1
|
Maestri E, Duszka K, Kuznetsov VA. Immunity Depletion, Telomere Imbalance, and Cancer-Associated Metabolism Pathway Aberrations in Intestinal Mucosa upon Short-Term Caloric Restriction. Cancers (Basel) 2021; 13:cancers13133180. [PMID: 34202278 PMCID: PMC8267928 DOI: 10.3390/cancers13133180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Systems cancer biology analysis of calorie restriction (CR) mechanisms and pathways has not been carried out, leaving therapeutic benefits unclear. Using metadata analysis, we studied gene expression changes in normal mouse duodenum mucosa (DM) response to short-term (2-weeks) 25% CR as a biological model. Our results indicate cancer-associated genes consist of 26% of 467 CR responding differential expressed genes (DEGs). The DEGs were enriched with over-expressed cell cycle, oncogenes, and metabolic reprogramming pathways that determine tissue-specific tumorigenesis, cancer, and stem cell activation; tumor suppressors and apoptosis genes were under-expressed. DEG enrichments suggest telomeric maintenance misbalance and metabolic pathway activation playing dual (anti-cancer and pro-oncogenic) roles. The aberrant DEG profile of DM epithelial cells is found within CR-induced overexpression of Paneth cells and is coordinated significantly across GI tract tissues mucosa. Immune system genes (ISGs) consist of 37% of the total DEGs; the majority of ISGs are suppressed, including cell-autonomous immunity and tumor-immune surveillance. CR induces metabolic reprogramming, suppressing immune mechanics and activating oncogenic pathways. We introduce and argue for our network pro-oncogenic model of the mucosa multicellular tissue response to CR leading to aberrant transcription and pre-malignant states. These findings change the paradigm regarding CR's anti-cancer role, initiating specific treatment target development. This will aid future work to define critical oncogenic pathways preceding intestinal lesion development and biomarkers for earlier adenoma and colorectal cancer detection.
Collapse
Affiliation(s)
- Evan Maestri
- Department of Biochemistry and Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA;
- Department of Biology, SUNY University at Buffalo, Buffalo, NY 14260, USA
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria;
| | - Vladimir A. Kuznetsov
- Department of Biochemistry and Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA;
- Bioinformatics Institute, Biomedical Sciences Institutes A*STAR, Singapore 13867, Singapore
- Correspondence:
| |
Collapse
|
2
|
Amano N, Matsumoto K, Shimizu Y, Nakamura M, Tsumura H, Ishii D, Sato Y, Iwamura M. High HNRNPA3 expression is associated with lymph node metastasis and poor prognosis in patients treated with radical cystectomy. Urol Oncol 2020; 39:196.e1-196.e7. [PMID: 33160845 DOI: 10.1016/j.urolonc.2020.10.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/25/2020] [Accepted: 10/24/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE We sought to identify heterogeneous nuclear ribonucleoprotein A3 (HNRNPA3) expression in bladder cancer and its relationship to clinicopathological findings and prognosis. METHODS Immunohistochemical staining for HNRNPA3 was performed on 122 archived radical cystectomy specimens, with immunoreactivity being stratified on a 0 to 3 scale. The percentage of HNRNPA3 expressing tumor cells was calculated and multiplied by the staining score over an average of 5 areas to obtain a semiquantitative H-score (maximum value: 300). HNRNPA3 expression was categorized as high (≥80) or low (<80). RESULTS The patients' median age was 70 years, and the median follow-up period was 39.4 months. High HNRNPA3 expression was significantly associated with lymph node metastasis (P= 0.014) and S100A8, S100A9 and uroplakin III expression (P= 0.028, 0.002, and 0.047, respectively). Log-rank tests indicated that high HNRNPA3 expression was significantly associated with disease progression and cancer-specific death (P= 0.013 and 0.006, respectively). In the Cox proportional hazards regression analysis, only lymph node metastasis was associated with disease progression and cancer-specific survival. CONCLUSION HNRNPA3 may be a new biomarker to predict biologically aggressive cancers and determine the appropriate treatment modality in patients after radical cystectomy.
