1
|
Bang NN, Hayes BJ, Lyons RE, Randhawa IAS, Gaughan JB, Trach NX, McNeill DM. Genomic Prediction and Genome-Wide Association Studies for Productivity, Conformation and Heat Tolerance Traits in Tropical Smallholder Dairy Cows. J Anim Breed Genet 2024. [PMID: 39462234 DOI: 10.1111/jbg.12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Genomic selection (GS) and genome-wide association studies (GWAS) have not been investigated in Vietnamese dairy cattle, even for basic milk production traits, largely due to the scarcity of individual phenotype recording in smallholder dairy farms (SDFs). This study aimed to estimate heritability (h2) and test the applicability of GS and GWAS for milk production, body conformation and novel heat tolerance traits using single test day phenotypic data. Thirty-two SDFs located in either the north (a lowland vs. a highland) or the south (a lowland vs. a highland) of Vietnam were each visited for an afternoon and the next morning to collect phenotype data of all lactating cows (n = 345). Tail hair from each cow was sampled for subsequent genotyping with a 50K SNP chip at that same visit. Milk production traits (single-test day) were milk yield (MILK, kg/cow/day), energy corrected milk yield adjusted for body weight (ECMbw, kg/100 kg BW/day), fat (mFA, %), protein (mPR, %) and dry matter (mDM, %). Conformation traits were body weight (BW, kg) and body condition score (BCS, 1 = thin to 5 = obese). Heat tolerance traits were panting score (PS, 0 = normal to 4.5 = extremely heat-stressed) and infrared temperatures (IRTs, °C) at 11 areas on the external body surface of the cow (inner vulval lip, outer vulval surface, inner tail base surface, ocular area, muzzle, armpit area, paralumbar fossa area, fore udder, rear udder, forehoof and hind hoof), assessed by an Infrared Camera. Univariate linear mixed models and a 10-fold cross-validation approach were applied for GS. Univariate single SNP mixed linear models were applied for the GWAS. Estimated h2 (using the genotype information to build relationships among animals) were moderate (0.20-0.37) for ECMbw, mFA, mPR, mRE, BW, BCS and IRT at rear udder; low (0.08-0.19) for PS and other IRTs; and very low (≤ 0.07) for MILK, ECM and mDM. Accuracy of genomic estimated breeding values (GEBVs) was low (≤ 0.12) for MILK, ECM, mDM and IRT at hind hoof; and moderate to high (0.32-0.46) for all other traits. The most significant regions on chromosomes (BTA) associated with milk production traits were 0.47-1.18 Mb on BTA14. Moderate to high h2 and moderate accuracies of GEBVs for mFA, mPR, ECMbw, BCS, BW, PS and IRTs at rear udder and outer vulval surface suggested that GS using single test day phenotypic data could be applied for these traits. However, a greater sample size is required to decrease the bias of GEBVs by GS and increase the power of detecting significant quantitative trait loci (QTLs) by GWAS.
Collapse
Affiliation(s)
- Nguyen N Bang
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia
| | - Russell E Lyons
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Imtiaz A S Randhawa
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - John B Gaughan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Nguyen X Trach
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - David M McNeill
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
2
|
Ramljak J, Špehar M, Ceranac D, Držaić V, Pocrnić I, Barać D, Mioč B, Širić I, Barać Z, Ivanković A, Kasap A. Genomic Characterization of Local Croatian Sheep Breeds-Effective Population Size, Inbreeding & Signatures of Selection. Animals (Basel) 2024; 14:1928. [PMID: 38998043 PMCID: PMC11240672 DOI: 10.3390/ani14131928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
The Istrian (IS) and the Pag sheep (PS) are local Croatian breeds which provide significant income for the regional economy and have a cultural and traditional importance for the inhabitants. The aim of this study was to estimate some important population specific genetic parameters in IS (N = 1293) and PS (N = 2637) based on genome wide SNPs. Estimates of linkage disequilibrium effective population size (Ne) evidenced more genetic variability in PS (Ne = 838) compared to IS (Ne = 197), regardless of historical time (both recent and ancient genetic variability). The discrepancy in the recent genetic variability between these breeds was additionally confirmed by the estimates of genomic inbreeding (FROH), which was estimated to be notably higher in IS (FROH>2 = 0.062) than in PS (FROH>2 = 0.029). The average FROH2-4, FROH4-8, FROH8-16, and FROH>16 were 0.26, 1.65, 2.14, and 3.72 for IS and 0.22, 0.61, 0.75, and 1.58 for PS, thus evidencing a high contribution of recent inbreeding in the overall inbreeding. One ROH island with > 30% of SNP incidence in ROHs was detected in IS (OAR6; 34,253,440-38,238,124 bp) while there was no ROH islands detected in PS. Seven genes (CCSER1, HERC3, LCORL, NAP1L5, PKD2, PYURF, and SPP1) involved in growth, feed intake, milk production, immune responses, and resistance were associated with the found autozygosity. The results of this study represent the first comprehensive insight into genomic variability of these two Croatian local sheep breeds and will serve as a baseline for setting up the most promising strategy of genomic Optimum Contribution Selection.
