1
|
Deng R, Li YL, Liu JL. Cytoophidia Influence Cell Cycle and Size in Schizosaccharomyces pombe. Int J Mol Sci 2024; 25:608. [PMID: 38203781 PMCID: PMC10779087 DOI: 10.3390/ijms25010608] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cytidine triphosphate synthase (CTPS) forms cytoophidia in all three domains of life. Here we focus on the function of cytoophidia in cell proliferation using Schizosaccharomyces pombe as a model system. We find that converting His359 of CTPS into Ala359 leads to cytoophidium disassembly. By reducing the level of CTPS protein or specific mutation, the loss of cytoophidia prolongs the G2 phase and expands cell size. In addition, the loss-filament mutant of CTPS leads to a decrease in the expression of genes related to G2/M transition and cell growth, including histone chaperone slm9. The overexpression of slm9 alleviates the G2 phase elongation and cell size enlargement induced by CTPS loss-filament mutants. Overall, our results connect cytoophidia with cell cycle and cell size control in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Ruolan Deng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Lan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
2
|
Gal C, Cochrane GA, Morgan BA, Rallis C, Bähler J, Whitehall SK. The longevity and reversibility of quiescence in Schizosaccharomyces pombe are dependent upon the HIRA histone chaperone. Cell Cycle 2023; 22:1921-1936. [PMID: 37635373 PMCID: PMC10599175 DOI: 10.1080/15384101.2023.2249705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Quiescence (G0) is a reversible non-dividing state that facilitates cellular survival in adverse conditions. Here, we demonstrate that the HIRA histone chaperone complex is required for the reversibility and longevity of nitrogen starvation-induced quiescence in Schizosaccharomyces pombe. The HIRA protein, Hip1 is not required for entry into G0 or the induction of autophagy. Although hip1Δ cells retain metabolic activity in G0, they rapidly lose the ability to resume proliferation. After a short period in G0 (1 day), hip1Δ mutants can resume cell growth in response to the restoration of a nitrogen source but do not efficiently reenter the vegetative cell cycle. This correlates with a failure to induce the expression of MBF transcription factor-dependent genes that are critical for S phase. In addition, hip1Δ G0 cells rapidly progress to a senescent state in which they can no longer re-initiate growth following nitrogen source restoration. Analysis of a conditional hip1 allele is consistent with these findings and indicates that HIRA is required for efficient exit from quiescence and prevents an irreversible cell cycle arrest.
Collapse
Affiliation(s)
- Csenge Gal
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Grace A. Cochrane
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Brian A. Morgan
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charalampos Rallis
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Jürg Bähler
- Department of Genetics, Evolution and Environment and Institute of Healthy Ageing, University College London, London, UK
| | - Simon K. Whitehall
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Madloo P, Lema M, Cartea ME, Soengas P. Sclerotinia sclerotiorum Response to Long Exposure to Glucosinolate Hydrolysis Products by Transcriptomic Approach. Microbiol Spectr 2021; 9:e0018021. [PMID: 34259546 PMCID: PMC8552769 DOI: 10.1128/spectrum.00180-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 11/21/2022] Open
Abstract
White mold disease, caused by the necrotrophic fungus Sclerotinia sclerotiorum, affects Brassica crops. Brassica crops produce a broad array of compounds, such as glucosinolates, which contribute to the defense against pathogens. From their hydrolysis, several products arise that have antimicrobial activity (GHPs) whose toxicity is structure dependent. S. sclerotiorum may overcome the toxic effect of moderate GHP concentrations after prolonged exposure to their action. Our objective was to identify the molecular mechanism underlying S. sclerotiorum response to long exposure to two chemically diverse GHPs: aliphatic GHP allyl-isothiocyanate (AITC) and indole GHP indol-3-carbinol (I3C). We found that the transcriptomic response is dependent on the type of GHP and on their initial target, involving cell membranes in the case of AITC or DNA in the case of I3C. Response mechanisms include the reorganization of chromatin, mediated by histone chaperones hip4 and cia1, ribosome synthesis controlled by the kinase-phosphatase pair aps1-ppn1, catabolism of proteins, ergosterol synthesis, and induction of detoxification systems. These mechanisms probably help S. sclerotiorum to grow and survive in an environment where GHPs are constantly produced by Brassica plants upon glucosinolate breakdown. IMPORTANCEBrassica species, including important vegetable crops, such as cabbage, cauliflower, or broccoli, or oil crops, such as rapeseed, produce specific chemical compounds useful to protect them against pests and pathogens. One of the most destructive Brassica diseases in temperate areas around the world is Sclerotinia stem rot, caused by the fungus Sclerotinia sclerotiorum. This is a generalist pathogen that causes disease over more than 400 plant species, being a serious threat to economically important crops worldwide, including potato, bean, soybean, and sunflower, among many others. Understanding the mechanisms utilized by pathogens to overcome specific plant defensive compounds can be useful to increase plant resistance. Our study demonstrated that Sclerotinia shows different adaptation mechanisms, including detoxification systems, to grow and survive when plant protective compounds are present.