Collapse
Affiliation(s)
- Noriyuki Amano
- Department of Urology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Kazumasa Matsumoto
- Department of Urology, School of Medicine, Kitasato University, Sagamihara, Japan.
| | - Yuriko Shimizu
- Department of Urology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Marie Nakamura
- Department of Urology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Hideyasu Tsumura
- Department of Urology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Daisuke Ishii
- Department of Urology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Yuichi Sato
- Department of Urology, School of Medicine, Kitasato University, Sagamihara, Japan
| | - Masatsugu Iwamura
- Department of Urology, School of Medicine, Kitasato University, Sagamihara, Japan
| |
Collapse
|
3
|
Oxidative Stress and Thrombosis during Aging: The Roles of Oxidative Stress in RBCs in Venous Thrombosis. Int J Mol Sci 2020; 21:ijms21124259. [PMID: 32549393 PMCID: PMC7352981 DOI: 10.3390/ijms21124259] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/17/2023] Open
Abstract
Mid-life stage adults are at higher risk of developing venous thrombosis (VT)/thromboembolism (VT/E). Aging is characterized by an overproduction of reactive oxygen species (ROS), which could evoke a series of physiological changes involved in thrombosis. Here, we focus on the critical role of ROS within the red blood cell (RBC) in initiating venous thrombosis during aging. Growing evidence has shifted our interest in the role of unjustifiably unvalued RBCs in blood coagulation. RBCs can be a major source of oxidative stress during aging, since RBC redox homeostasis is generally compromised due to the discrepancy between prooxidants and antioxidants. As a result, ROS accumulate within the RBC due to the constant endogenous hemoglobin (Hb) autoxidation and NADPH oxidase activation, and the uptake of extracellular ROS released by other cells in the circulation. The elevated RBC ROS level affects the RBC membrane structure and function, causing loss of membrane integrity, and decreased deformability. These changes impair RBC function in hemostasis and thrombosis, favoring a hypercoagulable state through enhanced RBC aggregation, RBC binding to endothelial cells affecting nitric oxide availability, RBC-induced platelet activation consequently modulating their activity, RBC interaction with and activation of coagulation factors, increased RBC phosphatidylserine exposure and release of microvesicles, accelerated aging and hemolysis. Thus, RBC oxidative stress during aging typifies an ultimate mechanism in system failure, which can affect major processes involved in the development of venous thrombosis in a variety of ways. The reevaluated concept of the critical role of RBC ROS in the activation of thrombotic events during aging will help identify potential targets for novel strategies to prevent/reduce the risk for VT/E or VT/E recurrences in mid-life stage adults.
Collapse
|
4
|
DNA methylome and transcriptome sequencing in human ovarian granulosa cells links age-related changes in gene expression to gene body methylation and 3'-end GC density. Oncotarget 2016; 6:3627-43. [PMID: 25682867 PMCID: PMC4414142 DOI: 10.18632/oncotarget.2875] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/08/2014] [Indexed: 01/23/2023] Open
Abstract
Diminished ovarian function occurs early and is a primary cause for age-related decline in female fertility; however, its underlying mechanism remains unclear. This study investigated the roles that genome and epigenome structure play in age-related changes in gene expression and ovarian function, using human ovarian granulosa cells as an experimental system. DNA methylomes were compared between two groups of women with distinct age-related differences in ovarian functions, using both Methylated DNA Capture followed by Next Generation Sequencing (MethylCap-seq) and Reduced Representation Bisulfite Sequencing (RRBS); their transcriptomes were investigated using mRNA-seq. Significant, non-random changes in transcriptome and DNA methylome features are observed in human ovarian granulosa cells as women age and their ovarian functions deteriorate. The strongest correlations between methylation and the age-related changes in gene expression are not confined to the promoter region; rather, high densities of hypomethylated CpG-rich regions spanning the gene body are preferentially associated with gene down-regulation. This association is further enhanced where CpG regions are localized near the 3ʹ-end of the gene. Such features characterize several genes crucial in age-related decline in ovarian function, most notably the AMH (Anti-Müllerian Hormone) gene. The genome-wide correlation between the density of hypomethylated intragenic and 3ʹ-end regions and gene expression suggests previously unexplored mechanisms linking epigenome structure to age-related physiology and pathology.