Collapse
Affiliation(s)
- Jelena Ramljak
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (V.D.); (B.M.); (I.Š.); (A.I.); (A.K.)
| | - Marija Špehar
- Croatian Agency for Agriculture and Food, 10000 Zagreb, Croatia; (M.Š.); (D.C.); (D.B.)
| | - Dora Ceranac
- Croatian Agency for Agriculture and Food, 10000 Zagreb, Croatia; (M.Š.); (D.C.); (D.B.)
| | - Valentino Držaić
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (V.D.); (B.M.); (I.Š.); (A.I.); (A.K.)
| | - Ivan Pocrnić
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK;
| | - Dolores Barać
- Croatian Agency for Agriculture and Food, 10000 Zagreb, Croatia; (M.Š.); (D.C.); (D.B.)
| | - Boro Mioč
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (V.D.); (B.M.); (I.Š.); (A.I.); (A.K.)
| | - Ivan Širić
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (V.D.); (B.M.); (I.Š.); (A.I.); (A.K.)
| | | | - Ante Ivanković
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (V.D.); (B.M.); (I.Š.); (A.I.); (A.K.)
| | - Ante Kasap
- Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia; (V.D.); (B.M.); (I.Š.); (A.I.); (A.K.)
| |
Collapse
|
3
|
Wei X, Li S, Yan H, Chen S, Li R, Zhang W, Chao S, Guo W, Li W, Ahmed Z, Lei C, Ma Z. Unraveling genomic diversity and positive selection signatures of Qaidam cattle through whole-genome re-sequencing. Anim Genet 2024; 55:362-376. [PMID: 38480515 DOI: 10.1111/age.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/02/2024] [Accepted: 02/22/2024] [Indexed: 05/04/2024]
Abstract
Qaidam cattle are a typical Chinese native breed inhabiting northwest China. They bear the characteristics of high cold and roughage tolerance, low-oxygen adaptability and good meat quality. To analyze the genetic diversity of Qaidam cattle, 60 samples were sequenced using whole-genome resequencing technology, along with 192 published sets of whole-genome sequencing data of Indian indicine cattle, Chinese indicine cattle, North Chinese cattle breeds, East Asian taurine cattle, Eurasian taurine cattle and European taurine cattle as controls. It was found that Qaidam cattle have rich genetic diversity in Bos taurus, but the degree of inbreeding is also high, which needs further protection. The phylogenetic analysis, principal component analysis and ancestral component analysis showed that Qaidam cattle mainly originated from East Asian taurine cattle. Qaidam cattle had a closer genetic relationship with the North Chinese cattle breeds and the least differentiation from Mongolian cattle. Annotating the selection signals obtained by composite likelihood ratio, nucleotide diversity analysis, integrated haplotype score, genetic differentiation index, genetic diversity ratio and cross-population extended haplotype homozygosity methods, several genes associated with immunity, reproduction, meat, milk, growth and adaptation showed strong selection signals. In general, this study provides genetic evidence for understanding the germplasm characteristics of Qaidam cattle. At the same time, it lays a foundation for the scientific and reasonable protection and utilization of genetic resources of Chinese local cattle breeds, which has great theoretical and practical significance.
