1
|
Brooks SM, Reed KB, Yuan SF, Altin-Yavuzarslan G, Shafranek R, Nelson A, Alper HS. Enhancing long-term storage and stability of engineered living materials through desiccant storage and trehalose treatment. Biotechnol Bioeng 2023; 120:572-582. [PMID: 36281490 DOI: 10.1002/bit.28271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 01/13/2023]
Abstract
Engineered living materials (ELMs) have broad applications for enabling on-demand bioproduction of compounds ranging from small molecules to large proteins. However, most formulations and reports lack the capacity for storage beyond a few months. In this study, we develop an optimized procedure to maximize stress resilience of yeast-laden ELMs through the use of desiccant storage and 10% trehalose incubation before lyophilization. This approach led to over 1-year room temperature storage stability across a range of strain genotypes. In particular, we highlight the superiority of exogenously added trehalose over endogenous, engineered production in yielding robust preservation resilience that is independent of cell state. This simple, effective protocol enables sufficient accumulation of intracellular trehalose over a short period of contact time across a range of strain backgrounds without requiring the overexpression of a trehalose importer. A variety of microscopic analysis including µ-CT and confocal microscopy indicate that cells form spherical colonies within F127-BUM ELMs that have variable viability upon storage. The robustness of the overall procedure developed here highlights the potential for widespread deployment to enable on-demand, cold-chain independent bioproduction.
Collapse
Affiliation(s)
- Sierra M Brooks
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Kevin B Reed
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Shuo-Fu Yuan
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Gokce Altin-Yavuzarslan
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington, USA
| | - Ryan Shafranek
- Department of Chemistry, University of Washington, Seattle, Washington, USA
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, Washington, USA.,Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
2
|
Page S, Khan T, Kühl P, Schwach G, Storch K, Chokshi H. Patient Centricity Driving Formulation Innovation: Improvements in Patient Care Facilitated by Novel Therapeutics and Drug Delivery Technologies. Annu Rev Pharmacol Toxicol 2022; 62:341-363. [PMID: 34990203 DOI: 10.1146/annurev-pharmtox-052120-093517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Innovative formulation technologies can play a crucial role in transforming a novel molecule to a medicine that significantly enhances patients' lives. Improved mechanistic understanding of diseases has inspired researchers to expand the druggable space using new therapeutic modalities such as interfering RNA, protein degraders, and novel formats of monoclonal antibodies. Sophisticated formulation strategies are needed to deliver the drugs to their sites of action and to achieve patient centricity, exemplified by messenger RNA vaccines and oral peptides. Moreover, access to medical information via digital platforms has resulted in better-informed patient groups that are requesting consideration of their needs during drug development. This request is consistent with health authority efforts to upgrade their regulations to advance age-appropriate product development for patients. This review describes formulation innovations contributingto improvements in patient care: convenience of administration, preferred route of administration, reducing dosing burden, and achieving targeted delivery of new modalities.
Collapse
Affiliation(s)
- Susanne Page
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Tarik Khan
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Peter Kühl
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Gregoire Schwach
- Pharma Technical Development, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Kirsten Storch
- Pharma Technical Development, Roche Diagnostics GmbH, 68305 Mannheim, Germany
| | - Hitesh Chokshi
- Pharma Technical Development, Roche TCRC Inc., Little Falls, New Jersey 07424, USA
| |
Collapse
|
3
|
Merivaara A, Zini J, Koivunotko E, Valkonen S, Korhonen O, Fernandes FM, Yliperttula M. Preservation of biomaterials and cells by freeze-drying: Change of paradigm. J Control Release 2021; 336:480-498. [PMID: 34214597 DOI: 10.1016/j.jconrel.2021.06.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/14/2022]
Abstract
Freeze-drying is the most widespread method to preserve protein drugs and vaccines in a dry form facilitating their storage and transportation without the laborious and expensive cold chain. Extending this method for the preservation of natural biomaterials and cells in a dry form would provide similar benefits, but most results in the domain are still below expectations. In this review, rather than consider freeze-drying as a traditional black box we "break it" through a detailed process thinking approach. We discuss freeze-drying from process thinking aspects, introduce the chemical, physical, and mechanical environments important in this process, and present advanced biophotonic process analytical technology. In the end, we review the state of the art in the freeze-drying of the biomaterials, extracellular vesicles, and cells. We suggest that the rational design of the experiment and implementation of advanced biophotonic tools are required to successfully preserve the natural biomaterials and cells by freeze-drying. We discuss this change of paradigm with existing literature and elaborate on our perspective based on our new unpublished results.