Collapse
|
5
|
Sepúlveda C, Palomo I, Fuentes E. Primary and secondary haemostasis changes related to aging. Mech Ageing Dev 2015; 150:46-54. [PMID: 26296601 DOI: 10.1016/j.mad.2015.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/02/2015] [Accepted: 08/11/2015] [Indexed: 12/17/2022]
Abstract
Life expectancy has increased in many countries as a result the world's population is aging. The projections indicate that the proportion of the elderly in a few decades will increase significantly. Aging carries with it a series of physiological changes; one of them is an imbalance in the hemostatic system. Thus the levels or activity of various proteins involved, such as most coagulation factors, natural anticoagulants and the fibrinolytic system are altered so that the hemostatic balance leans toward thrombosis. Also, platelet activity suggests a state of abnormal activation (P-selectin, beta thromboglobulin and platelet factor). In this review we will systematically examine the alterations in the hemostatic components that occur during aging. Therefore, understanding these hemostatic changes could contribute to developing strategies for the proper management of health in old age.
Collapse
Affiliation(s)
- Cesar Sepúlveda
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT- Regional, Gore Maule R09I2001, Chile.
| | - Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT- Regional, Gore Maule R09I2001, Chile.
| |
Collapse
|
6
|
Hamada T, Miyakawa K, Kushige H, Shibata S, Kurachi S. Age-related expression analysis of mouse liver nuclear protein binding to 3'-untranslated region of Period2 gene. J Physiol Sci 2015; 65:349-57. [PMID: 25846207 PMCID: PMC10717453 DOI: 10.1007/s12576-015-0373-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/07/2015] [Indexed: 10/23/2022]
Abstract
In mammals, both circadian rhythm and aging play important roles in regulating time-dependent homeostasis. We previously discovered an age-related increase element binding protein, hnRNP A3, which binds to the 3'-untranslated region (UTR) of blood coagulation factor IX (FIX). Here, we describe other members of this protein family, hnRNP C and hnRNP H, which bind to the 3'-UTR of the mouse circadian clock gene Period 2 (mPer2). RNA electrophoretic mobility shift assays using a (32)P-labeled Per2 RNA probe coupled with two-dimensional gel electrophoresis followed by MALDI-TOF/MS peptide mass fingerprint analysis was used to analyze these proteins. Western blotting suggested that the total expression of these proteins in mouse liver cell nuclei does not increase with age. Two-dimensional gel electrophoresis analysis of age-related protein expression showed that many isoforms of these proteins exist in the liver and that each protein exhibits a complex age-related expression pattern. These results suggest that many isoforms of proteins are regulated by different aging systems and that many age regulation systems function in the liver.
Collapse
Affiliation(s)
- Toshiyuki Hamada
- Applied Molecular-Imaging Physics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8638, Japan,
| | | | | | | | | |
Collapse
|
7
|
Comegna M, Succoio M, Napolitano M, Vitale M, D'Ambrosio C, Scaloni A, Passaro F, Zambrano N, Cimino F, Faraonio R. Identification of miR-494 direct targets involved in senescence of human diploid fibroblasts. FASEB J 2014; 28:3720-33. [PMID: 24823364 DOI: 10.1096/fj.13-239129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cellular senescence is a permanent cell cycle arrest triggered by different stimuli. We recently identified up-regulation of microRNA (miR)-494 as a component of the genetic program leading to senescence of human diploid IMR90 fibroblasts. Here, we used 2-dimensional differential gel electrophoresis (2D-DIGE) coupled to mass spectrometry to profile protein expression changes induced by adoptive overexpression of miR-494 in IMR90 cells. miR-494 induced robust perturbation of the IMR90 proteome by significantly (P≤0.05) down-regulating a number of proteins. Combination of mass spectrometry-based identification of down-regulated proteins and bioinformatic prediction of the miR-494 binding sites on the relevant mRNAs identified 26 potential targets of miR-494. Among them, computational analysis identified 7 potential evolution-conserved miR-494 targets. Functional miR-494 binding sites were confirmed in 3'-untranslated regions (UTRs) of 4 of them [heterogeneous nuclear ribonucleoprotein A3 (hnRNPA3), protein disulfide isomerase A3 (PDIA3), UV excision repair protein RAD23 homolog B (RAD23B), and synaptotagmin-binding cytoplasmic RNA-interacting protein (SYNCRIP)/heterogeneous nuclear ribonucleoprotein Q (hnRNPQ)]. Their reduced expression correlated with miR-494 up-regulation in senescent cells. RNA interference-mediated knockdown of hnRNPA3 and, to a lesser extent, RAD23B mirrored the senescent phenotype induced by miR-494 overexpression, blunting cell proliferation and causing up-regulation of SA-β-galactosidase and DNA damage. Ectopic expression of hnRNPA3 or RAD23B slowed the appearance of the senescent phenotype induced by miR-494. Overall, these findings identify novel miR-494 direct targets that are involved in cellular senescence.
