1
|
Sayeesh PM, Iguchi M, Inomata K, Ikeya T, Ito Y. Structure and Dynamics of Drk-SH2 Domain and Its Site-Specific Interaction with Sev Receptor Tyrosine Kinase. Int J Mol Sci 2024; 25:6386. [PMID: 38928093 PMCID: PMC11203457 DOI: 10.3390/ijms25126386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The Drosophila downstream receptor kinase (Drk), a homologue of human GRB2, participates in the signal transduction from the extracellular to the intracellular environment. Drk receives signals through the interaction of its Src homology 2 (SH2) domain with the phosphorylated tyrosine residue in the receptor tyrosine kinases (RTKs). Here, we present the solution NMR structure of the SH2 domain of Drk (Drk-SH2), which was determined in the presence of a phosphotyrosine (pY)-containing peptide derived from a receptor tyrosine kinase, Sevenless (Sev). The solution structure of Drk-SH2 possess a common SH2 domain architecture, consisting of three β strands imposed between two α helices. Additionally, we interpret the site-specific interactions of the Drk-SH2 domain with the pY-containing peptide through NMR titration experiments. The dynamics of Drk-SH2 were also analysed through NMR-relaxation experiments as well as the molecular dynamic simulation. The docking simulations of the pY-containing peptide onto the protein surface of Drk-SH2 provided the orientation of the peptide, which showed a good agreement with the analysis of the SH2 domain of GRB2.
Collapse
Affiliation(s)
| | | | | | - Teppei Ikeya
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; (P.M.S.); (M.I.); (K.I.)
| | - Yutaka Ito
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; (P.M.S.); (M.I.); (K.I.)
| |
Collapse
|
2
|
Xu J, Huang C, Li L, Zhao Y, Guo Z, Chen Y, Zhang P. Label-free analysis of membrane protein binding kinetics and cell adhesions using evanescent scattering microscopy. Analyst 2023; 148:5084-5093. [PMID: 37671903 DOI: 10.1039/d3an00977g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Measuring ligand interactions with membrane proteins in single live cells is critical for understanding many cellular processes and screening drugs. However, developing such a capability has been a difficult challenge. Here, we employ evanescent scattering microscopy (ESM) to show that ligand binding to membrane proteins can change the cell adhesion properties, which are intrinsic cell properties and independent of random cell micromotions and ligand mass, thus allowing the kinetics analyses of both proteins and small molecules binding to membrane proteins in both single fixed and live cells. In addition, utilizing the high spatiotemporal resolution of ESM, the positions of cell adhesion sites can be tracked in real-time to analyze the cell deformations and migrations, thus providing a potential approach for understanding the cell activity during the ligand binding process in detail. The presented method may pave the road for developing a versatile and easy-to-use label-free detection strategy for in situ analysis of molecular interaction dynamics in living biosystems with single-cell resolution.
Collapse
Affiliation(s)
- Jiying Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100049, China
| | - Caixin Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Liangju Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Clinical psychopharmacology, Xinxiang 453003, China
| | - Zhenpeng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100049, China
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China
| | - Pengfei Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Vincenzi M, Mercurio FA, Leone M. Protein Interaction Domains: Structural Features and Drug Discovery Applications (Part 2). Curr Med Chem 2021; 28:854-892. [PMID: 31942846 DOI: 10.2174/0929867327666200114114142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Proteins present a modular organization made up of several domains. Apart from the domains playing catalytic functions, many others are crucial to recruit interactors. The latter domains can be defined as "PIDs" (Protein Interaction Domains) and are responsible for pivotal outcomes in signal transduction and a certain array of normal physiological and disease-related pathways. Targeting such PIDs with small molecules and peptides able to modulate their interaction networks, may represent a valuable route to discover novel therapeutics. OBJECTIVE This work represents a continuation of a very recent review describing PIDs able to recognize post-translationally modified peptide segments. On the contrary, the second part concerns with PIDs that interact with simple peptide sequences provided with standard amino acids. METHODS Crucial structural information on different domain subfamilies and their interactomes was gained by a wide search in different online available databases (including the PDB (Protein Data Bank), the Pfam (Protein family), and the SMART (Simple Modular Architecture Research Tool)). Pubmed was also searched to explore the most recent literature related to the topic. RESULTS AND CONCLUSION PIDs are multifaceted: they have all diverse structural features and can recognize several consensus sequences. PIDs can be linked to different diseases onset and progression, like cancer or viral infections and find applications in the personalized medicine field. Many efforts have been centered on peptide/peptidomimetic inhibitors of PIDs mediated interactions but much more work needs to be conducted to improve drug-likeness and interaction affinities of identified compounds.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
4
|
McClendon CJ, Miller WT. Structure, Function, and Regulation of the SRMS Tyrosine Kinase. Int J Mol Sci 2020; 21:E4233. [PMID: 32545875 PMCID: PMC7352994 DOI: 10.3390/ijms21124233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 01/05/2023] Open
Abstract
Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (SRMS) is a tyrosine kinase that was discovered in 1994. It is a member of a family of nonreceptor tyrosine kinases that also includes Brk (PTK6) and Frk. Compared with other tyrosine kinases, there is relatively little information about the structure, function, and regulation of SRMS. In this review, we summarize the current state of knowledge regarding SRMS, including recent results aimed at identifying downstream signaling partners. We also present a structural model for the enzyme and discuss the potential involvement of SRMS in cancer cell signaling.
