27
|
Tamai K, Fujimori H, Mochizuki M, Satoh K. Cancer Stem Cells in Intrahepatic Cholangiocarcinoma; Their Molecular Basis, and Therapeutic Implications. Front Physiol 2022; 12:824261. [PMID: 35111082 PMCID: PMC8801575 DOI: 10.3389/fphys.2021.824261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer tissue consists of heterogenous cell types, and cancer stem cells (CSCs) are a subpopulation of the tissue which possess therapy resistance, tumor reconstruction capability, and are responsible for metastasis. Intrahepatic cholangiocarcinoma (iCCA) is one of the most common type of liver cancer that is highly aggressive with poor prognosis. Since no target therapy is efficient in improving patient outcomes, new therapeutic approaches need to be developed. CSC is thought to be a promising therapeutic target because of its resistance to therapy. Accumulating evidences suggests that there are many factors (surface marker, stemness-related genes, etc.) and mechanisms (epithelial-mesenchymal transition, mitochondria activity, etc.) which are linked to CSC-like phenotypes. Nevertheless, limited studies are reported about the application of therapy using these mechanisms, suggesting that more precise understandings are still needed. In this review, we overview the molecular mechanisms which modulate CSC-like phenotypes, and discuss the future perspective for targeting CSC in iCCA.
Collapse
Affiliation(s)
- Keiichi Tamai
- Division of Cancer Stem Cells, Miyagi Cancer Center Research Institute, Natori, Japan
- *Correspondence: Keiichi Tamai,
| | - Haruna Fujimori
- Division of Cancer Stem Cells, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Mai Mochizuki
- Division of Cancer Stem Cells, Miyagi Cancer Center Research Institute, Natori, Japan
| | - Kennichi Satoh
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
28
|
The Transcription Factors Zeb1 and Snail Induce Cell Malignancy and Cancer Stem Cell Phenotype in Prostate Cells, Increasing Androgen Synthesis Capacity and Therapy Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:51-64. [PMID: 36587301 DOI: 10.1007/978-3-031-12974-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prostate cancer (PCa) incidence has increased during the last decades, becoming one of the leading causes of death by cancer in men worldwide. During an extended period of prostate cancer, malignant cells are androgen-sensitive being testosterone the main responsible for tumor growth. Accordingly, treatments blocking production and action of testosterone are mostly used. However, during disease progression, PCa cells become androgen insensitive producing a castration-resistant stage with a worse prognosis. Overcoming castration-resistant prostate cancer (CRPC) has become a great challenge in the management of this disease. In the search for molecular pathways leading to therapy resistance, the epithelial-mesenchymal transition (EMT), and particularly the transcription factors zinc finger E-box-binding homeobox 1 (Zeb1) and zinc finger protein SNAI1 (Snail), master genes of the EMT, have shown to have pivotal roles. Also, the discovery that cancer stem cells (CSCs) can be generated de novo from their non-CSCs counterpart has led to the question whereas these EMT transcription factors could be implicated in this dynamic conversion between non-CSC and CSC. In this review, we analyze evidence supporting the idea that Zeb1 and Snail induce cell malignancy and cancer stem cell phenotype in prostate cells, increasing androgen synthesis capacity and therapy resistance.
Collapse
|
29
|
Tang S, Lian X, Cheng H, Guo J, Ni D, Huang C, Gu X, Meng H, Jiang J, Li X. Bacterial Lipopolysaccharide Augmented Malignant Transformation and Promoted the Stemness in Prostate Cancer Epithelial Cells. J Inflamm Res 2021; 14:5849-5862. [PMID: 34785925 PMCID: PMC8590462 DOI: 10.2147/jir.s332943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose To study bacterial lipopolysaccharide (LPS)-induced cancer stem-like transformation and to investigate the inhibitory effect of Trichostatin A (TSA) on the malignant transformation through targeting p-Stat3 signaling. Methods 2D, 3D, and serum-free suspension culture system were used to study LPS-induced malignant transformation in series malignant grade of prostate cancer (PCa) epithelial cells. Flow cytometry assay and RT-PCR were utilized to evaluate the CD44+CD133+ stem cell population, the expression of inflammatory cytokines and series tumor stemness biomarkers. Meanwhile, Western blot was used to analyze the alteration of cell signaling associated-molecules by treatment with TSA, an original antifungal antibiotic and a panel inhibitor of histone deacetylase. Results Our study found that LPS promoted the migration, invasion and stem-like tumoroshpere forming in multiple PCa cell lines including DU145, PC3, 22RV1, LNCaP. LPS also enriched CD44+CD133+ stem cell population and increased the expression of series tumor stemness biomarkers (e.g., CD44, CD133, SOX-2, α-intergrin, Nestin, etc.). TSA was found to prevent tumor cell migration, invasion and tumorosphere forming in DU145 and PC3 cells with increasing tumor suppressive Maspin and reducing both phosphorylation of Stat3 (p-Stat3) and pro-oncogene c-Myc expression in LPS-treated DU145 cells. Furthermore, blocking Stat3 signaling pathway by treatment with TSA and/or small molecule compound Stattic of an p-Stat3 inhibitor effectively abrogated LPS-induced tumorosphere forming with decrease of IL-6, IL-8 and stemness biomarkers CD44, SOX-2 expression. Conclusion Our data demonstrated that the inflammatory agent of bacterial LPS augmented malignant transformation and promoted the cancerous stemness in PCa epithelial cells. TSA could prevent, at least in part, the LPS-induced malignant transformation by targeting p-Stat3/c-Myc signaling pathway and reducing inflammatory IL-6, IL-8. In addition, the assay of LPS-induced tumorosphere forming could serve as a simple and an easy handling method for targeting cancer stem cells drug screening in vitro in clinical practice.