Collapse
Affiliation(s)
- Pari Madloo
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
- Department of Functional Biology, School of Biology, Universidade de Santiago de Compostela, Santiago, Spain
| | - Margarita Lema
- Department of Functional Biology, School of Biology, Universidade de Santiago de Compostela, Santiago, Spain
| | - Maria Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (MBG-CSIC), Pontevedra, Spain
| |
Collapse
|
4
|
Bouvier D, Ferrand J, Chevallier O, Paulsen MT, Ljungman M, Polo SE. Dissecting regulatory pathways for transcription recovery following DNA damage reveals a non-canonical function of the histone chaperone HIRA. Nat Commun 2021; 12:3835. [PMID: 34158510 PMCID: PMC8219801 DOI: 10.1038/s41467-021-24153-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
Transcription restart after a genotoxic challenge is a fundamental yet poorly understood process. Here, we dissect the interplay between transcription and chromatin restoration after DNA damage by focusing on the human histone chaperone complex HIRA, which is required for transcription recovery post UV. We demonstrate that HIRA is recruited to UV-damaged chromatin via the ubiquitin-dependent segregase VCP to deposit new H3.3 histones. However, this local activity of HIRA is dispensable for transcription recovery. Instead, we reveal a genome-wide function of HIRA in transcription restart that is independent of new H3.3 and not restricted to UV-damaged loci. HIRA coordinates with ASF1B to control transcription restart by two independent pathways: by stabilising the associated subunit UBN2 and by reducing the expression of the transcription repressor ATF3. Thus, HIRA primes UV-damaged chromatin for transcription restart at least in part by relieving transcription inhibition rather than by depositing new H3.3 as an activating bookmark.
Collapse
Affiliation(s)
- Déborah Bouvier
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Juliette Ferrand
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Odile Chevallier
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Michelle T Paulsen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sophie E Polo
- Epigenetics & Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France.
| |
Collapse
|
5
|
Rai TS, Glass M, Cole JJ, Rather MI, Marsden M, Neilson M, Brock C, Humphreys IR, Everett RD, Adams PD. Histone chaperone HIRA deposits histone H3.3 onto foreign viral DNA and contributes to anti-viral intrinsic immunity. Nucleic Acids Res 2017; 45:11673-11683. [PMID: 28981850 PMCID: PMC5691367 DOI: 10.1093/nar/gkx771] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/14/2017] [Accepted: 09/08/2017] [Indexed: 12/22/2022] Open
Abstract
The HIRA histone chaperone complex deposits histone H3.3 into nucleosomes in a DNA replication- and sequence-independent manner. As herpesvirus genomes enter the nucleus as naked DNA, we asked whether the HIRA chaperone complex affects herpesvirus infection. After infection of primary cells with HSV or CMV, or transient transfection with naked plasmid DNA, HIRA re-localizes to PML bodies, sites of cellular anti-viral activity. HIRA co-localizes with viral genomes, binds to incoming viral and plasmid DNAs and deposits histone H3.3 onto these. Anti-viral interferons (IFN) specifically induce HIRA/PML co-localization at PML nuclear bodies and HIRA recruitment to IFN target genes, although HIRA is not required for IFN-inducible expression of these genes. HIRA is, however, required for suppression of viral gene expression, virus replication and lytic infection and restricts murine CMV replication in vivo. We propose that the HIRA chaperone complex represses incoming naked viral DNAs through chromatinization as part of intrinsic cellular immunity.
Collapse
Affiliation(s)
- Taranjit Singh Rai
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, PA1 2BE, Scotland
- Beatson Institute for Cancer Research, Glasgow, Scotland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - Mandy Glass
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, PA1 2BE, Scotland
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - John J. Cole
- Beatson Institute for Cancer Research, Glasgow, Scotland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - Mohammad I. Rather
- Beatson Institute for Cancer Research, Glasgow, Scotland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - Morgan Marsden
- Cardiff Institute of Infection & Immunity, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | | | - Claire Brock
- Beatson Institute for Cancer Research, Glasgow, Scotland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - Ian R. Humphreys
- Cardiff Institute of Infection & Immunity, Cardiff University, Cardiff, Wales, CF14 4XN, UK
| | - Roger D. Everett
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, G61 1QH, Scotland
| | - Peter D. Adams
- Beatson Institute for Cancer Research, Glasgow, Scotland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, Scotland
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
6
|
Shi L, Wen H, Shi X. The Histone Variant H3.3 in Transcriptional Regulation and Human Disease. J Mol Biol 2017; 429:1934-1945. [PMID: 27894815 PMCID: PMC5446305 DOI: 10.1016/j.jmb.2016.11.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 01/19/2023]
Abstract
Histone proteins wrap around DNA to form nucleosomes, which further compact into the higher-order structure of chromatin. In addition to the canonical histones, there are also variant histones that often have pivotal roles in regulating chromatin dynamics and in the accessibility of the underlying DNA. H3.3 is the most common non-centromeric variant of histone H3 that differs from the canonical H3 by just 4-5 aa. Here, we discuss the current knowledge of H3.3 in transcriptional regulation and the recent discoveries and molecular mechanisms of H3.3 mutations in human cancer.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Wen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaobing Shi