Collapse
Affiliation(s)
- Arto Merivaara
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| | - Jacopo Zini
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Elle Koivunotko
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Sami Valkonen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Ossi Korhonen
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Faculté de Sciences, Sorbonne Université, UMR7574, 75005 Paris, France
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
4
|
Rockinger U, Funk M, Winter G. Current Approaches of Preservation of Cells During (freeze-) Drying. J Pharm Sci 2021; 110:2873-2893. [PMID: 33933434 DOI: 10.1016/j.xphs.2021.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 03/13/2021] [Accepted: 04/20/2021] [Indexed: 11/20/2022]
Abstract
The widespread application of therapeutic cells requires a successful stabilization of cells for the duration of transport and storage. Cryopreservation is currently considered the gold standard for the storage of active cells; however, (freeze-) drying cells could enable higher shelf life stability at ambient temperatures and facilitate easier transport and storage. During (freeze-) drying, freezing, (primary and secondary) drying and also the reconstitution step pose the risk of potential cell damage. To prevent these damaging processes, a wide range of protecting excipients has emerged, which can be classified, according to their chemical affiliation, into sugars, macromolecules, polyols, antioxidants and chelating agents. As many excipients cannot easily permeate the cell membrane, researchers have established various techniques to introduce especially trehalose intracellularly, prior to drying. This review aims to summarize the main damaging mechanisms during (freeze-) drying and to introduce the most common excipients with further details on their stabilizing properties and process approaches for the intracellular loading of excipients. Additionally, we would like to briefly explain recently discovered advantages of drying microorganisms, sperm, platelets, red blood cells, and eukaryotic cells, paying particular attention to the drying technique and residual moisture content.
Collapse
Affiliation(s)
- Ute Rockinger
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany.
| | - Martin Funk
- QRSKIN GmbH, Friedrich-Bergius-Ring 15, Würzburg, Germany
| | - Gerhard Winter
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany
| |
Collapse
|
5
|
Weng L. Technologies and Applications Toward Preservation of Cells in a Dry State for Therapies. Biopreserv Biobank 2021; 19:332-341. [PMID: 33493407 DOI: 10.1089/bio.2020.0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cell-based therapeutics promise to transform the treatment of a wide range of diseases, many of which, up to this point, are incurable. During the past decade, an increasing number of cell therapies have been approved by government regulatory agencies in the United States, Europe, and Japan. Thousands of clinical trials based on live cell therapies are now taking place around the world. But most of these live cell therapies face temporal and/or spatial distances between manufacture and administration, posing a risk of degradation in potency. Cryopreservation has become the predominant biobanking approach to maintain the product's safety and efficacy during transportation and storage. However, the necessity of cryogenic shipment and storage could limit patient access to these emerging therapies and increase the costs of logistics. In the (bio)pharmaceutical industries, freeze-drying and desiccation are established preservation procedures for manufacturing small molecule drugs, liposomes, and monoclonal antibodies. Over the past two decades, there has been a growing body of research exploring the freeze-drying or drying of mammalian cells, with varying degrees of success. This article provides an overview of the technologies that were adopted or developed in these pioneering studies, paving the road toward the preservation of cell-based therapeutics in a dry state for biomanufacturing.
Collapse
Affiliation(s)
- Lindong Weng
- Sana Biotechnology, Inc., South San Francisco, California, USA
| |
Collapse
|
6
|
Challenges for Cell-Based Medicinal Products From a Pharmaceutical Product Perspective. J Pharm Sci 2020; 110:1900-1908. [PMID: 33307042 DOI: 10.1016/j.xphs.2020.11.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 11/22/2022]
Abstract
Advanced therapy medicinal products (ATMPs), such as somatic cell-therapy medicinal products or tissue-engineered products for human use, offer new and potentially curative opportunities to treat yet untreatable diseases or disorders. For cell-therapy medicinal products (CBMPs), multiple stability and quality challenges exist and relate to the cellular composition and unstable nature of these parenteral preparations. It is the aim of this review to discuss open questions and problems associated with the development, manufacturing and testing of CBMPs from a pharmaceutical drug product perspective. This includes safety, storage and handling, particulates, the choice of container closure systems and integrity. Analytical methods commonly used to evaluate the quality of the final CBMP to ensure patient's safety will be discussed. Particulate contamination in final products deserve special attention since CBMPs cannot be sterile filtered. Visible and sub-visible particles may represent environmental contaminations or may form during storage. They may be introduced from processing materials such as single use product contact materials, ancillary materials, or any components such as primary packaging used for the final product. Currently available analytical methods for detecting particulates may not be easily applicable to CBMPs due to their inherent particulate nature and appearance.
Collapse
|
7
|
Hoogendoorn KH, Crommelin DJA, Jiskoot W. Formulation of Cell-Based Medicinal Products: A Question of Life or Death? J Pharm Sci 2020; 110:1885-1894. [PMID: 32649938 DOI: 10.1016/j.xphs.2020.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
The formulation of cell-based medicinal products (CBMPs) poses major challenges because of their complexity, heterogeneity, interaction with their environment (e.g., the formulation buffer, interfaces), and susceptibility to degradation. These challenges can be quality, safety, and efficacy related. In this commentary we discuss the current status in formulation strategies of off-the-shelf and non-off-the-shelf (patient-specific) CBMPs and highlight advantages and disadvantages of each strategy. Analytical tools for the characterization and stability assessment of CBMP formulations are addressed as well. Finally, we discuss unmet needs and make some recommendations regarding the formulation of CBMPs.