Collapse
Affiliation(s)
- Sijie Tang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China.,Department of Urology, the Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Xueqi Lian
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Huiying Cheng
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Jiaqian Guo
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Daguang Ni
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Can Huang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Xiang Gu
- Department of Urology, the Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Hong Meng
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, 48201, USA
| | - Jiajia Jiang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Xiaohua Li
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China.,The Laboratory of Clinical Genomics, Hefei KingMed Diagnostics Ltd, Hefei, 230088, People's Republic of China.,National Center for Gene Testing Technology Application & Demonstration (Anhui), Hefei, 230088, People's Republic of China
| |
Collapse
|
30
|
Xiao L, Peng H, Yan M, Chen S. Silencing ACTG1 Expression Induces Prostate Cancer Epithelial Mesenchymal Transition Through MAPK/ERK Signaling Pathway. DNA Cell Biol 2021; 40:1445-1455. [PMID: 34767732 DOI: 10.1089/dna.2021.0416] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Purpose: Metastatic prostate cancer (PCa) has become a major obstacle in the treatment of PCa. The study's purpose is to find biomarkers of tumor metastasis by proteomics and enzyme-linked immunosorbent assay (ELISA), and to design related experiments to study its role in the progress and metastasis of PCa. Method: We analyzed serum from primary PCa stage and metastatic stage of 12 patients to find metastatic PCa serum protein biomarkers using isobaric tags for relative and absolute quantitation (iTRAQ). An effective diagnostic model based on validated biomarkers using logistic regression was established. In vivo and in vitro biological behavior experiments (wound healing, CCK8, and Transwell tests) were carried out after obtaining the biomarkers. Related mechanism has been studied, which may be associated with metastatic PCa. Result: Actin gamma 1 (ACTG1) is a potential biomarker in the metastasis of PCa. Bioinformatics and related experiments show that ACTG1 is high-expressed in PCa tissues and cells. In vivo and in vitro experiments illustrated that the ability of proliferation, migration, and invasion of PCa cells was significantly inhibited after the knockdown of ACTG1 expression. Surprisingly, ERK protein expression was downregulated after ACTG1 knockdown. At the same time, the expression of epithelial-mesenchymal transition-related markers in PCa cells decrease after treated with ERK1/2 inhibitor, which indicating that ACTG1 may affect the metastatic ability of PCa cells through MAPK/ERK signaling pathway. Conclusion: ACTG1 is a marker of metastasis PCa. It mediates cell proliferation and may regulate the metastasis of PCa through MAPK/ERK signaling pathway, which provides a useful theoretical basis for exploring the treatment of PCa.
Collapse
Affiliation(s)
- Longfei Xiao
- Department of Reproductive Medicine, Xiangyang NO.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Huahong Peng
- Department of Urology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Mo Yan
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Saipeng Chen
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
31
|
Zhuang QS, Sun XB, Chong QY, Banerjee A, Zhang M, Wu ZS, Zhu T, Pandey V, Lobie PE. ARTEMIN Promotes Oncogenicity and Resistance to 5-Fluorouracil in Colorectal Carcinoma by p44/42 MAPK Dependent Expression of CDH2. Front Oncol 2021; 11:712348. [PMID: 34422665 PMCID: PMC8377398 DOI: 10.3389/fonc.2021.712348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
ARTEMIN (ARTN), one of the glial-cell derived neurotrophic factor family of ligands, has been reported to be associated with a number of human malignancies. In this study, the enhanced expression of ARTN in colorectal carcinoma (CRC) was observed; the expression of ARTN positively correlated with lymph node metastases and advanced tumor stages and predicted poor prognosis. Forced expression of ARTN in CRC cells enhanced oncogenic behavior, mesenchymal phenotype, stem cell-like properties and tumor growth and metastasis in a xenograft model. These functions were conversely inhibited by depletion of endogenous ARTN. Forced expression of ARTN reduced the sensitivity of CRC cells to 5-FU treatment; and 5-FU resistant CRC cells harbored enhanced expression of ARTN. The oncogenic functions of ARTN were demonstrated to be mediated by p44/42 MAP kinase dependent expression of CDH2 (CADHERIN 2, also known as N-CADHERIN). Inhibition of p44/42 MAP kinase activity or siRNA mediated depletion of endogenous CDH2 reduced the enhanced oncogenicity and chemoresistance consequent to forced expression of ARTN induced cell functions; and forced expression of CDH2 rescued the reduced mesenchymal properties and resistance to 5-FU after ARTN depletion. In conclusion, ARTN may be of prognostic and theranostic utility in CRC.
Collapse
Affiliation(s)
- Qiu-Shi Zhuang
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xin-Bao Sun
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | - Arindam Banerjee
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Min Zhang
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Tao Zhu
- Department of Oncology of the First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore.,Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
32
|
Bamodu OA, Tzou KY, Lin CD, Hu SW, Wang YH, Wu WL, Chen KC, Wu CC. Differential but Concerted Expression of HSD17B2, HSD17B3, SHBG and SRD5A1 Testosterone Tetrad Modulate Therapy Response and Susceptibility to Disease Relapse in Patients with Prostate Cancer. Cancers (Basel) 2021; 13:3478. [PMID: 34298692 PMCID: PMC8303483 DOI: 10.3390/cancers13143478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Testosterone plays a critical role in prostate development and pathology. However, the impact of the molecular interplay between testosterone-associated genes on therapy response and susceptibility to disease relapse in PCa patients remains underexplored. Objective: This study investigated the role of dysregulated or aberrantly expressed testosterone-associated genes in the enhanced dissemination, phenoconversion, and therapy response of treatment-resistant advanced or recurrent PCa. Methods: Employing a combination of multi-omics big data analyses, in vitro, ex vivo, and in vivo assays, we assessed the probable roles of HSD17B2, HSD17B3, SHBG, and SRD5A1-mediated testosterone metabolism in the progression, therapy response, and prognosis of advanced or castration-resistant PCa (CRPC). Results: Our bioinformatics-aided gene expression profiling and immunohistochemical staining showed that the aberrant expression of the HSD17B2, HSD17B3, SHBG, and SRD5A1 testosterone metabolic tetrad characterize androgen-driven PCa and is associated with disease progression. Reanalysis of the TCGA PRAD cohort (n = 497) showed that patients with SRD5A1-dominant high expression of the tetrad exhibited worse mid-term to long-term (≥5 years) overall survival, with a profoundly shorter time to recurrence, compared to those with low expression. More so, we observed a strong association between enhanced HSD17B2/SRD5A1 signaling and metastasis to distant lymph nodes (M1a) and bones (M1b), while upregulated HSD17B3/SHBG signaling correlated more with negative metastasis (M0) status. Interestingly, increased SHBG/SRD5A1 ratio was associated with metastasis to distant organs (M1c), while elevated SRD5A1/SHBG ratio was associated with positive biochemical recurrence (BCR) status, and shorter time to BCR. Molecular enrichment and protein-protein connectivity network analyses showed that the androgenic tetrad regulates testosterone metabolism and cross-talks with modulators of drug response, effectors of cell cycle progression, proliferation or cell motility, and activators/mediators of cancer stemness. Moreover, of clinical relevance, SHBG ectopic expression (SHBG_OE) or SRD5A1 knockout (sgSRD5A1) induced the acquisition of spindle fibroblastoid morphology by the round/polygonal metastatic PC-3 and LNCaP cells, attenuated their migration and invasion capability, and significantly suppressed their ability to form primary or secondary tumorspheres, with concomitant downregulation of stemness KLF4, OCT3/4, and drug resistance ABCC1, ABCB1 proteins expression levels. We also showed that metronomic dutasteride synergistically enhanced the anticancer effect of low-dose docetaxel, in vitro, and in vivo. Conclusion: These data provide proof of concept that re-reprogramming of testosterone metabolism through "SRD5A1 withdrawal" or "SHBG induction" is a workable therapeutic strategy for shutting down androgen-driven oncogenic signals, reversing treatment resistance, and repressing the metastatic/recurrent phenotypes of patients with PCa.