Collapse
Affiliation(s)
- Chakia J. McClendon
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA;
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA;
- Department of Veterans Affairs Medical Center, Northport, NY 11768, USA
| |
Collapse
|
5
|
Zheng Z, Chu B, Kong Q, Chen X, Ke M, Qin Y, Lu Y, Feng S, Tian R. High-Throughput Phosphotyrosine Protein Complexes Screening by Photoaffinity-Engineered Protein Scaffold-Based Forward-Phase Protein Array. Anal Chem 2019; 91:10026-10032. [PMID: 31282657 DOI: 10.1021/acs.analchem.9b01845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Low-abundance phosphotyrosine (pTyr)-mediated signaling protein complexes play critical roles in cancer signaling. The precise and comprehensive profiling of these pTyr-mediated protein complexes remains challenging because of their dynamic nature and weak binding affinity. Taking advantage of the SH2 domains modified with trifunctional chemical probes and genetic mutations (termed Photo-pTyr-scaffold), we developed a Photo-pTyr-scaffold-based forward-phase protein array that can be used to specifically capture complexes by developing an engineered SH2 domain, photoaffinity cross-linking, and antibody-based measuring weak pTyr-mediated protein complexes from complex biological samples in a 96-well microplate format. This platform demonstrated good precision for quantitation (R2 = 0.99) and high sensitivity by which only 5 μg of whole cell lysates is needed. We successfully applied the technology for profiling the dynamic EGF-stimulation-dependent EGFR signaling protein complexes across four different time courses (i.e., 0, 2, 5, 10, and 30 min) in a high-throughput manner. We further evaluated the modulation of EGFR-GRB2-SHC1 protein complexes by FDA-approved EGFR kinase inhibitor erlotinib, demonstrating the feasibility of this approach for high-throughput drug screening. The Photo-pTyr-scaffold-based forward-phase protein array could be generically applicable for exploring the dynamic pTyr signaling complexes in various biological systems and screening for related drugs in a high-throughput manner.
Collapse
Affiliation(s)
- Zhendong Zheng
- Key Laboratory of Oil Gas and Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , China.,Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Bizhu Chu
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Qian Kong
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Xiong Chen
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Mi Ke
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Yunqiu Qin
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Yi Lu
- Key Laboratory of Oil Gas and Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , China
| | - Shun Feng
- School of Life Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , China
| | - Ruijun Tian
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research , Shenzhen 518055 , China
| |
Collapse
|
6
|
|
7
|
Novikova SE, Kurbatov LK, Zavialova MG, Zgoda VG, Archakov AI. [Omics technologies in diagnostics of lung adenocarcinoma]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:181-210. [PMID: 28781253 DOI: 10.18097/pbmc20176303181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To date lung adenocarcinoma (LAC) is the most common type of lung cancer. Numerous studies on LAC biology resulted in identification of crucial mutations in protooncogenes and activating neoplastic transformation pathways. Therapeutic approaches that significantly increase the survival rate of patients with LAC of different etiology have been developed and introduced into clinical practice. However, the main problem in the treatment of LAC is early diagnosis, taking into account both factors and mechanisms responsible in tumor initiation and progression. Identification of a wide biomarker repertoire with high specificity and reliability of detection appears to be a solution to this problem. In this context, proteins with differential expression in normal and pathological condition, suitable for detection in biological fluids are the most promising biomarkers. In this review we have analyzed literature data on studies aimed at search of LAC biomarkers. The major attention has been paid to protein biomarkers as the most promising and convenient subject of clinical diagnosis. The review also summarizes existing knowledge on posttranslational modifications, splice variants, isoforms, as well as model systems and transcriptome changes in LAC.
Collapse
Affiliation(s)
- S E Novikova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - L K Kurbatov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A I Archakov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
8
|
Zavialova MG, Zgoda VG, Nikolaev EN. [Analysis of contribution of protein phosphorylation in the development of the diseases]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 63:101-114. [PMID: 28414281 DOI: 10.18097/pbmc20176302101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent decades, studies in the molecular origins of socially significant diseases have made a big step forward with the development and using of high-performance methods in genomics and proteomics. Numerous studies in the framework of the global program "Human Proteome" were aimed at the identification of all possible proteins in various cell cultures and tissues, including cancer. One of the objectives was to identify biomarkers - proteins with high specificity to certain pathologies. However, in many cases, it is shown that the development of the disease is not associated with the appearance of new proteins, but depends on the level of gene expression or forming of proteoforms - splice variants, single amino acid substitutions (SAP variants), and post-translational modifications (PTM) of proteins. PTM may play a key role in the development of pathology because they activate a variety of regulatory or structural proteins in the majority of cell physiological processes. Phosphorylation is among the most significant of these protein modifications.This review will describe methods for analysis of protein phosphorylation used in the studies of such diseases as cancer and neurodegenerative diseases, as well as examples of cases when the modified proteins are involved directly to their development, and screening such significant PTM is used for the diagnosis and choice of treatment.
Collapse
Affiliation(s)
| | - V G Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - E N Nikolaev
- Institute of Biomedical Chemistry, Moscow, Russia; Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
| |
Collapse
|
9
|
Li Y, Wang Y, Dong M, Zou H, Ye M. Sensitive Approaches for the Assay of the Global Protein Tyrosine Phosphorylation in Complex Samples Using a Mutated SH2 Domain. Anal Chem 2017; 89:2304-2311. [DOI: 10.1021/acs.analchem.6b03812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yanan Li
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Dong
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanfa Zou
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Abstract
With a growing number of high-throughput studies, structural analyses, and availability of protein-protein interaction databases, it is now possible to apply web-based prediction tools to SH2 domain-interactions. However, in silico prediction is not always reliable and requires experimental validation. Rosette assay is a dot blot-based reverse-phase assay developed for the assessment of binding between SH2 domains and their ligands. It is conveniently customizable, allowing for low- to high-throughput analysis of interactions between various numbers of SH2 domains and their ligands, e.g., short peptides, purified proteins, and cell lysates. The binding assay is performed in a 96-well plate (MBA or MWA apparatus) in which a sample spotted membrane is incubated with up to 96 labeled SH2 domains. Bound domains are detected and quantified using a chemiluminescence or near-infrared fluorescence (IR) imaging system. In this chapter, we describe a practical protocol for rosette assay to assess interactions between synthesized tyrosine phosphorylated peptides and a library of GST-tagged SH2 domains. Since the methodology is not confined to assessment of SH2-pTyr interactions, rosette assay can be broadly utilized for ligand and drug screening using different protein interaction domains or antibodies.