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Zhu R, Iwabuchi M, Ohsumi K. The WD40 Domain of HIRA Is Essential for RI-nucleosome Assembly in Xenopus Egg Extracts. Cell Struct Funct 2017; 42:37-48. [PMID: 28381790 DOI: 10.1247/csf.17001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Histone chaperones are a group of histone-binding proteins that facilitate the assembly of nucleosomes, the fundamental structural units of chromatin in eukaryotes. In nucleosome assembly, deposition of a histone H3-H4 tetramer onto DNA is the first and critical step, which is mediated by the histone chaperones HIRA and CAF-1. HIRA and CAF-1 are reportedly involved in DNA replication independent (RI) and replication coupled nucleosome assembly, respectively. However, the mechanisms by which they mediate histone deposition remain unclear. In this study, we focused on the mechanism by which HIRA induces RI-nucleosome assembly. We looked for HIRA domains that are required for nucleosome assembly and its localization to chromatin. We used cell-free extracts from Xenopus eggs that carry out RI-nucleosome assembly of plasmid DNA. We confirmed that HIRA formed stable complexes with Asf1, another histone H3-H4 chaperone, and the HIRA-Asf1 complex was solely responsible for RI-nucleosome assembly in egg extracts. We further demonstrated that the HIRA N-terminus containing the WD40 domain, which comprises seven WD40 repeats, and the B domain, to which Asf1 binds, were essential for RI-nucleosome assembly; the three WD40 repeats from the N-terminus were especially critical. Using egg extracts that reproduce nuclear formation accompanying the duplication of chromatin, we also demonstrated that the Hir domain was indispensable for the binding of HIRA to chromatin. Thus, the WD40 and B domains are the core elements for inducing RI-nucleosome assembly. Hir domain regulates the binding to chromatin. Based on these findings, similarities and differences between HIRA and CAF-1 are discussed.
Collapse
Affiliation(s)
- Ruibin Zhu
- Group of Developmental Cell Biology, Graduate School of Science, Nagoya University
| | | | | |
Collapse
|
8
|
Restriction of Retrotransposon Mobilization in Schizosaccharomyces pombe by Transcriptional Silencing and Higher-Order Chromatin Organization. Genetics 2016; 203:1669-78. [PMID: 27343236 PMCID: PMC4981269 DOI: 10.1534/genetics.116.189118] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/20/2016] [Indexed: 12/23/2022] Open
Abstract
Uncontrolled propagation of retrotransposons is potentially detrimental to host genome integrity. Therefore, cells have evolved surveillance mechanisms to restrict the mobility of these elements. In Schizosaccharomyces pombe the Tf2 LTR retrotransposons are transcriptionally silenced and are also clustered in the nucleus into structures termed Tf bodies. Here we describe the impact of silencing and clustering on the mobility of an endogenous Tf2 element. Deletion of genes such as set1+ (histone H3 lysine 4 methyltransferase) or abp1+ (CENP-B homolog) that both alleviate silencing and clustering, result in a corresponding increase in mobilization. Furthermore, expression of constitutively active Sre1, a transcriptional activator of Tf2 elements, also alleviates clustering and induces mobilization. In contrast, clustering is not disrupted by loss of the HIRA histone chaperone, despite high levels of expression, and in this background, mobilization frequency is only marginally increased. Thus, mutations that compromise transcriptional silencing but not Tf bodies are insufficient to drive mobilization. Furthermore, analyses of mutant alleles that separate the transcriptional repression and clustering functions of Set1 are consistent with control of Tf2 propagation via a combination of silencing and spatial organization. Our results indicate that host surveillance mechanisms operate at multiple levels to restrict Tf2 retrotransposon mobilization.
Collapse
|
9
|
Gal C, Murton HE, Subramanian L, Whale AJ, Moore KM, Paszkiewicz K, Codlin S, Bähler J, Creamer KM, Partridge JF, Allshire RC, Kent NA, Whitehall SK. Abo1, a conserved bromodomain AAA-ATPase, maintains global nucleosome occupancy and organisation. EMBO Rep 2015; 17:79-93. [PMID: 26582768 PMCID: PMC4718406 DOI: 10.15252/embr.201540476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/26/2015] [Indexed: 12/28/2022] Open
Abstract
Maintenance of the correct level and organisation of nucleosomes is crucial for genome function. Here, we uncover a role for a conserved bromodomain AAA‐ATPase, Abo1, in the maintenance of nucleosome architecture in fission yeast. Cells lacking abo1+ experience both a reduction and mis‐positioning of nucleosomes at transcribed sequences in addition to increased intragenic transcription, phenotypes that are hallmarks of defective chromatin re‐establishment behind RNA polymerase II. Abo1 is recruited to gene sequences and associates with histone H3 and the histone chaperone FACT. Furthermore, the distribution of Abo1 on chromatin is disturbed by impaired FACT function. The role of Abo1 extends to some promoters and also to silent heterochromatin. Abo1 is recruited to pericentromeric heterochromatin independently of the HP1 ortholog, Swi6, where it enforces proper nucleosome occupancy. Consequently, loss of Abo1 alleviates silencing and causes elevated chromosome mis‐segregation. We suggest that Abo1 provides a histone chaperone function that maintains nucleosome architecture genome‐wide.