Collapse
Affiliation(s)
- Oluwaseun Adebayo Bamodu
- Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (K.-Y.T.); (C.-D.L.); (S.-W.H.); (W.-L.W.); (K.-C.C.)
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan;
- Department of Hematology and Oncology, Cancer Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
| | - Kai-Yi Tzou
- Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (K.-Y.T.); (C.-D.L.); (S.-W.H.); (W.-L.W.); (K.-C.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei City 11031, Taiwan
| | - Chia-Da Lin
- Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (K.-Y.T.); (C.-D.L.); (S.-W.H.); (W.-L.W.); (K.-C.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei City 11031, Taiwan
| | - Su-Wei Hu
- Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (K.-Y.T.); (C.-D.L.); (S.-W.H.); (W.-L.W.); (K.-C.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei City 11031, Taiwan
| | - Yuan-Hung Wang
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Wen-Ling Wu
- Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (K.-Y.T.); (C.-D.L.); (S.-W.H.); (W.-L.W.); (K.-C.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei City 11031, Taiwan
| | - Kuan-Chou Chen
- Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (K.-Y.T.); (C.-D.L.); (S.-W.H.); (W.-L.W.); (K.-C.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei City 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Chia-Chang Wu
- Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan; (K.-Y.T.); (C.-D.L.); (S.-W.H.); (W.-L.W.); (K.-C.C.)
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei City 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| |
Collapse
|
33
|
Ghaderi F, Jokar N, Gholamrezanezhad A, Assadi M, Ahmadzadehfar H. Toward radiotheranostics in cancer stem cells: a promising initial step for tumour eradication. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Lachat C, Peixoto P, Hervouet E. Epithelial to Mesenchymal Transition History: From Embryonic Development to Cancers. Biomolecules 2021; 11:biom11060782. [PMID: 34067395 PMCID: PMC8224685 DOI: 10.3390/biom11060782] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a process that allows epithelial cells to progressively acquire a reversible mesenchymal phenotype. Here, we recount the main events in the history of EMT. EMT was first studied during embryonic development. Nowadays, it is an important field in cancer research, studied all around the world by more and more scientists, because it was shown that EMT is involved in cancer aggressiveness in many different ways. The main features of EMT's involvement in embryonic development, fibrosis and cancers are briefly reviewed here.
Collapse
Affiliation(s)
- Camille Lachat
- UMR 1098 RIGHT, University Bourgogne-Franche-Comté, INSERM, EFS-BFC, F-25000 Besançon, France; (P.P.); (E.H.)
- Correspondence:
| | - Paul Peixoto
- UMR 1098 RIGHT, University Bourgogne-Franche-Comté, INSERM, EFS-BFC, F-25000 Besançon, France; (P.P.); (E.H.)
- EPIgenetics and GENe EXPression Technical Platform (EPIGENExp), University Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Eric Hervouet
- UMR 1098 RIGHT, University Bourgogne-Franche-Comté, INSERM, EFS-BFC, F-25000 Besançon, France; (P.P.); (E.H.)
- EPIgenetics and GENe EXPression Technical Platform (EPIGENExp), University Bourgogne Franche-Comté, F-25000 Besançon, France
- DImaCell Platform, University Bourgogne Franche-Comté, F-25000 Besançon, France
| |
Collapse
|
35
|
Li Y, Wang J, Wang F, Chen W, Gao C, Wang J. RNF144A suppresses ovarian cancer stem cell properties and tumor progression through regulation of LIN28B degradation via the ubiquitin-proteasome pathway. Cell Biol Toxicol 2021; 38:809-824. [PMID: 33978933 DOI: 10.1007/s10565-021-09609-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/27/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Cancer stem cells (CSCs) are the main driving force of tumorigenesis, metastasis, recurrence, and drug resistance in epithelial ovarian cancer (EOC). The current study aimed to explore the regulatory effects of ring finger protein 144A (RNF144A), an E3 ubiquitin ligase, in the maintenance of CSC properties and tumor development in EOC. METHODS The expressions of RNF144A in EOC tissue samples and cells were examined. The knockdown or overexpression of a target gene was achieved by transfecting EOC cells with short hairpin RNA or adenoviral vectors. A mouse xenograft model was constructed by inoculating nude mice with EOC cells. Co-immunoprecipitation was used to determine the interaction between RNF144A and LIN28B. RESULTS Downregulated RNF144A expression was observed in ovarian tumor tissues and EOC cells. Low RNF144A expression was positively associated with poor survival of EOC patients. RNF144A knockdown significantly enhanced sphere formation and upregulated stem cell markers in EOC cells, while RNF144A overexpression prevented EOC cells from acquiring stem cell properties. Also, the upregulation of RNF144A inhibited ovarian tumor growth and aggressiveness in cell culture and mouse xenografts. Further analysis revealed that RNF144A induced LIN28B degradation through ubiquitination in EOC cells. LIN28B upregulation restored the expressions of stem cell pluripotency-associated transcription factors in EOC cells overexpressing RNF144A. CONCLUSION Taken together, our findings highlight the therapeutic potential of restoring RNF144A expression and thereby suppressing LIN28B-associated oncogenic signaling for EOC treatment. • Ring finger protein 144A (RNF144A) is downregulated in epithelial ovarian cancer (EOC) tissues and cell lines. • The overexpression of RNF144A prevents EOC cells from acquiring stem cell properties and inhibits ovarian tumor growth. • RNF144A induces LIN28B degradation through ubiquitination in EOC cells. • LIN28B upregulation restores the expressions of stem cell pluripotency-associated transcription factors in EOC cells overexpressing RNF144A.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Fang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Wenyu Chen
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Chengzhen Gao
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224001, Jiangsu, China
| | - Jianhua Wang
- Department of Gastroenterology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, No. 66, Renmin South Road, Yancheng, 224001, Jiangsu, China.