Collapse
|
11
|
White FM, Wolf-Yadlin A. Methods for the Analysis of Protein Phosphorylation-Mediated Cellular Signaling Networks. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:295-315. [PMID: 27049636 DOI: 10.1146/annurev-anchem-071015-041542] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Protein phosphorylation-mediated cellular signaling networks regulate almost all aspects of cell biology, including the responses to cellular stimulation and environmental alterations. These networks are highly complex and comprise hundreds of proteins and potentially thousands of phosphorylation sites. Multiple analytical methods have been developed over the past several decades to identify proteins and protein phosphorylation sites regulating cellular signaling, and to quantify the dynamic response of these sites to different cellular stimulation. Here we provide an overview of these methods, including the fundamental principles governing each method, their relative strengths and weaknesses, and some examples of how each method has been applied to the analysis of complex signaling networks. When applied correctly, each of these techniques can provide insight into the topology, dynamics, and regulation of protein phosphorylation signaling networks.
Collapse
Affiliation(s)
- Forest M White
- Department of Biological Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
| | | |
Collapse
|
12
|
Jadwin JA, Oh D, Curran TG, Ogiue-Ikeda M, Jia L, White FM, Machida K, Yu J, Mayer BJ. Time-resolved multimodal analysis of Src Homology 2 (SH2) domain binding in signaling by receptor tyrosine kinases. eLife 2016; 5:e11835. [PMID: 27071344 PMCID: PMC4841779 DOI: 10.7554/elife.11835] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/14/2016] [Indexed: 12/20/2022] Open
Abstract
While the affinities and specificities of SH2 domain-phosphotyrosine interactions have been well characterized, spatio-temporal changes in phosphosite availability in response to signals, and their impact on recruitment of SH2-containing proteins in vivo, are not well understood. To address this issue, we used three complementary experimental approaches to monitor phosphorylation and SH2 binding in human A431 cells stimulated with epidermal growth factor (EGF): 1) phospho-specific mass spectrometry; 2) far-Western blotting; and 3) live cell single-molecule imaging of SH2 membrane recruitment. Far-Western and MS analyses identified both well-established and previously undocumented EGF-dependent tyrosine phosphorylation and binding events, as well as dynamic changes in binding patterns over time. In comparing SH2 binding site phosphorylation with SH2 domain membrane recruitment in living cells, we found in vivo binding to be much slower. Delayed SH2 domain recruitment correlated with clustering of SH2 domain binding sites on the membrane, consistent with membrane retention via SH2 rebinding. DOI:http://dx.doi.org/10.7554/eLife.11835.001 Individual cells in a multicellular organism must receive signals from the environment and from other cells, and adjust their behavior accordingly. Such signals may cause a cell to grow and multiply, move, or even die. Often these signals are received by receptor proteins, which span the cell membrane and thus provide a way for signals from outside the cell to cause changes inside the cell. The tyrosine kinases are one such group of membrane receptors. When a signal binds to a tyrosine kinase, the receptor is activated and it can add chemical tags called phosphates to the part of itself, or a neighboring protein, that is inside the cell. These phosphates provide binding sites for other types of proteins, many of which contain a section called a SH2 domain. This transmits the signal and leads to further changes in the cell. However, there are over a hundred different SH2 domain-containing proteins in human cells and we do not have a clear picture of what exactly happens when receptor tyrosine kinases are activated. Jadwin, Oh et al. have now looked at how the number of SH2 domain binding sites changes over time after a signal is received. The experiments used three different experimental approaches to study a tyrosine kinase called the Epidermal Growth Factor (EGF) receptor, which is often over-active in human cancers. Jadwin, Oh et al. found that the timing of the changes in the number of SH2 domain binding sites on EGF varied widely. The different methods provided different perspectives on exactly when the changes happen, for example, directly observing the binding of SH2 domains to the membrane of living cells under the microscope showed that binding was much slower than expected from other methods that used purified proteins in solutions. This might be due to the receptors taking a relatively long time to form clusters at the membrane after they receive a signal. Further experiments suggested that what happens when EGF is activated may depend not only on the number of SH2 domain binding sites made, but also the timing and the physical arrangement of those sites. A long-term goal for further studies is to understand how various types of signals can lead to different outcomes in the cell. DOI:http://dx.doi.org/10.7554/eLife.11835.002
Collapse
Affiliation(s)
- Joshua A Jadwin
- Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - Dongmyung Oh
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, United States
| | - Timothy G Curran
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Mari Ogiue-Ikeda
- Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - Lin Jia
- Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - Forest M White
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, United States.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
| | - Ji Yu
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, United States
| | - Bruce J Mayer
- Raymond and Beverly Sackler Laboratory of Molecular Medicine, Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States.,Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut School of Medicine, Farmington, United States
| |
Collapse
|
13
|
Detection and quantification of protein-protein interactions by far-western blotting. Methods Mol Biol 2016; 1312:379-98. [PMID: 26044019 DOI: 10.1007/978-1-4939-2694-7_38] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Far-western blotting is a convenient method to characterize protein-protein interactions, in which protein samples of interest are immobilized on a membrane and then probed with a non-antibody protein. In contrast to western blotting, which uses specific antibodies to detect target proteins, far-western blotting detects proteins on the basis of the presence or absence of binding sites for the protein probe. When specific modular protein binding domains are used as probes, this approach allows characterization of protein-protein interactions involved in biological processes such as signal transduction, including interactions regulated by posttranslational modification. We here describe a rapid and simple protocol for far-western blotting, in which GST-tagged Src homology 2 (SH2) domains are used to probe cellular proteins in a phosphorylation-dependent manner. We also present a batch quantification method that allows for the direct comparison of probe binding patterns.