Collapse
Affiliation(s)
- Xudong Wei
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Shuang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Huixuan Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shengmei Chen
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Ruizhe Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Weizhong Zhang
- Golmud Animal Husbandry and Veterinary Station of Qinghai Province, Golmud, China
| | - Shengyu Chao
- Agro-Technical Extension and Service Center in Haixi Prefecture of Qinghai Province, Delingha, China
| | - Weixing Guo
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Wenhao Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| | - Zulfiqar Ahmed
- Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhijie Ma
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Xining, China
- Plateau Livestock Genetic Resources Protection and Innovative Utilization Key Laboratory of Qinghai Province, Xining, China
| |
Collapse
|
4
|
Rocha RFB, Garcia AO, Dos Santos MG, Otto PI, da Silva MVB, Martins MF, Machado MA, Panetto JCC, Calus MPL, Guimarães SEF. Inheritance of genomic regions and genes associated with number of oocytes and embryos in Gir cattle through daughter design. J Dairy Sci 2024; 107:3794-3801. [PMID: 38310969 DOI: 10.3168/jds.2023-24111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
Over the past decades, daughter designs, including genotyped sires and their genotyped daughters, have been used as an approach to identify QTL related to economic traits. The aim of this study was to identify genomic regions inherited by Gir sire families and genes associated with number of viable oocytes (VO), total number of oocytes (TO), and number of embryos (EMBR) based on a daughter design approach. In total, 15 Gir sire families were selected. The number of daughters per family ranged from 26 to 395, which were genotyped with different SNP panels and imputed to the Illumina BovineHD BeadChip (777K) and had phenotypes for oocyte and embryo production. Daughters had phenotypic data for VO, TO, and EMBR. The search for QTL was performed through GWAS based on GBLUP. The QTL were found for each trait among and within families based on the top 10 genomic windows with the greatest genetic variance. For EMBR, genomic windows identified among families were located on BTA4, BTA5, BTA6, BTA7, BTA8, BTA13, BTA16, and BTA17, and they were most frequent on BTA7 within families. For VO, genomic windows were located on BTA2, BTA4, BTA5, BTA7, BTA17, BTA21, BTA22, BTA23, and BTA27 among families, being most frequent on BTA8 within families. For TO, the top 10 genomic windows were identified on BTA2, BTA4, BTA5, BTA7, BTA17, BTA21, BTA22, BTA26, and BTA27, being most frequent on BTA7 and BTA8 within families. Considering all results, the greatest number of genomic windows was found on BTA7, where the VCAN, XRCC4, TRNAC-ACA, HAPLN1, and EDIL3 genes were identified in the common regions. In conclusion, 15 Gir sire families with 26 to 395 daughters per family with phenotypes for oocyte and embryo production helped to identify the inheritance of several genomic regions, especially on BTA7, where the EDIL3, HAPLN1, and VCAN candidate genes were associated with number of oocytes and embryos in Gir cattle families.