| |
Collapse
|
36
|
Agnoletto C, Caruso C, Garofalo C. Heterogeneous Circulating Tumor Cells in Sarcoma: Implication for Clinical Practice. Cancers (Basel) 2021; 13:cancers13092189. [PMID: 34063272 PMCID: PMC8124844 DOI: 10.3390/cancers13092189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The present review is aimed to discuss the relevance of assaying for the presence and isolation of circulating tumor cells (CTCs) in patients with sarcoma. Just a few studies have been performed to detect and enumerate viable CTCs in sarcoma and a majority of them still represent proof-of-concept studies, while more frequently tumor cells have been detected in the circulation by using the PCR-based method. Nevertheless, recent advances in technologies allowed detection of epithelial–mesenchymal transitioned CTCs from patients with mesenchymal malignancies, despite results being mostly preliminary. The possibility to identify CTCs holds a great promise for both applications of liquid biopsy in sarcoma for precision medicine, and for research purposes to pinpoint the mechanism of the metastatic process through the characterization of tumor mesenchymal cells. Coherently, clinical trials in sarcoma have been designed accordingly to detect CTCs, for diagnosis, identification of novel therapeutic targets and resistance mechanisms of systemic therapies, and patient stratification. Abstract Bone and soft tissue sarcomas (STSs) represent a group of heterogeneous rare malignant tumors of mesenchymal origin, with a poor prognosis. Due to their low incidence, only a few studies have been reported addressing circulating tumor cells (CTCs) in sarcoma, despite the well-documented relevance for applications of liquid biopsy in precision medicine. In the present review, the most recent data relative to the detection and isolation of viable and intact CTCs in these tumors will be reviewed, and the heterogeneity in CTCs will be discussed. The relevance of epithelial–mesenchymal plasticity and stemness in defining the phenotypic and functional properties of these rare cells in sarcoma will be highlighted. Of note, the existence of dynamic epithelial–mesenchymal transition (EMT)-related processes in sarcoma tumors has only recently been related to their clinical aggressiveness. Also, the presence of epithelial cell adhesion molecule (EpCAM)-positive CTC in sarcoma has been weakly correlated with poor outcome and disease progression, thus proving the existence of both epithelial and mesenchymal CTC in sarcoma. The advancement in technologies for capturing and enumerating all diverse CTCs phenotype originating from these mesenchymal tumors are presented, and results provide a promising basis for clinical application of CTC detection in sarcoma.
Collapse
|
37
|
Genetic and Non-Genetic Mechanisms Underlying Cancer Evolution. Cancers (Basel) 2021; 13:cancers13061380. [PMID: 33803675 PMCID: PMC8002988 DOI: 10.3390/cancers13061380] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Our manuscript summarizes the up-to-date data on the complex and dynamic nature of adaptation mechanisms and evolutionary processes taking place during cancer initiation, development and progression. Although for decades cancer has been viewed as a process governed by genetic mechanisms, it is becoming more and more clear that non-genetic mechanisms may play an equally important role in cancer evolution. In this review, we bring together these fundamental concepts and discuss how those tightly interconnected mechanisms lead to the establishment of highly adaptive quickly evolving cancers. Furthermore, we argue that in depth understanding of cancer progression from the evolutionary perspective may allow the prediction and direction of the evolutionary path of cancer populations towards drug sensitive phenotypes and thus facilitate the development of more effective anti-cancer approaches. Abstract Cancer development can be defined as a process of cellular and tissular microevolution ultimately leading to malignancy. Strikingly, though this concept has prevailed in the field for more than a century, the precise mechanisms underlying evolutionary processes occurring within tumours remain largely uncharacterized and rather cryptic. Nevertheless, although our current knowledge is fragmentary, data collected to date suggest that most tumours display features compatible with a diverse array of evolutionary paths, suggesting that most of the existing macro-evolutionary models find their avatar in cancer biology. Herein, we discuss an up-to-date view of the fundamental genetic and non-genetic mechanisms underlying tumour evolution with the aim of concurring into an integrated view of the evolutionary forces at play throughout the emergence and progression of the disease and into the acquisition of resistance to diverse therapeutic paradigms. Our ultimate goal is to delve into the intricacies of genetic and non-genetic networks underlying tumour evolution to build a framework where both core concepts are considered non-negligible and equally fundamental.
Collapse
|
38
|
Devlies W, Handle F, Devos G, Joniau S, Claessens F. Preclinical Models in Prostate Cancer: Resistance to AR Targeting Therapies in Prostate Cancer. Cancers (Basel) 2021; 13:915. [PMID: 33671614 PMCID: PMC7926818 DOI: 10.3390/cancers13040915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is an androgen-driven tumor. Different prostate cancer therapies consequently focus on blocking the androgen receptor pathway. Clinical studies reported tumor resistance mechanisms by reactivating and bypassing the androgen pathway. Preclinical models allowed the identification, confirmation, and thorough study of these pathways. This review looks into the current and future role of preclinical models to understand resistance to androgen receptor-targeted therapies. Increasing knowledge on this resistance will greatly improve insights into tumor pathophysiology and future treatment strategies in prostate cancer.