Collapse
Affiliation(s)
- Karin H Hoogendoorn
- Leiden University Medical Center, Hospital Pharmacy, Interdivisional GMP Facility, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Daan J A Crommelin
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
8
|
Weng L, Beauchesne PR. Dimethyl sulfoxide-free cryopreservation for cell therapy: A review. Cryobiology 2020; 94:9-17. [PMID: 32247742 DOI: 10.1016/j.cryobiol.2020.03.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022]
Abstract
Cell-based therapeutics promise to transform the treatment of a wide range of diseases including cancer, genetic and degenerative disorders, or severe injuries. Many of the commercial and clinical development of cell therapy products require cryopreservation and storage of cellular starting materials, intermediates and/or final products at cryogenic temperature. Dimethyl sulfoxide (Me2SO) has been the cryoprotectant of choice in most biobanking situations due to its exceptional performance in mitigating freezing-related damages. However, there is concern over the toxicity of Me2SO and its potential side effects after administration to patients. Therefore, there has been growing demand for robust Me2SO-free cryopreservation methods that can improve product safety and maintain potency and efficacy. This article provides an overview of the recent advances in Me2SO-free cryopreservation of cells having therapeutic potentials and discusses a number of key challenges and opportunities to motivate the continued innovation of cryopreservation for cell therapy.
Collapse
Affiliation(s)
- Lindong Weng
- Sana Biotechnology, Inc., Cambridge, MA, 02139, United States.
| | | |
Collapse
|
9
|
Ye Q, Wu YH, Gao Y, Li ZH, Gu WJ, Zhang CG. A histological study of mouse tissues and water loss following lyophilization. Biotech Histochem 2019; 95:325-332. [PMID: 31850810 DOI: 10.1080/10520295.2019.1695945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Lyophilization is a practical method for product storage and transportation; it commonly is used in the food and pharmaceutical industries. Lyophilization also is used for preserving biological samples such as serum, plasma and animal tissues. We found that lyophilization does not affect the stability of RNAs and proteins in tissue samples. To investigate histological characteristics, we prepared lyophilized tissues for paraffin sectioning and hematoxylin and eosin (H & E) staining. We also measured water loss from organs during lyophilization. We used immunohistochemistry of frozen brain sections to identify potential protective effects of three concentrations of sucrose, glucose and trehalose against the effects of lyophilization. H & E staining revealed vacuoles in heart, lung, liver, kidney, spleen and brain after lyophilization without pretreatments, especially heart and kidney. We found that 10% solutions of sucrose, glucose and trehalose helped preserve tissue morphology. Immunohistochemistry of frozen brain tissue showed that 10% glucose and 30% sucrose preserved cellular characteristics and immunogenicity following lyophilization. Lyophilization removed > 70% of the water from organs, and lyophilized tissues without protectants were not suitable for histological study. Overall, we found that 10% glucose helped preserve both optimal tissue morphology and immunogenicity of freeze-dried tissue.
Collapse
Affiliation(s)
- Q Ye
- Clinical Aviation Medicine Laboratory, Air Force Medical Center, PLA, Beijing 100142, China.,Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Y H Wu
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Y Gao
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - Z H Li
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| | - W J Gu
- Clinical Aviation Medicine Laboratory, Air Force Medical Center, PLA, Beijing 100142, China
| | - C G Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing 100850, China
| |
Collapse
|
10
|
Exploring dry storage as an alternative biobanking strategy inspired by Nature. Theriogenology 2019; 126:17-27. [DOI: 10.1016/j.theriogenology.2018.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 12/13/2022]
|
11
|
Hornberger K, Yu G, McKenna D, Hubel A. Cryopreservation of Hematopoietic Stem Cells: Emerging Assays, Cryoprotectant Agents, and Technology to Improve Outcomes. Transfus Med Hemother 2019; 46:188-196. [PMID: 31244587 DOI: 10.1159/000496068] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell (HSC) therapy is widely used to treat a growing number of hematological and non-hematological diseases. Cryopreservation of HSCs allows for cells to be transported from the site of processing to the site of clinical use, creates a larger window of time in which cells can be administered to patients, and allows sufficient time for quality control and regulatory testing. Currently, HSCs and other cell therapies conform to the same cryopreservation techniques as cells used for research purposes: cells are cryopreserved in dimethyl sulfoxide (DMSO) at a slow cooling rate. As a result, HSC therapy can result in numerous adverse symptoms in patients due to the infusion of DMSO. Efforts are being made to improve the cryopreservation of HSCs for clinical use. This review discusses advances in the cryopreservation of HSCs from 2007 to the present. The preclinical development of new cryoprotectants and new technology to eliminate cryoprotectants after thawing are discussed in detail. Additional cryopreservation considerations are included, such as cooling rate, storage temperature, and cell concentration. Preclinical cell assessment and quality control are discussed, as well as clinical studies from the past decade that focus on new cryopreservation protocols to improve patient outcomes.