Collapse
Affiliation(s)
- Csenge Gal
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle, UK
| | - Heather E Murton
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle, UK
| | - Lakxmi Subramanian
- Wellcome Trust Centre for Cell Biology & Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Alex J Whale
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle, UK
| | - Karen M Moore
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - Konrad Paszkiewicz
- Biosciences, College of Life & Environmental Sciences, University of Exeter, Exeter, UK
| | - Sandra Codlin
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, UK
| | - Jürg Bähler
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, UK
| | - Kevin M Creamer
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Janet F Partridge
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robin C Allshire
- Wellcome Trust Centre for Cell Biology & Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Nicholas A Kent
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Simon K Whitehall
- Institute for Cell & Molecular Biosciences, Newcastle University, Newcastle, UK
| |
Collapse
|
10
|
Sadeghi L, Prasad P, Ekwall K, Cohen A, Svensson JP. The Paf1 complex factors Leo1 and Paf1 promote local histone turnover to modulate chromatin states in fission yeast. EMBO Rep 2015; 16:1673-87. [PMID: 26518661 PMCID: PMC4687421 DOI: 10.15252/embr.201541214] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/05/2015] [Indexed: 11/21/2022] Open
Abstract
The maintenance of open and repressed chromatin states is crucial for the regulation of gene expression. To study the genes involved in maintaining chromatin states, we generated a random mutant library in Schizosaccharomyces pombe and monitored the silencing of reporter genes inserted into the euchromatic region adjacent to the heterochromatic mating type locus. We show that Leo1–Paf1 [a subcomplex of the RNA polymerase II‐associated factor 1 complex (Paf1C)] is required to prevent the spreading of heterochromatin into euchromatin by mapping the heterochromatin mark H3K9me2 using high‐resolution genomewide ChIP (ChIP–exo). Loss of Leo1–Paf1 increases heterochromatin stability at several facultative heterochromatin loci in an RNAi‐independent manner. Instead, deletion of Leo1 decreases nucleosome turnover, leading to heterochromatin stabilization. Our data reveal that Leo1–Paf1 promotes chromatin state fluctuations by enhancing histone turnover.
Collapse
Affiliation(s)
- Laia Sadeghi
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Punit Prasad
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Amikam Cohen
- Department of Microbiology and Molecular Genetics, IMRIC The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - J Peter Svensson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
11
|
Gal C, Moore KM, Paszkiewicz K, Kent NA, Whitehall SK. The impact of the HIRA histone chaperone upon global nucleosome architecture. Cell Cycle 2015; 14:123-34. [PMID: 25602522 PMCID: PMC4614360 DOI: 10.4161/15384101.2014.967123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
HIRA is an evolutionarily conserved histone chaperone that mediates
replication-independent nucleosome assembly and is important for a variety of processes
such as cell cycle progression, development, and senescence. Here we have used a chromatin
sequencing approach to determine the genome-wide contribution of HIRA to nucleosome
organization in Schizosaccharomyces pombe. Cells lacking HIRA experience
a global reduction in nucleosome occupancy at gene sequences, consistent with the proposed
role for HIRA in chromatin reassembly behind elongating RNA polymerase II. In addition, we
find that at its target promoters, HIRA commonly maintains the full occupancy of the
−1 nucleosome. HIRA does not affect global chromatin structure at replication
origins or in rDNA repeats but is required for nucleosome occupancy in silent regions of
the genome. Nucleosome organization associated with the heterochromatic
(dg-dh) repeats located at the centromere is perturbed by loss of HIRA
function and furthermore HIRA is required for normal nucleosome occupancy at Tf2 LTR
retrotransposons. Overall, our data indicate that HIRA plays an important role in
maintaining nucleosome architecture at both euchromatic and heterochromatic loci.
Collapse
Affiliation(s)
- Csenge Gal
- a Institute for Cell & Molecular Biosciences ; Newcastle University ; Newcastle upon Tyne , UK
| | | | | | | | | |
Collapse
|
12
|
A novel histone deacetylase complex in the control of transcription and genome stability. Mol Cell Biol 2014; 34:3500-14. [PMID: 25002536 DOI: 10.1128/mcb.00519-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acetylation state of histones, controlled by histone acetyltransferases (HATs) and deacetylases (HDACs), profoundly affects DNA transcription and repair by modulating chromatin accessibility to the cellular machinery. The Schizosaccharomyces pombe HDAC Clr6 (human HDAC1) binds to different sets of proteins that define functionally distinct complexes: I, I', and II. Here, we determine the composition, architecture, and functions of a new Clr6 HDAC complex, I'', delineated by the novel proteins Nts1, Mug165, and Png3. Deletion of nts1 causes increased sensitivity to genotoxins and deregulated expression of Tf2 elements, long noncoding RNA, and subtelomeric and stress-related genes. Similar, but more pervasive, phenotypes are observed upon Clr6 inactivation, supporting the designation of complex I'' as a mediator of a key subset of Clr6 functions. We also reveal that with the exception of Tf2 elements, the genome-wide loading sites and loci regulated by Clr6 I″ do not correlate. Instead, Nts1 loads at genes that are expressed in midmeiosis, following oxidative stress, or are periodically expressed. Collective data suggest that Clr6 I'' has (i) indirect effects on gene expression, conceivably by mediating higher-order chromatin organization of subtelomeres and Tf2 elements, and (ii) direct effects on the transcription of specific genes in response to certain cellular or environmental stimuli.