Collapse
Affiliation(s)
- Wout Devlies
- Laboratory of Molecular Endocrinology, KU Leuven, 3000 Leuven, Belgium;
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (S.J.)
| | - Florian Handle
- Division of Experimental Urology, Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Gaëtan Devos
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (S.J.)
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (G.D.); (S.J.)
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
39
|
Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy Javanmard S, Taherian M, Ahmadlou M, Salehi R, Sadeghi B, Manian M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int 2021; 21:62. [PMID: 33472628 PMCID: PMC7816485 DOI: 10.1186/s12935-020-01719-5] [Citation(s) in RCA: 372] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is a common feature of solid tumors, and develops because of the rapid growth of the tumor that outstrips the oxygen supply, and impaired blood flow due to the formation of abnormal blood vessels supplying the tumor. It has been reported that tumor hypoxia can: activate angiogenesis, thereby enhancing invasiveness and risk of metastasis; increase survival of tumor, as well as suppress anti-tumor immunity and hamper the therapeutic response. Hypoxia mediates these effects by several potential mechanisms: altering gene expression, the activation of oncogenes, inactivation of suppressor genes, reducing genomic stability and clonal selection. We have reviewed the effects of hypoxia on tumor biology and the possible strategiesto manage the hypoxic tumor microenvironment (TME), highlighting the potential use of cancer stem cells in tumor treatment.
Collapse
Affiliation(s)
- Asieh Emami Nejad
- Department of Biology, Payame Noor University (PNU), P.O.Box 19395-3697, Tehran, Iran
| | - Simin Najafgholian
- Department of Emergency Medicine, School of Medicine , Arak University of Medical Sciences, Arak, Iran
| | - Alireza Rostami
- Department of Surgery, School of Medicine Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Alireza Sistani
- Department of Emergency Medicine, School of Medicine Valiasr Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Samaneh Shojaeifar
- Department of Midwifery, Faculty of Nursing and Midwifery , Arak University of Medical Sciences , Arak, Iran
| | - Mojgan Esparvarinha
- Department of Immunology, School of Medicine , Tabriz University of Medical Sciences , Tabriz, Iran
| | - Reza Nedaeinia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease , Isfahan University of Medical Sciences , Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences , Isfahan, Iran
| | - Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Ahmadlou
- Sciences Medical of University Arak, Hospital Amiralmomenin, Center Development Research Clinical, Arak, Iran
| | - Rasoul Salehi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease , Isfahan University of Medical Sciences , Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine , Isfahan University of Medical Sciences , Isfahan, Iran
| | - Bahman Sadeghi
- Department of Health and Community Medicine, School of Medicine, Arak University of Medical Sciences, Arak, 3848176341, Iran.
| | - Mostafa Manian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. .,Department of Medical Laboratory Science, Faculty of Medical Science Kermanshah Branch, Islamic Azad University, Imam Khomeini Campus, Farhikhtegan Bld., Shahid J'afari St., Kermanshah, 3848176341, Iran.
| |
Collapse
|
40
|
Cancer Stem Cells and Nucleolin as Drivers of Carcinogenesis. Pharmaceuticals (Basel) 2021; 14:ph14010060. [PMID: 33451077 PMCID: PMC7828541 DOI: 10.3390/ph14010060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer, one of the most mortal diseases worldwide, is characterized by the gain of specific features and cellular heterogeneity. Clonal evolution is an established theory to explain heterogeneity, but the discovery of cancer stem cells expanded the concept to include the hierarchical growth and plasticity of cancer cells. The activation of epithelial-to-mesenchymal transition and its molecular players are widely correlated with the presence of cancer stem cells in tumors. Moreover, the acquisition of certain oncological features may be partially attributed to alterations in the levels, location or function of nucleolin, a multifunctional protein involved in several cellular processes. This review aims at integrating the established hallmarks of cancer with the plasticity of cancer cells as an emerging hallmark; responsible for tumor heterogeneity; therapy resistance and relapse. The discussion will contextualize the involvement of nucleolin in the establishment of cancer hallmarks and its application as a marker protein for targeted anticancer therapies
Collapse
|
41
|
Bates M, Spillane CD, Gallagher MF, McCann A, Martin C, Blackshields G, Keegan H, Gubbins L, Brooks R, Brooks D, Selemidis S, O’Toole S, O’Leary JJ. The role of the MAD2-TLR4-MyD88 axis in paclitaxel resistance in ovarian cancer. PLoS One 2020; 15:e0243715. [PMID: 33370338 PMCID: PMC7769460 DOI: 10.1371/journal.pone.0243715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
Despite the use of front-line anticancer drugs such as paclitaxel for ovarian cancer treatment, mortality rates have remained almost unchanged for the past three decades and the majority of patients will develop recurrent chemoresistant disease which remains largely untreatable. Overcoming chemoresistance or preventing its onset in the first instance remains one of the major challenges for ovarian cancer research. In this study, we demonstrate a key link between senescence and inflammation and how this complex network involving the biomarkers MAD2, TLR4 and MyD88 drives paclitaxel resistance in ovarian cancer. This was investigated using siRNA knockdown of MAD2, TLR4 and MyD88 in two ovarian cancer cell lines, A2780 and SKOV-3 cells and overexpression of MyD88 in A2780 cells. Interestingly, siRNA knockdown of MAD2 led to a significant increase in TLR4 gene expression, this was coupled with the development of a highly paclitaxel-resistant cell phenotype. Additionally, siRNA knockdown of MAD2 or TLR4 in the serous ovarian cell model OVCAR-3 resulted in a significant increase in TLR4 or MAD2 expression respectively. Microarray analysis of SKOV-3 cells following knockdown of TLR4 or MAD2 highlighted a number of significantly altered biological processes including EMT, complement, coagulation, proliferation and survival, ECM remodelling, olfactory receptor signalling, ErbB signalling, DNA packaging, Insulin-like growth factor signalling, ion transport and alteration of components of the cytoskeleton. Cross comparison of the microarray data sets identified 7 overlapping genes including MMP13, ACTBL2, AMTN, PLXDC2, LYZL1, CCBE1 and CKS2. These results demonstrate an important link between these biomarkers, which to our knowledge has never before been shown in ovarian cancer. In the future, we hope that triaging patients into alterative treatment groups based on the expression of these three biomarkers or therapeutic targeting of the mechanisms they are involved in will lead to improvements in patient outcome and prevent the development of chemoresistance.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| | - Cathy D. Spillane