Collapse
Affiliation(s)
- Kathlyn Hornberger
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Guanglin Yu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - David McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
12
|
An immune cell spray (ICS) formulation allows for the delivery of functional monocyte/macrophages. Sci Rep 2018; 8:16281. [PMID: 30389997 PMCID: PMC6214992 DOI: 10.1038/s41598-018-34524-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023] Open
Abstract
Macrophages are key cells of the innate immune system and act as tissue resident macrophages (TRMs) in the homeostasis of various tissues. Given their unique functions and therapeutic use as well as the feasibility to derive macrophages in vitro from hematopoietic stem cell (HSC) sources, we propose an “easy-to-use” immune cell spray (ICS) formulation to effectively deliver HSC-derived macrophages. To achieve this aim, we used classical pump spray devices to spray either the human myeloid cell line U937 or primary murine HSC-derived macrophages. For both cell types used, one puff could deliver cells with maintained morphology and functionality. Of note, cells tolerated the spraying process very well with a recovery of more than 90%. In addition, we used osmotic preconditioning to reduce the overall cell size of macrophages. While a 800 mosm hyperosmolar sucrose solution was able to reduce the cell size by 27%, we identified 600 mosm to be effective to reduce the cell size by 15% while maintaining macrophage morphology and functionality. Using an isolated perfused rat lung preparation, the combinatorial use of the ICS with preconditioned and genetically labeled U937 cells allowed the intra-pulmonary delivery of cells, thus paving the way for a new cell delivery platform.
Collapse
|
13
|
Ozgyin L, Horvath A, Balint BL. Lyophilized human cells stored at room temperature preserve multiple RNA species at excellent quality for RNA sequencing. Oncotarget 2018; 9:31312-31329. [PMID: 30140372 PMCID: PMC6101130 DOI: 10.18632/oncotarget.25764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/22/2018] [Indexed: 11/25/2022] Open
Abstract
Biobanks operating at ambient temperatures would dramatically reduce the costs associated with standard cryogenic storage. In the present study, we used lyophilization to stabilize unfractionated human cells in a dried state at room temperature and tested the yield and integrity of the isolated RNA by microfluidic electrophoresis, RT-qPCR and RNA sequencing. RNA yields and integrity measures were not reduced for lyophilized cells (unstored, stored for two weeks or stored for two months) compared to their paired controls. The abundance of the selected mRNAs with various expression levels, as well as enhancer-associated RNAs and cancer biomarker long non-coding RNAs (MALAT1, GAS5 and TUG1), were not significantly different between the two groups as assessed by RT-qPCR. RNA sequencing data of three lyophilized samples stored for two weeks at room temperature revealed a high degree of similarity with their paired controls in terms of the RNA biotype distribution, cumulative gene diversity, gene body read coverage and per base mismatch rate. Among the 28 differentially expressed genes transcriptional regulators, as well as certain transcript properties suggestive of a residual active decay mechanism were enriched. Our study suggests that freeze-drying of human cells is a suitable alternative for the long-term stabilization of total RNA in whole human cells for routine diagnostics and high-throughput biomedical research.
Collapse
Affiliation(s)
- Lilla Ozgyin
- Department of Biochemistry and Molecular Biology, Genomic Medicine and Bioinformatic Core Facility, University of Debrecen, Debrecen H-4012, Hungary
| | - Attila Horvath
- Department of Biochemistry and Molecular Biology, Genomic Medicine and Bioinformatic Core Facility, University of Debrecen, Debrecen H-4012, Hungary.,Department of Biochemistry and Molecular Biology, Nuclear Hormone Receptor Research Laboratory, University of Debrecen, Debrecen H-4012, Hungary
| | - Balint Laszlo Balint
- Department of Biochemistry and Molecular Biology, Genomic Medicine and Bioinformatic Core Facility, University of Debrecen, Debrecen H-4012, Hungary
| |
Collapse
|
14
|
Cryopreservation of rat hepatocytes with disaccharides for cell therapy. Cryobiology 2017; 78:15-21. [DOI: 10.1016/j.cryobiol.2017.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/30/2017] [Accepted: 07/29/2017] [Indexed: 11/18/2022]
|
15
|
Zhang M, Oldenhof H, Sydykov B, Bigalk J, Sieme H, Wolkers WF. Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity. Sci Rep 2017; 7:6198. [PMID: 28740099 PMCID: PMC5524761 DOI: 10.1038/s41598-017-06542-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/14/2017] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to investigate preservation of biomolecular structures, particularly DNA, in freeze-dried fibroblasts, after loading with trehalose via freezing-induced uptake. Cells were freeze-dried with trehalose alone or in a mixture of albumin and trehalose. Albumin was added to increase the glass transition temperature and storage stability. No viable cells were recovered after freeze-drying and rehydration. FTIR studies showed that membrane phase behavior of freeze-dried cells resembles that of fresh cells. However, one day after rehydration membrane phase separation was observed, irrespective of the presence or absence of trehalose during freeze-drying. Freeze-drying did not affect the overall protein secondary structure. Analysis of DNA damage via single cell gel electrophoresis (‘comet assay’) showed that DNA damage progressively increased with storage duration and temperature. DNA damage was prevented during storage at 4 °C. It is shown that trehalose reduces DNA damage during storage, whereas addition of albumin did not seem to have an additional protective effect on storage stability (i.e. DNA integrity) despite the fact that albumin increased the glass transition temperature. Taken together, DNA in freeze-dried somatic cells can be preserved using trehalose as protectant and storage at or below 4 °C.