Collapse
|
13
|
The 19S proteasome subunit Rpt3 regulates distribution of CENP-A by associating with centromeric chromatin. Nat Commun 2014; 5:3597. [PMID: 24710126 DOI: 10.1038/ncomms4597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/10/2014] [Indexed: 12/24/2022] Open
Abstract
CENP-A, a variant of histone H3, is incorporated into centromeric chromatin and plays a role during kinetochore establishment. In fission yeast, the localization of CENP-A is limited to a region spanning 10-20 kb of the core domain of the centromere. Here, we report a mutant (rpt3-1) in which this region is expanded to 40-70 kb. Likely due to abnormal distribution of CENP-A, this mutant exhibits chromosome instability and enhanced gene silencing. Interestingly, the rpt3(+) gene encodes a subunit of the 19S proteasome, which localizes to the nuclear membrane. Although Rpt3 associates with centromeric chromatin, the mutant protein has lost this localization. A loss of the cut8(+) gene encoding an anchor of the proteasome to the nuclear membrane causes similar phenotypes as observed in the rpt3-1 mutant. Thus, we propose that the proteasome (or its subcomplex) associates with centromeric chromatin and regulates distribution of CENP-A.
Collapse
|
14
|
Amin AD, Vishnoi N, Prochasson P. A global requirement for the HIR complex in the assembly of chromatin. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1819:264-276. [PMID: 24459729 DOI: 10.1016/j.bbagrm.2011.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Due to its extensive length, DNA is packaged into a protective chromatin structure known as the nucleosome. In order to carry out various cellular functions, nucleosomes must be disassembled, allowing access to the underlying DNA, and subsequently reassembled on completion of these processes. The assembly and disassembly of nucleosomes is dependent on the function of histone modifiers, chromatin remodelers and histone chaperones. In this review, we discuss the roles of an evolutionarily conserved histone chaperone known as the HIR/HIRA complex. In S. cerevisiae, the HIR complex is made up of the proteins Hir1, Hir2, Hir3 and Hpc2, which collectively act in transcriptional regulation, elongation, gene silencing, cellular senescence and even aging. This review presents an overview of the role of the HIR complex, in yeast as well as other organisms, in each of these processes, in order to give a better understanding of how nucleosome assembly is imperative for cellular homeostasis and genomic integrity. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.
Collapse
|
15
|
Orsi GA, Algazeery A, Meyer RE, Capri M, Sapey-Triomphe LM, Horard B, Gruffat H, Couble P, Aït-Ahmed O, Loppin B. Drosophila Yemanuclein and HIRA cooperate for de novo assembly of H3.3-containing nucleosomes in the male pronucleus. PLoS Genet 2013; 9:e1003285. [PMID: 23408912 PMCID: PMC3567178 DOI: 10.1371/journal.pgen.1003285] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/14/2012] [Indexed: 01/13/2023] Open
Abstract
The differentiation of post-meiotic spermatids in animals is characterized by a unique reorganization of their nuclear architecture and chromatin composition. In many species, the formation of sperm nuclei involves the massive replacement of nucleosomes with protamines, followed by a phase of extreme nuclear compaction. At fertilization, the reconstitution of a nucleosome-based paternal chromatin after the removal of protamines requires the deposition of maternally provided histones before the first round of DNA replication. This process exclusively uses the histone H3 variant H3.3 and constitutes a unique case of genome-wide replication-independent (RI) de novo chromatin assembly. We had previously shown that the histone H3.3 chaperone HIRA plays a central role for paternal chromatin assembly in Drosophila. Although several conserved HIRA-interacting proteins have been identified from yeast to human, their conservation in Drosophila, as well as their actual implication in this highly peculiar RI nucleosome assembly process, is an open question. Here, we show that Yemanuclein (YEM), the Drosophila member of the Hpc2/Ubinuclein family, is essential for histone deposition in the male pronucleus. yem loss of function alleles affect male pronucleus formation in a way remarkably similar to Hira mutants and abolish RI paternal chromatin assembly. In addition, we demonstrate that HIRA and YEM proteins interact and are mutually dependent for their targeting to the decondensing male pronucleus. Finally, we show that the alternative ATRX/XNP-dependent H3.3 deposition pathway is not involved in paternal chromatin assembly, thus underlining the specific implication of the HIRA/YEM complex for this essential step of zygote formation. Chromosome organization relies on a basic functional unit called the nucleosome, in which DNA is wrapped around a core of histone proteins. However, during male gamete formation, the majority of histones are replaced by sperm-specific proteins that are adapted to sexual reproduction but incompatible with the formation of the first zygotic nucleus. These proteins must therefore be replaced by histones upon fertilization, in a replication-independent chromatin assembly process that requires the histone deposition factor HIRA. In this study, we identified the protein Yemanuclein (YEM) as a new partner of HIRA at fertilization. We show that, in eggs laid by yem mutant females, the male pronucleus fails to assemble its nucleosomes, resulting in the loss of paternal chromosomes at the first zygotic division. In addition, we found that YEM and HIRA are mutually dependent to perform chromatin assembly at fertilization, demonstrating that they tightly cooperate in vivo. Finally, we demonstrate that the replication-independent chromatin assembly factor ATRX/XNP is not involved in the assembly of paternal nucleosomes. In conclusion, our results shed new light into critical mechanisms controlling paternal chromosome formation at fertilization.