Collapse
|
14
|
Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam KC, Muñoz-Antonia T, Qu X, Eschrich S, Uramoto H, Tanaka F, Nasarre P, Gemmill RM, Roche J, Drabkin HA, Haura EB. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS One 2016; 11:e0147344. [PMID: 26789630 PMCID: PMC4720447 DOI: 10.1371/journal.pone.0147344] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 01/01/2016] [Indexed: 01/01/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is one mechanism of acquired resistance to inhibitors of the epidermal growth factor receptor-tyrosine kinases (EGFR-TKIs) in non-small cell lung cancer (NSCLC). The precise mechanisms of EMT-related acquired resistance to EGFR-TKIs in NSCLC remain unclear. We generated erlotinib-resistant HCC4006 cells (HCC4006ER) by chronic exposure of EGFR-mutant HCC4006 cells to increasing concentrations of erlotinib. HCC4006ER cells acquired an EMT phenotype and activation of the TGF-β/SMAD pathway, while lacking both T790M secondary EGFR mutation and MET gene amplification. We employed gene expression microarrays in HCC4006 and HCC4006ER cells to better understand the mechanism of acquired EGFR-TKI resistance with EMT. At the mRNA level, ZEB1 (TCF8), a known regulator of EMT, was >20-fold higher in HCC4006ER cells than in HCC4006 cells, and increased ZEB1 protein level was also detected. Furthermore, numerous ZEB1 responsive genes, such as CDH1 (E-cadherin), ST14, and vimentin, were coordinately regulated along with increased ZEB1 in HCC4006ER cells. We also identified ZEB1 overexpression and an EMT phenotype in several NSCLC cells and human NSCLC samples with acquired EGFR-TKI resistance. Short-interfering RNA against ZEB1 reversed the EMT phenotype and, importantly, restored erlotinib sensitivity in HCC4006ER cells. The level of micro-RNA-200c, which can negatively regulate ZEB1, was significantly reduced in HCC4006ER cells. Our results suggest that increased ZEB1 can drive EMT-related acquired resistance to EGFR-TKIs in NSCLC. Attempts should be made to explore targeting ZEB1 to resensitize TKI-resistant tumors.
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Lanxi Song
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Jiannong Li
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Kim C. Ohaegbulam
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Teresita Muñoz-Antonia
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Xiaotao Qu
- Department of Biomedical Informatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Steven Eschrich
- Department of Biomedical Informatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Hidetaka Uramoto
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Fumihiro Tanaka
- Second Department of Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Patrick Nasarre
- Division of Hematology-Oncology, Department of Medicine and the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Robert M. Gemmill
- Division of Hematology-Oncology, Department of Medicine and the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Joëlle Roche
- Division of Hematology-Oncology, Department of Medicine and the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Harry A. Drabkin
- Division of Hematology-Oncology, Department of Medicine and the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
15
|
Thompson CM, Bloom LR, Ogiue-Ikeda M, Machida K. SH2-PLA: a sensitive in-solution approach for quantification of modular domain binding by proximity ligation and real-time PCR. BMC Biotechnol 2015; 15:60. [PMID: 26112401 PMCID: PMC4482279 DOI: 10.1186/s12896-015-0169-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is a great interest in studying phosphotyrosine dependent protein-protein interactions in tyrosine kinase pathways that play a critical role in many aspects of cellular function. We previously established SH2 profiling, a phosphoproteomic approach based on membrane binding assays that utilizes purified Src Homology 2 (SH2) domains as a molecular tool to profile the global tyrosine phosphorylation state of cells. However, in order to use this method to investigate SH2 binding sites on a specific target in cell lysate, additional procedures such as pull-down or immunoprecipitation which consume large amounts of sample are required. RESULTS We have developed PLA-SH2, an alternative in-solution modular domain binding assay that takes advantage of Proximity Ligation Assay and real-time PCR. The SH2-PLA assay utilizes oligonucleotide-conjugated anti-GST and anti-EGFR antibodies recognizing a GST-SH2 probe and cellular EGFR, respectively. If the GST-SH2 and EGFR are in close proximity as a result of SH2-phosphotyrosine interactions, the two oligonucleotides are brought within a suitable distance for ligation to occur, allowing for efficient complex amplification via real-time PCR. The assay detected signal across at least 3 orders of magnitude of lysate input with a linear range spanning 1-2 orders and a low femtomole limit of detection for EGFR phosphotyrosine. SH2 binding kinetics determined by PLA-SH2 showed good agreement with established far-Western analyses for A431 and Cos1 cells stimulated with EGF at various times and doses. Further, we showed that PLA-SH2 can survey lung cancer tissues using 1 μl lysate without requiring phospho-enrichment. CONCLUSIONS We showed for the first time that interactions between SH2 domain probes and EGFR in cell lysate can be determined in a microliter-scale assay using SH2-PLA. The obvious benefit of this method is that the low sample requirement allows detection of SH2 binding in samples which are difficult to analyze using traditional protein interaction assays. This feature along with short assay runtime makes this method a useful platform for the development of high throughput assays to determine modular domain-ligand interactions which could have wide-ranging applications in both basic and translational cancer research.