Collapse
Affiliation(s)
- Miao Zhang
- Institute of Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany
| | - Harriëtte Oldenhof
- Unit for Reproductive Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bulat Sydykov
- Institute of Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany
| | - Judith Bigalk
- Unit for Reproductive Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Harald Sieme
- Unit for Reproductive Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Willem F Wolkers
- Institute of Multiphase Processes, Leibniz Universität Hannover, Hannover, Germany.
| |
Collapse
|
16
|
Pollock K, Yu G, Moller-Trane R, Koran M, Dosa PI, McKenna DH, Hubel A. Combinations of Osmolytes, Including Monosaccharides, Disaccharides, and Sugar Alcohols Act in Concert During Cryopreservation to Improve Mesenchymal Stromal Cell Survival. Tissue Eng Part C Methods 2016; 22:999-1008. [PMID: 27758133 DOI: 10.1089/ten.tec.2016.0284] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is demand for non-dimethyl sulfoxide (DMSO) cryoprotective agents that maintain cell viability without causing poor postthaw function or systemic toxicity. The focus of this investigation involves expanding our understanding of multicomponent osmolyte solutions and their ability to preserve cell viability during freezing. Controlled cooling rate freezing, Raman microscopy, and differential scanning calorimetry (DSC) were utilized to evaluate the differences in recovery and ice crystal formation behavior for solutions containing multiple cryoprotectants, including sugars, sugar alcohols, and small molecule additives. Postthaw recovery of mesenchymal stem cells (MSCs) in solutions containing multiple osmolytes have been shown to be comparable or better than that of MSCs frozen in 10% DMSO at 1°C/min when the solution composition is optimized. Maximum postthaw recovery was observed in these multiple osmolyte solutions with incubation times of up to 2 h before freezing. Raman images demonstrate large ice crystal formation in cryopreserved cells incubated for shorter periods of time (∼30 min), suggesting that longer permeation times are needed for these solutions. Recovery was dependent upon the concentration of each component in solution, and was not strongly correlated with osmolarity. It is noteworthy that the postthaw recovery varied significantly with the composition of solutions containing the same three components and this variation exhibited an inverted U-shape behavior, indicating that there may be a "sweet spot" for different combinations of osmolytes. Raman images of freezing behavior in different solution compositions were consistent with the observed postthaw recovery. Phase change behavior (solidification patterns and glass-forming tendency) did not differ for solutions with similar osmolarity, but differences in postthaw recovery suggest that biological, not physical, methods of protection are at play. Lastly, molecular substitution of glucose (a monosaccharide) for sucrose (a disaccharide) resulted in a significant drop in recovery. Taken together, the information from these studies increases our understanding of non-DMSO multicomponent cryoprotective solutions and the manner by which they enhance postthaw recovery.