Collapse
Affiliation(s)
- Guillermo A. Orsi
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR5534, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Ahmed Algazeery
- Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | - Régis E. Meyer
- Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | - Michèle Capri
- Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | - Laure M. Sapey-Triomphe
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR5534, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Béatrice Horard
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR5534, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Henri Gruffat
- Laboratoire de Biologie Moléculaire des Herpesvirus, INSERM U758, Ecole Normale Supérieure de Lyon, France
| | - Pierre Couble
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR5534, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Ounissa Aït-Ahmed
- Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
- * E-mail: (OA-A); (BL)
| | - Benjamin Loppin
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR5534, Université Claude Bernard Lyon 1, Villeurbanne, France
- * E-mail: (OA-A); (BL)
| |
Collapse
|
16
|
Chujo M, Tarumoto Y, Miyatake K, Nishida E, Ishikawa F. HIRA, a conserved histone chaperone, plays an essential role in low-dose stress response via transcriptional stimulation in fission yeast. J Biol Chem 2012; 287:23440-50. [PMID: 22589550 DOI: 10.1074/jbc.m112.349944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells that have been pre-exposed to mild stress (priming stress) acquire transient resistance to subsequent severe stress even under different combinations of stresses. This phenomenon is called cross-tolerance. Although it has been reported that cross-tolerance occurs in many organisms, the molecular basis is not clear yet. Here, we identified slm9(+) as a responsible gene for the cross-tolerance in the fission yeast Schizosaccharomyces pombe. Slm9 is a homolog of mammalian HIRA histone chaperone. HIRA forms a conserved complex and gene disruption of other HIRA complex components, Hip1, Hip3, and Hip4, also yielded a cross-tolerance-defective phenotype, indicating that the fission yeast HIRA is involved in the cross-tolerance as a complex. We also revealed that Slm9 was recruited to the stress-responsive gene loci upon stress treatment in an Atf1-dependent manner. The expression of stress-responsive genes under stress conditions was compromised in HIRA disruptants. Consistent with this, Pol II recruitment and nucleosome eviction at these gene loci were impaired in slm9Δ cells. Furthermore, we found that the priming stress enhanced the expression of stress-responsive genes in wild-type cells that were exposed to the severe stress. These observations suggest that HIRA functions in stress response through transcriptional regulation.
Collapse
Affiliation(s)
- Moeko Chujo
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
17
|
Tang Y, Puri A, Ricketts MD, Rai TS, Hoffmann J, Hoi E, Adams PD, Schultz DC, Marmorstein R. Identification of an ubinuclein 1 region required for stability and function of the human HIRA/UBN1/CABIN1/ASF1a histone H3.3 chaperone complex. Biochemistry 2012; 51:2366-77. [PMID: 22401310 DOI: 10.1021/bi300050b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mammalian HIRA/UBN1/CABIN1/ASF1a (HUCA) histone chaperone complex deposits the histone H3 variant H3.3 into chromatin and is linked to gene activation, repression, and chromatin assembly in diverse cell contexts. We recently reported that a short N-terminal fragment of UBN1 containing amino acids 1-175 is necessary and sufficient for interaction with the WD repeats of HIRA and attributed this interaction to a region from residues 120-175 that is highly conserved with the yeast ortholog Hpc2 and so termed the HRD for Hpc2-related domain. In this report, through a more comprehensive and refined biochemical and mutational analysis, we identify a smaller and more moderately conserved region within residues 41-77 of UBN1, which we term the NHRD, that is essential for interaction with the HIRA WD repeats; we further demonstrate that the HRD is dispensable for this interaction. We employ analytical ultracentrifugation studies to demonstrate that the NHRD of UBN1 and the WD repeats of HIRA form a tight 1:1 complex with a dissociation constant in the nanomolar range. Mutagenesis experiments identify several key residues in the NHRD that are required for interaction with the HIRA WD repeat domain, stability of the HUCA complex in vitro and in vivo, and changes in chromatin organization in primary human cells. Together, these studies implicate the NHRD domain of UBN1 as being an essential region for HIRA interaction and chromatin organization by the HUCA complex.
Collapse
Affiliation(s)
- Yong Tang
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ray-Gallet D, Woolfe A, Vassias I, Pellentz C, Lacoste N, Puri A, Schultz DC, Pchelintsev NA, Adams PD, Jansen LET, Almouzni G. Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol Cell 2012; 44:928-41. [PMID: 22195966 DOI: 10.1016/j.molcel.2011.12.006] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 11/15/2011] [Accepted: 12/06/2011] [Indexed: 01/21/2023]
Abstract
Establishment of a proper chromatin landscape is central to genome function. Here, we explain H3 variant distribution by specific targeting and dynamics of deposition involving the CAF-1 and HIRA histone chaperones. Impairing replicative H3.1 incorporation via CAF-1 enables an alternative H3.3 deposition at replication sites via HIRA. Conversely, the H3.3 incorporation throughout the cell cycle via HIRA cannot be replaced by H3.1. ChIP-seq analyses reveal correlation between HIRA-dependent H3.3 accumulation and RNA pol II at transcription sites and specific regulatory elements, further supported by their biochemical association. The HIRA complex shows unique DNA binding properties, and depletion of HIRA increases DNA sensitivity to nucleases. We propose that protective nucleosome gap filling of naked DNA by HIRA leads to a broad distribution of H3.3, and HIRA association with Pol II ensures local H3.3 enrichment at specific sites. We discuss the importance of this H3.3 deposition as a salvage pathway to maintain chromatin integrity.