Collapse
Affiliation(s)
- Christopher M Thompson
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| | - Lee R Bloom
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| | - Mari Ogiue-Ikeda
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| | - Kazuya Machida
- Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, Genetics and Genome Sciences, University of Connecticut School of Medicine, 400 Farmington Avenue, 06030, Farmington, CT, USA.
| |
Collapse
|
16
|
Haura EB, Beg AA, Rix U, Antonia S. Charting Immune Signaling Proteomes En Route to New Therapeutic Strategies. Cancer Immunol Res 2015; 3:714-20. [PMID: 26081226 DOI: 10.1158/2326-6066.cir-15-0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/01/2015] [Indexed: 01/12/2023]
Abstract
The activation state of an antitumor effector T cell in a tumor depends on the sum of all stimulatory signals and inhibitory signals that it receives in the tumor microenvironment. Accumulating data address the increasing complexity of these signals produced by a myriad of immune checkpoint molecules, cytokines, and metabolites. While reductionist experiments have identified key molecules and their importance in signaling, less clear is the integration of all these signals that allows T cells to guide their responses in health and in disease. Mass spectrometry-based proteomics is well poised to offer such insights, including monitoring emergence of resistance mechanisms to immunotherapeutics during treatments. A major application of this technology is in the discovery and characterization of small-molecule agents capable of enhancing the response to immunotherapeutic agents. Such an approach would reinvigorate small-molecule drug development aimed not at tumor cells but rather at tumor-resident T cells capable of producing dramatic and durable antitumor responses.
Collapse
Affiliation(s)
- Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| | - Amer A Beg
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Scott Antonia
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
17
|
Bai Y, Kim JY, Watters JM, Fang B, Kinose F, Song L, Koomen JM, Teer JK, Fisher K, Chen YA, Rix U, Haura EB. Adaptive responses to dasatinib-treated lung squamous cell cancer cells harboring DDR2 mutations. Cancer Res 2014; 74:7217-7228. [PMID: 25348954 DOI: 10.1158/0008-5472.can-14-0505] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DDR2 mutations occur in approximately 4% of lung squamous cell cancer (SCC) where the tyrosine kinase inhibitor dasatinib has emerged as a new therapeutic option. We found that ERK and AKT phosphorylation was weakly inhibited by dasatinib in DDR2-mutant lung SCC cells, suggesting that dasatinib inhibits survival signals distinct from other oncogenic receptor tyrosine kinases (RTK) and/or compensatory signals exist that dampen dasatinib activity. To gain better insight into dasatinib's action in these cells, we assessed altered global tyrosine phosphorylation (pY) after dasatinib exposure using a mass spectrometry-based quantitative phosphoproteomics approach. Overlaying protein-protein interaction relationships upon this dasatinib-regulated pY network revealed decreased phosphorylation of Src family kinases and their targets. Conversely, dasatinib enhanced tyrosine phosphorylation in a panel of RTK and their signaling adaptor complexes, including EGFR, MET/GAB1, and IGF1R/IRS2, implicating a RTK-driven adaptive response associated with dasatinib. To address the significance of this observation, these results were further integrated with results from a small-molecule chemical library screen. We found that dasatinib combined with MET and insulin-like growth factor receptor (IGF1R) inhibitors had a synergistic effect, and ligand stimulation of EGFR and MET rescued DDR2-mutant lung SCC cells from dasatinib-induced loss of cell viability. Importantly, we observed high levels of tyrosine-phosphorylated EGFR and MET in a panel of human lung SCC tissues harboring DDR2 mutations. Our results highlight potential RTK-driven adaptive-resistant mechanisms upon DDR2 targeting, and they suggest new, rationale cotargeting strategies for DDR2-mutant lung SCC.
Collapse
Affiliation(s)
- Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Jae-Young Kim
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - January M Watters
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Bin Fang
- Proteomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Lanxi Song
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - John M Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Kate Fisher
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Yian Ann Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| |
Collapse
|
18
|
Yoshida T, Zhang G, Smith MA, Lopez AS, Bai Y, Li J, Fang B, Koomen J, Rawal B, Fisher KJ, Chen YA, Kitano M, Morita Y, Yamaguchi H, Shibata K, Okabe T, Okamoto I, Nakagawa K, Haura EB. Tyrosine phosphoproteomics identifies both codrivers and cotargeting strategies for T790M-related EGFR-TKI resistance in non-small cell lung cancer. Clin Cancer Res 2014; 20:4059-4074. [PMID: 24919575 DOI: 10.1158/1078-0432.ccr-13-1559] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Irreversible EGFR-tyrosine kinase inhibitors (TKI) are thought to be one strategy to overcome EGFR-TKI resistance induced by T790M gatekeeper mutations in non-small cell lung cancer (NSCLC), yet they display limited clinical efficacy. We hypothesized that additional resistance mechanisms that cooperate with T790M could be identified by profiling tyrosine phosphorylation in NSCLC cells with acquired resistance to reversible EGFR-TKI and harboring T790M. EXPERIMENTAL DESIGN We profiled PC9 cells with TKI-sensitive EGFR mutation and paired EGFR-TKI-resistant PC9GR (gefitinib-resistant) cells with T790M using immunoaffinity purification of tyrosine-phosphorylated peptides and mass spectrometry-based identification/quantification. Profiles of erlotinib perturbations were examined. RESULTS We observed a large fraction of the tyrosine phosphoproteome was more abundant in PC9- and PC9GR-erlotinib-treated cells, including phosphopeptides corresponding to MET, IGF, and AXL signaling. Activation of these receptor tyrosine kinases by growth factors could protect PC9GR cells against the irreversible EGFR-TKI afatinib. We identified a Src family kinase (SFK) network as EGFR-independent and confirmed that neither erlotinib nor afatinib affected Src phosphorylation at the activation site. The SFK inhibitor dasatinib plus afatinib abolished Src phosphorylation and completely suppressed downstream phosphorylated Akt and Erk. Dasatinib further enhanced antitumor activity of afatinib or T790M-selective EGFR-TKI (WZ4006) in proliferation and apoptosis assays in multiple NSCLC cell lines with T790M-mediated resistance. This translated into tumor regression in PC9GR xenograft studies with combined afatinib and dasatinib. CONCLUSIONS Our results identified both codrivers of resistance along with T790M and support further studies of irreversible or T790M-selective EGFR inhibitors combined with dasatinib in patients with NSCLC with acquired T790M.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation/drug effects
- Chromatography, Liquid
- Drug Resistance, Neoplasm/drug effects
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- Female
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Nude
- Mutation/genetics
- Phosphoproteins/metabolism
- Phosphorylation/drug effects
- Protein Array Analysis
- Protein Kinase Inhibitors/pharmacology
- Proteomics/methods
- Signal Transduction/drug effects
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tumor Cells, Cultured
- Tyrosine/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Takeshi Yoshida
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Medical Oncology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Matthew A Smith
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Alex S Lopez
- Tissue Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jiannong Li
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics and Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John Koomen
- Proteomics and Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Bhupendra Rawal
- Biostatistics Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kate J Fisher
- Biostatistics Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Y Ann Chen
- Biostatistics Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Michiko Kitano
- Department of Medical Oncology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yume Morita
- Department of Medical Oncology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Haruka Yamaguchi
- Department of Medical Oncology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kiyoko Shibata
- Department of Medical Oncology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Takafumi Okabe
- Department of Medical Oncology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Isamu Okamoto
- Department of Medical Oncology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
19
|
Li J, Bennett K, Stukalov A, Fang B, Zhang G, Yoshida T, Okamoto I, Kim JY, Song L, Bai Y, Qian X, Rawal B, Schell M, Grebien F, Winter G, Rix U, Eschrich S, Colinge J, Koomen J, Superti-Furga G, Haura EB. Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms. Mol Syst Biol 2013; 9:705. [PMID: 24189400 PMCID: PMC4039310 DOI: 10.1038/msb.2013.61] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 10/02/2013] [Indexed: 01/06/2023] Open
Abstract
We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein-protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems-level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14-protein core network critical to the viability of multiple EGFR-mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR-mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance.