Collapse
Affiliation(s)
- Kathryn Pollock
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Guanglin Yu
- 2 Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Ralph Moller-Trane
- 3 Department of Ophthalmology, University of Wisconsin , Madison, Wisconsin
| | - Marissa Koran
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | - Peter I Dosa
- 4 Institute for Therapeutics Discovery and Development, University of Minnesota , Minneapolis, Minnesota
| | - David H McKenna
- 5 Department of Laboratory Medicine and Pathology, University of Minnesota , Minneapolis, Minnesota
| | - Allison Hubel
- 2 Department of Mechanical Engineering, University of Minnesota , Minneapolis, Minnesota
| |
Collapse
|
17
|
González C, Esteban R, Canals C, Muñiz-Díaz E, Nogués N. Stabilization of Transfected Cells Expressing Low-Incidence Blood Group Antigens: Novel Methods Facilitating Their Use as Reagent-Cells. PLoS One 2016; 11:e0161968. [PMID: 27603310 PMCID: PMC5014343 DOI: 10.1371/journal.pone.0161968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/15/2016] [Indexed: 11/27/2022] Open
Abstract
Background The identification of erythrocyte antibodies in the serum of patients rely on panels of human red blood cells (RBCs), which coexpress many antigens and are not easily available for low-incidence blood group phenotypes. These problems have been addressed by generating cell lines expressing unique blood group antigens, which may be used as an alternative to human RBCs. However, the use of cell lines implies several drawbacks, like the requirement of cell culture facilities and the high cost of cryopreservation. The application of cell stabilization methods could facilitate their use as reagent cells in clinical laboratories. Methods We generated stably-transfected cells expressing low-incidence blood group antigens (Dia and Lua). High-expresser clones were used to assess the effect of TransFix® treatment and lyophilization as cell preservation methods. Cells were kept at 4°C and cell morphology, membrane permeability and antigenic properties were evaluated at several time-points after treatment. Results TransFix® addition to cell suspensions allows cell stabilization and proper antigen detection for at least 120 days, despite an increase in membrane permeability and a reduction in antigen expression levels. Lyophilized cells showed minor morphological changes and antigen expression levels were rather conserved at days 1, 15 and 120, indicating a high stability of the freeze-dried product. These stabilized cells have been proved to react specifically with human sera containing alloantibodies. Conclusions Both stabilization methods allow long-term preservation of the transfected cells antigenic properties and may facilitate their distribution and use as reagent-cells expressing low-incidence antigens, overcoming the limited availability of such rare RBCs.
Collapse
Affiliation(s)
- Cecilia González
- Immunohematology Laboratory, Banc de Sang i Teixits, Barcelona, Spain
| | - Rosa Esteban
- Immunohematology Laboratory, Banc de Sang i Teixits, Barcelona, Spain
| | - Carme Canals
- Immunohematology Laboratory, Banc de Sang i Teixits, Barcelona, Spain
| | | | - Núria Nogués
- Immunohematology Laboratory, Banc de Sang i Teixits, Barcelona, Spain
- * E-mail:
| |
Collapse
|
18
|
Sorokulova I, Olsen E, Vodyanoy V. Biopolymers for sample collection, protection, and preservation. Appl Microbiol Biotechnol 2015; 99:5397-406. [DOI: 10.1007/s00253-015-6681-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/22/2022]
|
19
|
Motta JPR, Paraguassú-Braga FH, Bouzas LF, Porto LC. Evaluation of intracellular and extracellular trehalose as a cryoprotectant of stem cells obtained from umbilical cord blood. Cryobiology 2014; 68:343-8. [DOI: 10.1016/j.cryobiol.2014.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 04/10/2014] [Accepted: 04/13/2014] [Indexed: 01/11/2023]
|
20
|
Loi P, Iuso D, Czernik M, Zacchini F, Ptak G. Towards storage of cells and gametes in dry form. Trends Biotechnol 2013; 31:688-95. [DOI: 10.1016/j.tibtech.2013.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/16/2013] [Accepted: 09/25/2013] [Indexed: 10/26/2022]
|
21
|
Amphipathic polymer-mediated uptake of trehalose for dimethyl sulfoxide-free human cell cryopreservation. Cryobiology 2013; 67:305-11. [PMID: 24045066 PMCID: PMC3842503 DOI: 10.1016/j.cryobiol.2013.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 01/09/2023]
Abstract
For stem cell therapy to become a routine reality, one of the major challenges to overcome is their storage and transportation. Currently this is achieved by cryopreserving cells utilising the cryoprotectant dimethyl sulfoxide (Me2SO). Me2SO is toxic to cells, leads to loss of cell functionality, and can produce severe side effects in patients. Potentially, cells could be frozen using the cryoprotectant trehalose if it could be delivered into the cells at a sufficient concentration. The novel amphipathic membrane permeabilising agent PP-50 has previously been shown to enhance trehalose uptake by erythrocytes, resulting in increased cryosurvival. Here, this work was extended to the nucleated human cell line SAOS-2. Using the optimum PP-50 concentration and media osmolarity, cell viability post-thaw was 60 ± 2%. In addition, the number of metabolically active cells 24 h post-thaw, normalised to that before freezing, was found to be between 103 ± 4% and 91 ± 5%. This was found to be comparable to cells frozen using Me2SO. Although reduced (by 22 ± 2%, p = 0.09), the doubling time was found not to be statistically different to the non-frozen control. This was in contrast to cells frozen using Me2SO, where the doubling time was significantly reduced (by 41 ± 4%, p = 0.004). PP-50 mediated trehalose delivery into cells could represent an alternative cryopreservation protocol, suitable for research and therapeutic applications.