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
| | - Michael F. Gallagher
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
| | - Amanda McCann
- College of Health Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Gordon Blackshields
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Helen Keegan
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - Luke Gubbins
- College of Health Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Robert Brooks
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Doug Brooks
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology, Bundoora, Australia
| | - Sharon O’Toole
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin, Ireland
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
- Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin, Ireland
- Trinity St James’s Cancer Institute, Dublin, Ireland
- Department of Pathology, Coombe Women & Infants University Hospital, Dublin, Ireland
| |
Collapse
|
42
|
Pasani S, Sahoo S, Jolly MK. Hybrid E/M Phenotype(s) and Stemness: A Mechanistic Connection Embedded in Network Topology. J Clin Med 2020; 10:E60. [PMID: 33375334 PMCID: PMC7794989 DOI: 10.3390/jcm10010060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis remains an unsolved clinical challenge. Two crucial features of metastasizing cancer cells are (a) their ability to dynamically move along the epithelial-hybrid-mesenchymal spectrum and (b) their tumor initiation potential or stemness. With increasing functional characterization of hybrid epithelial/mesenchymal (E/M) phenotypes along the spectrum, recent in vitro and in vivo studies have suggested an increasing association of hybrid E/M phenotypes with stemness. However, the mechanistic underpinnings enabling this association remain unclear. Here, we develop a mechanism-based mathematical modeling framework that interrogates the emergent nonlinear dynamics of the coupled network modules regulating E/M plasticity (miR-200/ZEB) and stemness (LIN28/let-7). Simulating the dynamics of this coupled network across a large ensemble of parameter sets, we observe that hybrid E/M phenotype(s) are more likely to acquire stemness relative to "pure" epithelial or mesenchymal states. We also integrate multiple "phenotypic stability factors" (PSFs) that have been shown to stabilize hybrid E/M phenotypes both in silico and in vitro-such as OVOL1/2, GRHL2, and NRF2-with this network, and demonstrate that the enrichment of hybrid E/M phenotype(s) with stemness is largely conserved in the presence of these PSFs. Thus, our results offer mechanistic insights into recent experimental observations of hybrid E/M phenotype(s) that are essential for tumor initiation and highlight how this feature is embedded in the underlying topology of interconnected EMT (Epithelial-Mesenchymal Transition) and stemness networks.
Collapse
Affiliation(s)
- Satwik Pasani
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (S.P.); (S.S.)
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (S.P.); (S.S.)
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India; (S.P.); (S.S.)
| |
Collapse
|
43
|
McCabe EM, Rasmussen TP. lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin Cancer Biol 2020; 75:38-48. [PMID: 33346133 DOI: 10.1016/j.semcancer.2020.12.012] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a cellular process in which cells composing epithelial tissue lose requirements for physical contact with neighboring cells and acquire mesenchymal characteristics consisting of increased migratory and invasive behaviors. EMT is a fundamental process that is required for initial and later events during embryogenesis. Cancer stem cells (CSCs) possess multipotency sufficient for their differentiation into bulk tumor cells and also have the capacity to undergo EMT. When CSCs initiate EMT programs the resulting cancerous mesenchymal cells become invasive and this migratory behavior also poises them for metastatic activity. Long noncoding RNAs (lncRNAs) are functional RNA molecules that do not encode proteins, yet regulate the expression of protein-coding genes through recruitment or sequestration of gene-regulatory proteins and microRNAs. lncRNA exhibit tissue-specific patterns of gene expression during development and specific sets of lncRNAs are also involved in various cancer types. This review considers the interplay between lncRNAs and the biogenesis of CSCs. We also review function of lncRNAs in EMT in CSCs. In addition, we discuss the utility of lncRNAs as biomarkers of cancer progression, and their potential use as therapeutic targets for treatment of cancer.
Collapse
Affiliation(s)
- Evan M McCabe
- Department of Molecular and Cell Biology, University of Connecticut, USA
| | - Theodore P Rasmussen
- Department of Molecular and Cell Biology, University of Connecticut, USA; Department of Pharmaceutical Sciences, University of Connecticut, USA; University of Connecticut Stem Cell Institute, University of Connecticut, USA.
| |
Collapse
|
44
|
Vaidya FU, Sufiyan Chhipa A, Mishra V, Gupta VK, Rawat SG, Kumar A, Pathak C. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep (Hoboken) 2020; 5:e1291. [PMID: 33052041 PMCID: PMC9780431 DOI: 10.1002/cnr2.1291] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The acquisition of resistance to chemotherapy is a major hurdle in the successful application of cancer therapy. Several anticancer approaches, including chemotherapies, radiotherapy, surgery and targeted therapies are being employed for the treatment of cancer. However, cancer cells reprogram themselves in multiple ways to evade the effect of these therapies, and over a period of time, the drug becomes inactive due to the development of multi-drug resistance (MDR). MDR is a complex phenomenon where malignant cells become insensitive to anticancer drugs and attain the ability to survive even after several exposures of anticancer drugs. In this review, we have discussed the molecular and cellular paradigms of multidrug resistance in cancer. RECENT FINDINGS An Extensive research in cancer biology revealed that drug resistance in cancer is the result of perpetuated intracellular and extracellular mechanisms such as drug efflux, drug inactivation, drug target alteration, oncogenic mutations, altered DNA damage repair mechanism, inhibition of programmed cell death signaling, metabolic reprogramming, epithelial mesenchymal transition (EMT), inherent cell heterogeneity, epigenetic changes, redox imbalance, or any combination of these mechanisms. An inevitable cross-link between inflammation and drug resistance has been discussed. This review provided insight molecular mechanism to understand the vulnerabilities of cancer cells to develop drug resistance. CONCLUSION MDR is an outcome of interplays between multiple intricate pathways responsible for the inactivation of drug and development of resistance. MDR is a major obstacle in regimens of successful application of anti-cancer therapy. An improved understanding of the molecular mechanism of multi drug resistance and cellular reprogramming can provide a promising opportunity to combat drug resistance in cancer and intensify anti-cancer therapy for the upcoming future.