Collapse
|
19
|
Rai TS, Adams PD. Lessons from senescence: Chromatin maintenance in non-proliferating cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:322-31. [PMID: 21839870 DOI: 10.1016/j.bbagrm.2011.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/25/2011] [Accepted: 07/27/2011] [Indexed: 02/08/2023]
Abstract
Cellular senescence is an irreversible proliferation arrest, thought to contribute to tumor suppression, proper wound healing and, perhaps, tissue and organismal aging. Two classical tumor suppressors, p53 and pRB, control cell cycle arrest associated with senescence. Profound molecular changes occur in cells undergoing senescence. At the level of chromatin, for example, senescence associated heterochromatic foci (SAHF) form in some cell types. Chromatin is inherently dynamic and likely needs to be actively maintained to achieve a stable cell phenotype. In proliferating cells chromatin is maintained in conjunction with DNA replication, but how non-proliferating cells maintain chromatin structure is poorly understood. Some histone variants, such as H3.3 and macroH2A increase as cells undergo senescence, suggesting histone variants and their associated chaperones could be important in chromatin structure maintenance in senescent cells. Here, we discuss options available for senescent cells to maintain chromatin structure and the relative contribution of histone variants and chaperones in this process. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.
Collapse
|
20
|
Human CABIN1 is a functional member of the human HIRA/UBN1/ASF1a histone H3.3 chaperone complex. Mol Cell Biol 2011; 31:4107-18. [PMID: 21807893 DOI: 10.1128/mcb.05546-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian HIRA/UBN1/ASF1a complex is a histone chaperone complex that is conserved from yeast (Saccharomyces cerevisiae) to humans. This complex preferentially deposits the histone variant H3.3 into chromatin in a DNA replication-independent manner and is implicated in diverse chromatin regulatory events from gene activation to heterochromatinization. In yeast, the orthologous complex consists of three Hir proteins (Hir1p, Hir2p, and Hir3p), Hpc2p, and Asf1p. Yeast Hir3p has weak homology to CABIN1, a fourth member of the human complex, suggesting that Hir3p and CABIN1 may be orthologs. Here we show that HIRA and CABIN1 interact at ectopic and endogenous levels of expression in cells, and we isolate the quaternary HIRA/UBN1/CABIN1/ASF1a (HUCA) complex, assembled from recombinant proteins. Mutational analyses support the view that HIRA acts as a scaffold to bring together UBN1, ASF1a, and CABIN1 into a quaternary complex. We show that, like HIRA, UBN1, and ASF1a, CABIN1 is involved in heterochromatinization of the genome of senescent human cells. Moreover, in proliferating cells, HIRA and CABIN1 regulate overlapping sets of genes, and these genes are enriched in the histone variant H3.3. In sum, these data demonstrate that CABIN1 is a functional member of the human HUCA complex and so is the likely ortholog of yeast Hir3p.
Collapse
|
21
|
Vishnoi N, Flaherty K, Hancock LC, Ferreira ME, Amin AD, Prochasson P. Separation-of-function mutation in HPC2, a member of the HIR complex in S. cerevisiae, results in derepression of the histone genes but does not confer cryptic TATA phenotypes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:557-66. [PMID: 21782987 DOI: 10.1016/j.bbagrm.2011.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/02/2011] [Accepted: 07/06/2011] [Indexed: 12/29/2022]
Abstract
The HIR complex, which is comprised of the four proteins Hir1, Hir2, Hir3 and Hpc2, was first characterized as a repressor of three of the four histone gene loci in Saccharomyces cerevisiae. Using a bioinformatical approach, previous studies have identified a region of Hpc2 that is conserved in Schizosaccharomyces pombe and humans. Using a similar approach, we identified two additional domains, CDI and CDII, of the Hpc2 protein that are conserved among yeast species related to S. cerevisiae. We showed that the N terminal CDI domain (spanning amino acids 63-79) is dispensable for HIR complex assembly, but plays an essential role in the repression of the histone genes by recruiting the HIR complex to the HIR-dependent histone gene loci. The second conserved domain, CDII (spanning amino acids 452-480), is required for the stability of the Hpc2 protein itself as well as for the assembly of the HIR complex. In addition, we report a novel separation-of-function mutation within CDI of Hpc2, which causes derepression of the histone genes but does not confer other reported hir/hpc- phenotypes (such as Spt phenotypes, heterochromatin silencing defects and repression of cryptic promoters). This is the first direct demonstration that a separation-of-function mutation exists within the HIR complex.