Collapse
|
22
|
Tapia IJ, Aris M, Arriaga JM, Blanco PA, Mazzobre F, Vega J, Mordoh J, Barrio MM. Development of a novel methodology for cryopreservation of melanoma cells applied to CSF470 therapeutic vaccine. Cryobiology 2013; 67:163-9. [PMID: 23850827 DOI: 10.1016/j.cryobiol.2013.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 01/20/2023]
Abstract
CSF470 vaccine is a mixture of four lethally irradiated melanoma cell lines, administered with BCG and GM-CSF, which is currently being tested in a Phase II/III Clinical trial in stage II/III melanoma patients. To prepare vaccine doses, irradiated melanoma cell lines are frozen using dimethyl sulfoxide (Me(2)SO) and stored in liquid nitrogen (liqN(2)). Prior to inoculation, doses must be thawed, washed to remove Me(2)SO and suspended for clinical administration. Avoiding the use of Me(2)SO and storage in liqN(2) would allow future freeze-drying of CSF470 vaccine to facilitate pharmaceutical production and distribution. We worked on the development of an alternative cryopreservation methodology while keeping the vaccine's biological and immunogenic properties. We tested different freezing media containing trehalose suitable to remain as excipients in a freeze-dried product, to cryopreserve melanoma cells either before or after gamma irradiation. Melanoma cells incorporated trehalose after 5 h incubation at 37°C by fluid-phase endocytosis, reaching an intracellular concentration that varied between 70-140 mM depending on the cell line. Optimal freezing conditions were 0.2 M trehalose and 30 mg/ml human serum albumin, at -84°C. Vaccine doses could be frozen in trehalose at -84°C for at least four months keeping their cellular integrity, antigen expression and apoptosis/necrosis profile after gamma-irradiation as compared to Me(2)SO control. Non-irradiated melanoma cell lines also showed comparable proliferative capacity after both cryopreservation procedures. Trehalose-freezing medium allowed us to cryopreserve melanoma cells, either alive or after gamma irradiation, at -84°C avoiding the use of Me(2)SO and liqN(2) storage. These cryopreservation conditions could be suitable for future freeze-drying of CSF470 vaccine.
Collapse
Affiliation(s)
- Ivana J Tapia
- Centro de Investigaciones Oncológicas FUCA, Crámer 1180, Primer Piso, CP1426, Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lyophilized brain tumor specimens can be used for histologic, nucleic acid, and protein analyses after 1 year of room temperature storage. J Neurooncol 2013; 113:365-73. [PMID: 23640138 DOI: 10.1007/s11060-013-1135-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/24/2013] [Indexed: 12/31/2022]
Abstract
Frozen tissue, a gold standard biospecimen, can yield well preserved nucleic acids and proteins after over a decade but is vulnerable to thawing and has substantial fiscal, spatial, and environmental costs. A long-term room temperature biospecimen storage alternative that preserves broad analytical utility can potentially empower tissue-based research. As there is scant data on the analytical utility of lyophilized brain tumor biospecimens, we evaluated lyophilized (freeze-dried) samples stored for 1 year at room temperature. Lyophilized tumor tissue processed into paraffin sections produced good histology. Yields of extracted DNA, RNA, and protein approximated those of frozen tissue. After 1 year, lyophilized samples yielded high molecular weight DNA that permitted copy number variation analysis, IDH 1 mutation detection, and MGMT promoter methylation PCR. A 27 % decrease in RIN scores over the 1 year suggests that RNA degradation was inhibited though incompletely. Nevertheless, RT-PCR studies on lyophilized tissue performed similarly to frozen tissue. In contrast to FFPE tissues where protein bands were absent or shifted to a lower molecular weight, lyophilized samples showed similar protein bands as frozen tissue on SDS-PAGE analysis. Lyophilized tissue performed similarly to frozen tissue for Western blots and enzyme activity assays. Immunohistochemistry of lyophilized tissue that were processed into FFPE blocks often required longer incubation times for staining than standard FFPE samples but generally provided robust antigen detection. This preliminary study suggests that lyophilization has promise for long-term room temperature storage while permitting varied tests; however, further work is required to better stabilize nucleic acids particularly RNA.
Collapse
|
24
|
Iuso D, Czernik M, Di Egidio F, Sampino S, Zacchini F, Bochenek M, Smorag Z, Modlinski JA, Ptak G, Loi P. Genomic stability of lyophilized sheep somatic cells before and after nuclear transfer. PLoS One 2013; 8:e51317. [PMID: 23308098 PMCID: PMC3540074 DOI: 10.1371/journal.pone.0051317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/31/2012] [Indexed: 12/25/2022] Open
Abstract
The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT). Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA damage occurs randomly in the remaining 40%. Remarkably, lyophilized nuclei injected into enucleated oocytes are repaired by a robust DNA repairing activity of the oocytes, and show normal developmental competence. Cloned embryos derived from lyophylized cells exhibited chromosome and cellular composition comparable to those of embryos derived from fresh donor cells. These findings support the feasibility of lyophylization as a storage procedure of mammalian cells to be used for SCNT.