Collapse
Affiliation(s)
- Foram U. Vaidya
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Abu Sufiyan Chhipa
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Vinita Mishra
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | | | | | - Ajay Kumar
- Department of ZoologyBanaras Hindu UniversityVaranasiIndia
| | - Chandramani Pathak
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| |
Collapse
|
45
|
Konoshenko MY, Bryzgunova OE, Lekchnov EA, Amelina EV, Yarmoschuk SV, Pak SV, Laktionov PP. The Influence of Radical Prostatectomy on the Expression of Cell-Free MiRNA. Diagnostics (Basel) 2020; 10:diagnostics10080600. [PMID: 32824612 PMCID: PMC7460220 DOI: 10.3390/diagnostics10080600] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
MiRNAs of blood and urine have been shown to represent a convenient source of biomarkers for prostate cancer (PCa) diagnosis and assessment of the therapy effectiveness due to their high stability and representation and the low invasiveness of sample collection. Here, we studied the influence of radical prostatectomy (RP) on the expression of 12 cell-free miRNAs previously shown as potential markers of PCa (i.e., miR-19b, miR-22, miR-92a, miR-378, miR-425, miR-30e, miR-31, miR-125b, miR-200b, miR-205, miR-375 and miR-660). The relative expression of the miRNAs combined into 31 paired ratios was evaluated in the urine extracellular vesicles (EVs), clarified urine (CU) and blood plasma of healthy donors, pre- and post-RP samples of PCa patients. Nineteen miRNA ratios based on combinations of ten of the miRNAs (miR-19b, miR-30e, miR-31, miR-125b, miR-200b, miR-205, miR-375, miR-378, miR-425, and miR-660) were altered by RP. The comparative expression analysis of the cell-free miRNA ratios between healthy donors and PCa patients revealed miR-125b/miR-30e and miR-375/miR-30e as potential markers for evaluating therapeutic efficacy. MiR-378/miR-19b, miR-425/miR-19b, miR-200/miR-30e, miR-660/miR-30e, and miR-205/miR-30e had minor prognostic value but could be used to increase the steadiness of the diagnostic system. The urine EVs had the highest potential as a source of markers.
Collapse
Affiliation(s)
- Maria Yu. Konoshenko
- E.N. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia; (O.E.B.); (E.A.L.); (S.V.Y.); (S.V.P.); (P.P.L.)
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-383-363-51-44
| | - Olga E. Bryzgunova
- E.N. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia; (O.E.B.); (E.A.L.); (S.V.Y.); (S.V.P.); (P.P.L.)
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Evgeniy A. Lekchnov
- E.N. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia; (O.E.B.); (E.A.L.); (S.V.Y.); (S.V.P.); (P.P.L.)
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| | - Evgeniya V. Amelina
- The Center for Technology Transfer and Commercialization, Novosibirsk State University, Novosibirsk 630090, Russia;
| | - Sergey V. Yarmoschuk
- E.N. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia; (O.E.B.); (E.A.L.); (S.V.Y.); (S.V.P.); (P.P.L.)
| | - Svetlana V. Pak
- E.N. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia; (O.E.B.); (E.A.L.); (S.V.Y.); (S.V.P.); (P.P.L.)
| | - Pavel P. Laktionov
- E.N. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Novosibirsk 630055, Russia; (O.E.B.); (E.A.L.); (S.V.Y.); (S.V.P.); (P.P.L.)
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
46
|
FLOX (5-fluorouracil + leucovorin + oxaliplatin) chemotherapy for colorectal cancer leads to long-term orofacial neurotoxicity: a STROBE-guided longitudinal prospective study. Int J Clin Oncol 2020; 25:2066-2074. [PMID: 32761281 DOI: 10.1007/s10147-020-01757-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Colorectal carcinoma (CRC) is widely treated by chemotherapy based on an intensely neurotoxic drug: oxaliplatin (OXL). We objective to evaluate prospectively the orofacial neurotoxicity during FLOX (fluorouracil + leucovorin + OXL) chemotherapy. METHODS So, 46 patients with CRC were prospectively evaluated during FLOX chemotherapy by 3 cycles (C) of 6 weeks (W) each. We weekly applied the orofacial section of the Acute and Chronic Neuropathy Questionnaire of Common Toxicity Criteria for Adverse Events of the National Cancer Institute of the United States of America (Oxaliplatin-specific neurotoxicity scale). Patients were asked the following concerning the severity (scores 0-5) of orofacial symptoms: jaw pain, eyelids drooping, throat discomfort, ear pain, tingling in mouth, difficulty with speech, burning or discomfort of the eyes, loss of any vision, feeling shock/pain down back and problems breathing. We summed the scores (0-50) and evaluated the clinicopathological data. Friedman/Dunn, Chi square and multinomial regression logistic tests were used (SPSS 20.0, p < 0.05). RESULTS There was a significant increase in sum of orofacial neurotoxicity from baseline to C1.W3, C2.W1 and C3.W5 (p < 0.001) due increase in scores of jaw pain (p < 0.001), eyelids drooping (p = 0.034), throat discomfort (p < 0.001), ear pain (p = 0.034), tingling in mouth (p = 0.015), burning/discomfort of your eyes (p < 0.001), loss of any vision (p < 0.001), feeling shock/pain down back (p < 0.001), problems with breathing (p = 0.045), but not difficulty with speech (p = 0.087). Women (p = 0.021) and young patients (p = 0.027) had significant higher prevalence of orofacial neurotoxicity. CONCLUSIONS FLOX-related orofacial neurotoxicity begins acutely and remains long term with increased incidence in women and younger patients.