Collapse
Affiliation(s)
- Nidhi Vishnoi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | |
Collapse
|
22
|
Ferreira ME, Flaherty K, Prochasson P. The Saccharomyces cerevisiae histone chaperone Rtt106 mediates the cell cycle recruitment of SWI/SNF and RSC to the HIR-dependent histone genes. PLoS One 2011; 6:e21113. [PMID: 21698254 PMCID: PMC3115976 DOI: 10.1371/journal.pone.0021113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/19/2011] [Indexed: 11/18/2022] Open
Abstract
Background In Saccharomyces cerevisiae, three out of the four histone gene pairs (HTA1-HTB1, HHT1-HHF1, and HHT2-HHF2) are regulated by the HIR co-repressor complex. The histone chaperone Rtt106 has recently been shown to be present at these histone gene loci throughout the cell cycle in a HIR- and Asf1-dependent manner and involved in their transcriptional repression. The SWI/SNF and RSC chromatin remodeling complexes are both recruited to the HIR-dependent histone genes; SWI/SNF is required for their activation in S phase, whereas RSC is implicated in their repression outside of S phase. Even though their presence at the histone genes is dependent on the HIR complex, their specific recruitment has not been well characterized. In this study we focused on characterizing the role played by the histone chaperone Rtt106 in the cell cycle-dependent recruitment of SWI/SNF and RSC complexes to the histone genes. Methodology/Principal Findings Using GST pull-down and co-immunoprecipitation assays, we showed that Rtt106 physically interacts with both the SWI/SNF and RSC complexes in vitro and in vivo. We then investigated the function of this interaction with respect to the recruitment of these complexes to HIR-dependent histone genes. Using chromatin immunoprecipitation assays (ChIP), we found that Rtt106 is important for the recruitment of both SWI/SNF and RSC complexes to the HIR-dependent histone genes. Furthermore, using synchronized cell cultures, we showed by ChIP assays that the Rtt106-dependent SWI/SNF recruitment to these histone gene loci is cell cycle regulated and restricted to late G1 phase just before the peak of histone gene expression in S phase. Conclusions/Significance Overall, these data strongly suggest that the interaction between the histone chaperone Rtt106 and both the SWI/SNF and RSC chromatin remodeling complexes is important for the cell cycle regulated recruitment of these two complexes to the HIR-dependent histone genes.
Collapse
Affiliation(s)
- Monica E. Ferreira
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Kacie Flaherty
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Philippe Prochasson
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
23
|
The HIRA complex subunit Hip3 plays important roles in the silencing of meiosis-specific genes in Schizosaccharomyces pombe. PLoS One 2011; 6:e19442. [PMID: 21559379 PMCID: PMC3084861 DOI: 10.1371/journal.pone.0019442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 03/29/2011] [Indexed: 01/18/2023] Open
Abstract
Background The control of gene expression is essential for growth and responses to environmental changes in various organisms. It is known that some meiosis-specific genes are silenced during mitosis and expressed upon nitrogen starvation in Schizosaccharomyces pombe. When the factors responsible for this regulation were studied, a hip3 mutant was isolated via discovery of a defect in the transcriptional repression of meiosis-specific genes. Hip3 is a subunit of the HIRA (histone regulatory complex A) complex, which consists of four subunits (Hip1, Hip3, Hip4 and Slm9) and acts as a histone chaperone that is independent of DNA replication. Methodology/Principal Findings In a search for mutants, the meiosis-specific gene SPCC663.14c+ was identified by screening for genes that are silenced during mitosis and induced upon nitrogen starvation. A reporter plasmid that expresses the ura4+ gene driven by the SPCC663.14c+ promoter was constructed. Screening for suppressor mutants was then carried out in nitrogen-rich medium without uracil. A mutant with a mutation in the hip3+ gene was isolated and named hip3-1. This mutation alleviated the transcriptional repression of the ura4+ gene on the reporter plasmid and of the endogenous SPCC663.14c+ gene in the presence of nitrogen. A ChIP assay revealed that RNA polymerase II (Pol II) and TFIIE were enriched at the SPCC663.14c+ locus, whereas the levels of histone H3 were decreased in hip3-1 cells. Intriguingly, histone H3 was heavily modified at the SPCC663.14c+ locus in hip3-1 cells; these modifications included tri-methylation and acetylation of H3 lysine 9 (H3K9), mono-methylation of H3 arginine 2 (H3R2), and tri-methylation of H3 lysine 4 (H3K4). In addition, the tri-methylation of H3K9 and H3K4 were strongly elevated in hip3-1 mutants. Conclusions Taken together, these results indicate that Hip3 plays important roles in the control of histone modifications at meiosis-specific gene loci and induces their transcriptional repression.
Collapse
|
24
|
Abstract
Histone proteins wrap DNA to form nucleosome particles that compact eukaryotic genomes while still allowing access for cellular processes such as transcription, replication and DNA repair. Histones exist as different variants that have evolved crucial roles in specialized functions in addition to their fundamental role in packaging DNA. H3.3--a conserved histone variant that is structurally very close to the canonical histone H3--has been associated with active transcription. Furthermore, its role in histone replacement at active genes and promoters is highly conserved and has been proposed to participate in the epigenetic transmission of active chromatin states. Unexpectedly, recent data have revealed accumulation of this specific variant at silent loci in pericentric heterochromatin and telomeres, raising questions concerning the actual function of H3.3. In this review, we describe the known properties of H3.3 and the current view concerning its incorporation modes involving particular histone chaperones. Finally, we discuss the functional significance of the use of this H3 variant, in particular during germline formation and early development in different species.
Collapse
|