Collapse
Affiliation(s)
- Marika Comegna
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Mariangela Succoio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Marco Napolitano
- Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy
| | - Monica Vitale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Chiara D'Ambrosio
- Proteomics and Mass Spectrometry Laboratory, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, National Research Council, Naples, Italy
| | - Fabiana Passaro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Filiberto Cimino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Raffaella Faraonio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| |
Collapse
|
8
|
Reboll MR. Mapping of protein binding RNA elements. Methods Mol Biol 2014; 1182:187-194. [PMID: 25055911 DOI: 10.1007/978-1-4939-1062-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The RNA electrophoretic mobility shift assay is a very versatile method to study a broad spectrum of RNA-protein interactions. The technique is based on the separation of protein RNA mixtures through a native acrylamide gel. Compared to unbound RNA, RNA-protein complexes migrate slower through the gel resulting in a mass shift. The RNA EMSA can be used to identify unknown RNA-protein complexes, to map the RNA binding site of single proteins or determine the specificity of RNA-protein complexes using specific antibodies resulting in retarded migration through the gel.
Collapse
Affiliation(s)
- Marc R Reboll
- Molecular and Translational Cardiology, Medical School Hannover, Carl-Neuberg-Straße 1, 30625, Hannover, Germany,
| |
Collapse
|
9
|
Donà M, Confalonieri M, Minio A, Biggiogera M, Buttafava A, Raimondi E, Delledonne M, Ventura L, Sabatini ME, Macovei A, Giraffa G, Carbonera D, Balestrazzi A. RNA-Seq analysis discloses early senescence and nucleolar dysfunction triggered by Tdp1α depletion in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1941-51. [PMID: 23467834 DOI: 10.1093/jxb/ert063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An intron-spliced hairpin RNA approach was used for the targeted silencing of the MtTdp1α gene encoding the αisoform of tyrosyl-DNA phosphodiesterase 1 in Medicago truncatula Gaertn. Tyrosyl-DNA phosphodiesterase 1, involved in the repair of DNA topoisomerase I-mediated DNA damage, has been poorly investigated in plants. RNA-Seq analysis, carried out in the MtTdp1α-depleted plants, revealed different levels of transcriptional modulation (up- and down-regulation, alternative splicing, activation of alternative promoter) in genes involved in DNA damage sensing, DNA repair, and chromatin remodelling. It is suggested that the MtTdp1α gene has new, previously undetected roles in maintaining genome integrity. Up-regulation of senescence-associated genes and telomere shortening were observed. Moreover, impaired ribosome biogenesis indicated that the MtTdp1α gene is required for the nucleolar function. In agreement with the RNA-Seq data, transmission electron microscopy detected an altered nucleolar architecture in the MtTdp1α-depleted cells. Based on the reported data, a working hypothesis related to the occurrence of a nucleolar checkpoint in plant cells is proposed.
Collapse
Affiliation(s)
- Mattia Donà
- Department of Biology and Biotechnology L Spallanzani, via Ferrata 1, 27100 Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Papadopoulou C, Boukakis G, Ganou V, Patrinou-Georgoula M, Guialis A. Expression profile and interactions of hnRNP A3 within hnRNP/mRNP complexes in mammals. Arch Biochem Biophys 2012; 523:151-60. [DOI: 10.1016/j.abb.2012.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/27/2012] [Accepted: 04/13/2012] [Indexed: 11/15/2022]
|