Collapse
Affiliation(s)
- Jiannong Li
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Keiryn Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bin Fang
- Proteomics and Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Takeshi Yoshida
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan
| | - Isamu Okamoto
- Center for Clinical and Translational Research, Kyushu University Hospital, Fukuoka, Japan
| | - Jae-Young Kim
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Lanxi Song
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xiaoning Qian
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL, USA
| | - Bhupendra Rawal
- Biostatistics Departments, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Michael Schell
- Biostatistics Departments, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Florian Grebien
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Uwe Rix
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven Eschrich
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - John Koomen
- Proteomics and Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
20
|
Haura EB, Smith MA. Signaling control by epidermal growth factor receptor and MET: rationale for cotargeting strategies in lung cancer. J Clin Oncol 2013; 31:4148-50. [PMID: 24101046 DOI: 10.1200/jco.2013.50.8234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Eric B Haura
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | |
Collapse
|
21
|
Abstract
BACKGROUND An understanding of the activated protein signaling architecture in non-small-cell lung cancer (NSCLC) is of critical importance to the development of new therapeutic approaches and identification of predictive and prognostic biomarkers for patient stratification. METHODS We used reverse-phase protein microarrays to map the activated protein signaling networks of 47 NSCLC tumors, 28 of which were node negative, which were subjected to tumor cellular enrichment using laser capture microdissection. The phosphorylation/cleavage levels of 111 key signaling proteins and total levels of 17 proteins were measured for broadscale signaling analysis. RESULTS Pathway activation mapping of NSCLC revealed distinct subgroups composed of epidermal growth factor receptor (ERBB1), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2), v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (ERBB3), v-erb-a erythroblastic leukemia viral oncogene homolog 4 (ERBB4), v-akt murine thymoma viral oncogene homolog 1- mammalian target of rapamycin (AKT-mTOR), protein kinase, AMP-activated, alpha 2 catalytic subunit (AMPK), and autophagy-related signaling, along with transforming growth factor-beta-signaling protein 1 (SMAD), insulin-line growth factor receptor (IGFR), rearranged during transfection proto-oncogene (RET), and activated CDC42-associated kinase (ACK) activation. Investigation of epidermal growth factor receptor (EGFR)-driven signaling identified a unique cohort of tumors with low EGFR protein expression yet high relative levels of phosphorylated EGFR and high EGFR total protein with low relative levels of phosphorylation. Last, mapping analysis of patients with NSCLC with N0 disease revealed a pilot pathway activation signature composed of linked epidermal growth factor receptor family (HER)-AMPK-AKT-mTOR signaling network along with focal adhesion kinase- LIM domain kinase-1 (FAK-LIMK) and janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathways that correlated with short-term survival and aggressive disease. CONCLUSIONS Functional protein pathway activation mapping of NSCLC reveals distinct activation subgroups that are underpinned by important therapeutic targets and that patients with early-stage node negative disease and poor prognosis may be identified by activation of defined, biochemically linked protein signaling events. Such findings, if confirmed in larger study sets, could help select and stratify patients for personalized targeted therapies.