Collapse
Affiliation(s)
- Domenico Iuso
- Department of Comparative Biomedical Sciences, University of Teramo, Teramo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Julca I, Alaminos M, González-López J, Manzanera M. Xeroprotectants for the stabilization of biomaterials. Biotechnol Adv 2012; 30:1641-54. [PMID: 22814234 DOI: 10.1016/j.biotechadv.2012.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/03/2012] [Accepted: 07/08/2012] [Indexed: 12/20/2022]
Abstract
With the advancement of science and technology, it is crucial to have effective preservation methods for the stable long-term storage of biological material (biomaterials). As an alternative to cryopreservation, various techniques have been developed, which are based on the survival mechanism of anhydrobiotic organisms. In this sense, it has been found that the synthesis of xeroprotectants can effectively stabilize biomaterials in a dry state. The most widely studied xeroprotectant is trehalose, which has excellent properties for the stabilization of certain proteins, bacteria, and biological membranes. There have also been attempts to apply trehalose to the stabilization of eukaryotic cells but without conclusive results. Consequently, a xeroprotectant or method that is useful for the stable drying of a particular biomaterial might not necessarily be suitable for another one. This article provides an overview of recent advances in the use of new techniques to stabilize biomaterials and compare xeroprotectants with other more standard methods.
Collapse
Affiliation(s)
- I Julca
- Institute for Water Research, and Department of Microbiology, Faculty of Medicine, University of Granada, Granada, Spain
| | | | | | | |
Collapse
|
26
|
Chakraborty N, Menze MA, Malsam J, Aksan A, Hand SC, Toner M. Cryopreservation of spin-dried mammalian cells. PLoS One 2011; 6:e24916. [PMID: 21966385 PMCID: PMC3178566 DOI: 10.1371/journal.pone.0024916] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 08/19/2011] [Indexed: 11/18/2022] Open
Abstract
This study reports an alternative approach to achieve vitrification where cells are pre-desiccated prior to cooling to cryogenic temperatures for storage. Chinese Hamster Ovary (CHO) cells suspended in a trehalose solution were rapidly and uniformly desiccated to a low moisture content (<0.12 g of water per g of dry weight) using a spin-drying technique. Trehalose was also introduced into the cells using a high-capacity trehalose transporter (TRET1). Fourier Transform Infrared Spectroscopy (FTIR) was used to examine the uniformity of water concentration distribution in the spin-dried samples. 62% of the cells were shown to survive spin-drying in the presence of trehalose following immediate rehydration. The spin-dried samples were stored in liquid nitrogen (LN(2)) at a vitrified state. It was shown that following re-warming to room temperature and re-hydration with a fully complemented cell culture medium, 51% of the spin-dried and vitrified cells survived and demonstrated normal growth characteristics. Spin-drying is a novel strategy that can be used to improve cryopreservation outcome by promoting rapid vitrification.
Collapse
Affiliation(s)
- Nilay Chakraborty
- Center for Engineering in Medicine and BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, Massachusetts, United States of America.
| | | | | | | | | | | |
Collapse
|
27
|
Loi P, Fulka J, Hildebrand T, Ptak G. Genome of non-living cells: trash or recycle? Reproduction 2011; 142:497-503. [PMID: 21778214 DOI: 10.1530/rep-11-0063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reproductive technologies have been often used as a tool in research not strictly connected with developmental biology. In this study, we retrace the experimental routes that have led to the adoption of two reproductive technologies, ICSI and somatic cell nuclear transfer (SCNT), as biological assays to probe the 'functionality' of the genome from dead cells. The structural peculiarities of the spermatozoa nucleus, namely its lower water content and its compact chromatin structure, have made it the preferred cell for these experiments. The studies, primarily focused on mice, have demonstrated an unexpected stability of the spermatozoa nuclei, which retained the capacity to form pronuclei once injected into the oocytes even after severe denaturing agents like acid treatment and high-temperature exposure. These findings inspired further research culminating in the production of mice after ICSI of lyophilized spermatozoa. The demonstrated non-equivalence between cell vitality and nuclear vitality in spermatozoa prompted analogous studies on somatic cells. Somatic cells were treated with the same physical stress applied to spermatozoa and were injected into enucleated sheep oocytes. Despite the presumptive fragile nuclear structure, nuclei from non-viable cells (heat treated) directed early and post-implantation embryonic development on nuclear transfer, resulting in normal offspring. Recently, lyophilized somatic cells used for nuclear transfer have developed into normal embryos. In summary, ICSI and SCNT have been useful tools to prove that alternative strategies for storing banks of non-viable cells are realistic. Finally, the potential application of freeze-dried spermatozoa and cells is also discussed.
Collapse
Affiliation(s)
- Pasqualino Loi
- Department of Comparative Biomedical Sciences, University of Teramo, Piazza Aldo Moro 45, 64100 Teramo, Italy.
| | | | | | | |
Collapse
|