Collapse
|
47
|
Cell polarity and oncogenesis: common mutations contribute to altered cellular polarity and promote malignancy. THE NUCLEUS 2020. [DOI: 10.1007/s13237-020-00313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
48
|
Targeting of Lung Cancer Stem Cell Self-Renewal Pathway by a Small Molecule Verrucarin J. Stem Cell Rev Rep 2020; 15:601-611. [PMID: 30835047 DOI: 10.1007/s12015-019-09874-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite considerable advances made in understanding of lung cancer biology, there has been meek improvement in lung cancer treatment outcome with 4% to 5% increase in 5-year survival rates in the last four decades. Underlying problem of lung cancer recurrence and poor prognosis is attributed to the presence of cancer stem cells (CSCs) which possess the potential to differentiate, proliferate and trigger chemo-resistance, tumor progression and metastasis, despite initial elimination of the tumor. To address specific targeting of CSCs, we investigated the effects of a small molecule Verrucarin J (VJ) on lung cancer cell lines A549 and H1793. VJ significantly inhibited cell proliferation of both cell lines, with IC50 values of approximately 10 nM for A549 and 20 nM for H1793 respectively after 48 h of treatment. A549 cell line when treated with VJ, induced cell apoptosis with concomitant down regulation of key CSC specific genes- ALDH1, LGR5, OCT4 and CD133 in a dose-dependent manner. To delineate the molecular mechanism by which VJ targets lung cancer cells and CSCs, we determined the effects of VJ on CSC self-renewal pathways Wnt1/β-catenin and Notch1. Treatment of A549 cell line with VJ inhibited significantly both the signalling pathways, suggesting inhibition of expression of CSC genes by VJ through the inhibition of CSC self-renewal signalling pathways. Taken together, our results suggest that VJ may serve as a potent anticancer drug to target cancer cells and CSCs.
Collapse
|
49
|
Tiwari R, Manzar N, Ateeq B. Dynamics of Cellular Plasticity in Prostate Cancer Progression. Front Mol Biosci 2020; 7:130. [PMID: 32754615 PMCID: PMC7365877 DOI: 10.3389/fmolb.2020.00130] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the current advances in the treatment for prostate cancer, the patients often develop resistance to the conventional therapeutic interventions. Therapy-induced drug resistance and tumor progression have been associated with cellular plasticity acquired due to reprogramming at the molecular and phenotypic levels. The plasticity of the tumor cells is mainly governed by two factors: cell-intrinsic and cell-extrinsic. The cell-intrinsic factors involve alteration in the genetic or epigenetic regulators, while cell-extrinsic factors include microenvironmental cues and drug-induced selective pressure. Epithelial-mesenchymal transition (EMT) and stemness are two important hallmarks that dictate cellular plasticity in multiple cancer types including prostate. Emerging evidence has also pinpointed the role of tumor cell plasticity in driving anti-androgen induced neuroendocrine prostate cancer (NEPC), a lethal and therapy-resistant subtype. In this review, we discuss the role of cellular plasticity manifested due to genetic, epigenetic alterations and cues from the tumor microenvironment, and their role in driving therapy resistant prostate cancer.
Collapse
Affiliation(s)
| | | | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
50
|
Han Q, Sang J, Fan X, Wang X, Zeng L, Zhang X, Zhang K, Li N, Lv Y, Liu Z. Association of LIN28B polymorphisms with chronic hepatitis B virus infection. Virol J 2020; 17:81. [PMID: 32571380 PMCID: PMC7310063 DOI: 10.1186/s12985-020-01353-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND LIN28B is involved in multiple cellular developmental processes, tissue inflammatory response and tumourigenesis. The association of LIN28B polymorphisms with hepatitis B virus (HBV) infection remains unknown. METHODS This study investigated the association of LIN28B rs314277, rs314280, rs369065 and rs7759938 polymorphisms in patients with chronic HBV infection, a major cause of liver disease including hepatocellular carcinoma (HCC). A total of 781 individuals including 515 cases of chronic HBV infection (91 asymptomatic carrier status, 128 chronic hepatitis, 127 cirrhosis and 169 HCC), 97 HBV infection resolvers and 169 healthy controls were investigated. RESULTS LIN28 rs314280 genotypes GA + AA were higher in resolver and controls than patients (P = 0.011). Patients had significantly lower rs314280 allele A than resolvers (P = 0.031, OR 0.689, 95%CI 0.491-0.969) or controls (P = 0.034, OR 0.741, 95%CI 0.561-0.978). In dominant model, patients had significantly lower rs314280 genotypes AA+GA than controls (P = 0.008, OR 0.623, 95%CI 0.439-0.884). LIN28 rs7759938 genotypes TC + CC were higher in resolvers and controls than patients (P = 0.015). Patients had significantly lower rs7759938 allele C than resolvers (P = 0.048, OR 0.708, 95%CI 0.503-0.999). In dominant model, patients had significantly lower rs7759938 genotypes TC + CC than controls (P = 0.010, OR 0.632, 95%CI 0.445-0.897). Chronic hepatitis patients had lower frequency of rs369065 genotype TC than asymptomatic carriers, cirrhosis and HCC (P = 0.019). CONCLUSIONS These results suggest that LIN28 rs314280 and rs7759938 may be related to the susceptibility of chronic HBV infection. Further studies are warranted to examine the association of LIN28B polymorphisms with HBV-related diseases, especially HCC.
Collapse
Affiliation(s)
- Qunying Han
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Jiao Sang
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Xiude Fan
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Xiaoyun Wang
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Lu Zeng
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Xiaoge Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Kun Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Na Li
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi People’s Republic of China
- Institute of Advanced Surgical Technology and Engineering, Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi People’s Republic of China
- Institute of Advanced Surgical Technology and Engineering, Xi’an Jiaotong University, No. 277 Yanta West Road, Xi’an, 710061 Shaanxi Province People’s Republic of China
| |
Collapse
|