Collapse
|
22
|
QIU FANGHUA, HUANG DEHONG, XIAO HONGGUANG, QIU FANGYING, LU LIMING, NIE JING. Detection of tyrosine-phosphorylated proteins in hepatocellular carcinoma tissues using a combination of GST-Nck1-SH2 pull-down and two-dimensional electrophoresis. Mol Med Rep 2013; 7:1209-14. [DOI: 10.3892/mmr.2013.1324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 01/22/2013] [Indexed: 11/05/2022] Open
|
23
|
Kaneko T, Joshi R, Feller SM, Li SS. Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Cell Commun Signal 2012; 10:32. [PMID: 23134684 PMCID: PMC3507883 DOI: 10.1186/1478-811x-10-32] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/09/2012] [Indexed: 12/21/2022] Open
Abstract
SH2 domains are long known prominent players in the field of phosphotyrosine recognition within signaling protein networks. However, over the years they have been joined by an increasing number of other protein domain families that can, at least with some of their members, also recognise pTyr residues in a sequence-specific context. This superfamily of pTyr recognition modules, which includes substantial fractions of the PTB domains, as well as much smaller, or even single member fractions like the HYB domain, the PKCδ and PKCθ C2 domains and RKIP, represents a fascinating, medically relevant and hence intensely studied part of the cellular signaling architecture of metazoans. Protein tyrosine phosphorylation clearly serves a plethora of functions and pTyr recognition domains are used in a similarly wide range of interaction modes, which encompass, for example, partner protein switching, tandem recognition functionalities and the interaction with catalytically active protein domains. If looked upon closely enough, virtually no pTyr recognition and regulation event is an exact mirror image of another one in the same cell. Thus, the more we learn about the biology and ultrastructural details of pTyr recognition domains, the more does it become apparent that nature cleverly combines and varies a few basic principles to generate a sheer endless number of sophisticated and highly effective recognition/regulation events that are, under normal conditions, elegantly orchestrated in time and space. This knowledge is also valuable when exploring pTyr reader domains as diagnostic tools, drug targets or therapeutic reagents to combat human diseases.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | | | | | | |
Collapse
|
24
|
Abstract
Modular protein interaction domains (PIDs) that recognize linear peptide motifs are found in hundreds of proteins within the human genome. Some PIDs such as SH2, 14-3-3, Chromo, and Bromo domains serve to recognize posttranslational modification (PTM) of amino acids (such as phosphorylation, acetylation, methylation, etc.) and translate these into discrete cellular responses. Other modules such as SH3 and PSD-95/Discs-large/ZO-1 (PDZ) domains recognize linear peptide epitopes and serve to organize protein complexes based on localization and regions of elevated concentration. In both cases, the ability to nucleate-specific signaling complexes is in large part dependent on the selectivity of a given protein module for its cognate peptide ligand. High-throughput (HTP) analysis of peptide-binding domains by peptide or protein arrays, phage display, mass spectrometry, or other HTP techniques provides new insight into the potential protein-protein interactions prescribed by individual or even whole families of modules. Systems level analyses have also promoted a deeper understanding of the underlying principles that govern selective protein-protein interactions and how selectivity evolves. Lastly, there is a growing appreciation for the limitations and potential pitfalls associated with HTP analysis of protein-peptide interactomes. This review will examine some of the common approaches utilized for large-scale studies of PIDs and suggest a set of standards for the analysis and validation of datasets from large-scale studies of peptide-binding modules. We will also highlight how data from large-scale studies of modular interaction domain families can provide insight into systems level properties such as the linguistics of selective interactions.
Collapse
Affiliation(s)
- Bernard A Liu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | |
Collapse
|
25
|
SRC Homology 2 Domain Binding Sites in Insulin, IGF-1 and FGF receptor mediated signaling networks reveal an extensive potential interactome. Cell Commun Signal 2012; 10:27. [PMID: 22974441 PMCID: PMC3514216 DOI: 10.1186/1478-811x-10-27] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/01/2012] [Indexed: 12/31/2022] Open
Abstract
Specific peptide ligand recognition by modular interaction domains is essential for the fidelity of information flow through the signal transduction networks that control cell behavior in response to extrinsic and intrinsic stimuli. Src homology 2 (SH2) domains recognize distinct phosphotyrosine peptide motifs, but the specific sites that are phosphorylated and the complement of available SH2 domains varies considerably in individual cell types. Such differences are the basis for a wide range of available protein interaction microstates from which signaling can evolve in highly divergent ways. This underlying complexity suggests the need to broadly map the signaling potential of systems as a prerequisite for understanding signaling in specific cell types as well as various pathologies that involve signal transduction such as cancer, developmental defects and metabolic disorders. This report describes interactions between SH2 domains and potential binding partners that comprise initial signaling downstream of activated fibroblast growth factor (FGF), insulin (Ins), and insulin-like growth factor-1 (IGF-1) receptors. A panel of 50 SH2 domains screened against a set of 192 phosphotyrosine peptides defines an extensive potential interactome while demonstrating the selectivity of individual SH2 domains. The interactions described confirm virtually all previously reported associations while describing a large set of potential novel interactions that imply additional complexity in the signaling networks initiated from activated receptors. This study of pTyr ligand binding by SH2 domains provides valuable insight into the selectivity that underpins complex signaling networks that are assembled using modular protein interaction domains.
Collapse
|
26
|
Haura EB. From modules to medicine: How modular domains and their associated networks can enable personalized medicine. FEBS Lett 2012; 586:2580-5. [PMID: 22575759 DOI: 10.1016/j.febslet.2012.04.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 01/09/2023]
Abstract
Unveiling of cancer genomes is unleashing new therapeutic strategies for cancer. With cancer parts lists in hand, new approaches to personalized medicine can be developed by understanding the assembly of cancer machines using modular domains in proteins and their associated networks. Using the Src-homology-2 (SH2) domain as an example, new profiling approaches can discern global patterns of tyrosine phosphorylation in cancer cells that can enable molecular cancer medicine. Identifying and quantifying protein-protein interactions also has the potential to subtype tumors and guide clinical decision making. These approaches should extend the impact of genomics through viewing the architecture of cancer systems and improve predictions of patient outcome and therapeutic response, as well as guide combination therapy approaches that attack cancer systems.
Collapse
Affiliation(s)
- Eric B Haura
- Department of Thoracic Oncology Program and Experimental Therapeutics Program, The H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
27
|
Liu BA, Engelmann BW, Nash PD. The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. FEBS Lett 2012; 586:2597-605. [PMID: 22569091 DOI: 10.1016/j.febslet.2012.04.054] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
Natural languages arise in an unpremeditated fashion resulting in words and syntax as individual units of information content that combine in a manner that is both complex and contextual, yet intuitive to a native reader. In an analogous manner, protein interaction domains such as the Src Homology 2 (SH2) domain recognize and "read" the information contained within their cognate peptide ligands to determine highly selective protein-protein interactions that underpin much of cellular signal transduction. Herein, we discuss how contextual sequence information, which combines the use of permissive and non-permissive residues within a parent motif, is a defining feature of selective interactions across SH2 domains. Within a system that reads phosphotyrosine modifications this provides crucial information to distinguish preferred interactions. This review provides a structural and biochemical overview of SH2 domain binding to phosphotyrosine-containing peptide motifs and discusses how the diverse set of SH2 domains is able to differentiate phosphotyrosine ligands.
Collapse
Affiliation(s)
- Bernard A Liu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, Ontario, Canada M5G 1X5
| | | | | |
Collapse
|
28
|
Jadwin JA, Ogiue-Ikeda M, Machida K. The application of modular protein domains in proteomics. FEBS Lett 2012; 586:2586-96. [PMID: 22710164 DOI: 10.1016/j.febslet.2012.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 11/19/2022]
Abstract
The ability of modular protein domains to independently fold and bind short peptide ligands both in vivo and in vitro has allowed a significant number of protein-protein interaction studies to take advantage of them as affinity and detection reagents. Here, we refer to modular domain based proteomics as "domainomics" to draw attention to the potential of using domains and their motifs as tools in proteomics. In this review we describe core concepts of domainomics, established and emerging technologies, and recent studies by functional category. Accumulation of domain-motif binding data should ultimately provide the foundation for domain-specific interactomes, which will likely reveal the underlying substructure of protein networks as well as the selectivity and plasticity of signal transduction.
Collapse
Affiliation(s)
- Joshua A Jadwin
- Department of Genetics and Developmental Biology, Raymond and Beverly Sackler Laboratory of Genetics and Molecular Medicine, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030, USA
| | | | | |
Collapse
|
29
|
A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med 2012; 18:521-8. [PMID: 22426421 DOI: 10.1038/nm.2713] [Citation(s) in RCA: 440] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 02/21/2012] [Indexed: 02/07/2023]
Abstract
Tyrosine kinase inhibitors (TKIs) elicit high response rates among individuals with kinase-driven malignancies, including chronic myeloid leukemia (CML) and epidermal growth factor receptor-mutated non-small-cell lung cancer (EGFR NSCLC). However, the extent and duration of these responses are heterogeneous, suggesting the existence of genetic modifiers affecting an individual's response to TKIs. Using paired-end DNA sequencing, we discovered a common intronic deletion polymorphism in the gene encoding BCL2-like 11 (BIM). BIM is a pro-apoptotic member of the B-cell CLL/lymphoma 2 (BCL2) family of proteins, and its upregulation is required for TKIs to induce apoptosis in kinase-driven cancers. The polymorphism switched BIM splicing from exon 4 to exon 3, which resulted in expression of BIM isoforms lacking the pro-apoptotic BCL2-homology domain 3 (BH3). The polymorphism was sufficient to confer intrinsic TKI resistance in CML and EGFR NSCLC cell lines, but this resistance could be overcome with BH3-mimetic drugs. Notably, individuals with CML and EGFR NSCLC harboring the polymorphism experienced significantly inferior responses to TKIs than did individuals without the polymorphism (P = 0.02 for CML and P = 0.027 for EGFR NSCLC). Our results offer an explanation for the heterogeneity of TKI responses across individuals and suggest the possibility of personalizing therapy with BH3 mimetics to overcome BIM-polymorphism-associated TKI resistance.
Collapse
|
30
|
Fowler CB, Chesnick IE, Moore CD, O'Leary TJ, Mason JT. Elevated pressure improves the extraction and identification of proteins recovered from formalin-fixed, paraffin-embedded tissue surrogates. PLoS One 2010; 5:e14253. [PMID: 21170380 PMCID: PMC2999528 DOI: 10.1371/journal.pone.0014253] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 11/17/2010] [Indexed: 11/18/2022] Open
Abstract
Background Proteomic studies of formalin-fixed paraffin-embedded (FFPE) tissues are frustrated by the inability to extract proteins from archival tissue in a form suitable for analysis by 2-D gel electrophoresis or mass spectrometry. This inability arises from the difficulty of reversing formaldehyde-induced protein adducts and cross-links within FFPE tissues. We previously reported the use of elevated hydrostatic pressure as a method for efficient protein recovery from a hen egg-white lysozyme tissue surrogate, a model system developed to study formalin fixation and histochemical processing. Principal Findings In this study, we demonstrate the utility of elevated hydrostatic pressure as a method for efficient protein recovery from FFPE mouse liver tissue and a complex multi-protein FFPE tissue surrogate comprised of hen egg-white lysozyme, bovine carbonic anhydrase, bovine ribonuclease A, bovine serum albumin, and equine myoglobin (55∶15∶15∶10∶5 wt%). Mass spectrometry of the FFPE tissue surrogates retrieved under elevated pressure showed that both the low and high-abundance proteins were identified with sequence coverage comparable to that of the surrogate mixture prior to formaldehyde treatment. In contrast, non-pressure-extracted tissue surrogate samples yielded few positive and many false peptide identifications. Studies with soluble formalin-treated bovine ribonuclease A demonstrated that pressure modestly inhibited the rate of reversal (hydrolysis) of formaldehyde-induced protein cross-links. Dynamic light scattering studies suggest that elevated hydrostatic pressure and heat facilitate the recovery of proteins free of formaldehyde adducts and cross-links by promoting protein unfolding and hydration with a concomitant reduction in the average size of the protein aggregates. Conclusions These studies demonstrate that elevated hydrostatic pressure treatment is a promising approach for improving the recovery of proteins from FFPE tissues in a form suitable for proteomic analysis.
Collapse
Affiliation(s)
- Carol B Fowler
- Department of Biophysics, Armed Forces Institute of Pathology, Rockville, Maryland, United States of America.
| | | | | | | | | |
Collapse
|