Collapse
Affiliation(s)
- R F B Rocha
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil; Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - A O Garcia
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - M G Dos Santos
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - P I Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - M V B da Silva
- EMBRAPA-Dairy Cattle, Juiz de Fora, MG, 36038-330, Brazil
| | - M F Martins
- EMBRAPA-Dairy Cattle, Juiz de Fora, MG, 36038-330, Brazil
| | - M A Machado
- EMBRAPA-Dairy Cattle, Juiz de Fora, MG, 36038-330, Brazil
| | - J C C Panetto
- EMBRAPA-Dairy Cattle, Juiz de Fora, MG, 36038-330, Brazil
| | - M P L Calus
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - S E F Guimarães
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
5
|
Atashi H, Chen Y, Vanderick S, Hubin X, Gengler N. Single-step genome-wide association analyses for milk urea concentration in Walloon Holstein cows. J Dairy Sci 2024; 107:3020-3031. [PMID: 38056570 DOI: 10.3168/jds.2023-23902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
The aims of this study were to conduct a single-step genome-wide association to identify genomic regions associated with milk urea (MU) and to estimate genetic correlations between MU and milk yield (MY), milk composition (calcium content [CC], fat percentage [FP], protein percentage [PP], and casein percentage [CNP]), and cheese-making properties (CMP; coagulation time [CT], curd firmness after 30 min from rennet addition [a30], and titratable acidity [TA]). The used data have been collected from 2015 to 2020 on 78,073 first-parity (485,218 test-day records) and 48,766 second-parity (284,942 test-day records) Holstein cows distributed in 671 herds in the Walloon Region of Belgium. Data of 565,533 SNP located on 29 BTA of 6,617 animals (1,712 males) were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic BLUP approach. The proportion of the total additive genetic variance explained by windows of 50 consecutive SNPs (with an average size of ∼216 kb) was calculated, and the top-3 genomic regions explaining the largest rate of the genetic variance were considered promising regions and used to identify potential candidate genes. Mean (SD) MU was 25.38 (8.02) mg/dL and 25.03 (8.06) mg/dL in the first and second lactation, respectively. Mean heritability estimates for daily MU were 0.21 and 0.23 for the first and second lactation, respectively. The genetic correlations estimated between MU and MY, milk composition, and CMP were quite low (ranged from -0.10 [CC] to 0.10 [TA] and -0.05 [CT] to 0.13 [TA] for the first and second lactations, respectively). The top-3 regions associated with MU were located from 80.61 to 80.74 Mb on BTA6, 103.26 to 103.41 Mb on BTA11, and 1.59 to 2.15 Mb on BTA14. Genes including KCNT1, MROH1, SHARPIN, TSSK5, CPSF1, HSF1, TONSL, DGAT1, SCX, and MAF1 were identified as positional candidate genes for MU. The findings of this study can be used for a better understanding of the genomic architecture underlying MU in Holstein cattle.
Collapse
Affiliation(s)
- H Atashi
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Department of Animal Science, Shiraz University, 71441-13131 Shiraz, Iran.
| | - Y Chen
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - S Vanderick
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - X Hubin
- Elevéo asbl Awé Group, 5590 Ciney, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
6
|
Liu J, Xu L, Ding X, Ma Y. Genome-Wide Association Analysis of Reproductive Traits in Chinese Holstein Cattle. Genes (Basel) 2023; 15:12. [PMID: 38275594 PMCID: PMC10815438 DOI: 10.3390/genes15010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
This study was to explore potential SNP loci for reproductive traits in Chinese Holstein cattle and identify candidate genes. Genome-wide Association Study based on mixed linear model was performed on 643 Holstein cattle using GeneSeek Bovine 50 K SNP chip. Our results detected forty significant SNP loci after Bonferroni correction. We identified five genes (VWC2L, STAT1, PPP3CA, LDB3, and CTNNA3) as being associated with pregnancy ratio of young cows, five genes (PAEP, ACOXL, EPAS1, GLRB, and MARVELD1) as being associated with pregnancy ratio of adult cows, and nine genes (PDE1B, SLCO1A2, ARHGAP26, ADAM10, APBB1, MON1B, COQ9, CDC42BPB, MARVELD1, and HPSE2) as being associated with daughter pregnancy rate. Our study may provide valuable insights into identifying genes related to reproductive traits and help promote the application of molecular breeding in dairy cows.
Collapse
Affiliation(s)
- Jiashuang Liu
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China;
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China;
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Xiangbin Ding
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China;
| | - Yi Ma
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China;
| |
Collapse
|
7
|
Atashi H, Chen Y, Wilmot H, Bastin C, Vanderick S, Hubin X, Gengler N. Single-step genome-wide association analyses for selected infrared-predicted cheese-making traits in Walloon Holstein cows. J Dairy Sci 2023; 106:7816-7831. [PMID: 37567464 DOI: 10.3168/jds.2022-23206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/01/2023] [Indexed: 08/13/2023]
Abstract
This study aimed to perform genome-wide association study to identify genomic regions associated with milk production and cheese-making properties (CMP) in Walloon Holstein cows. The studied traits were milk yield, fat percentage, protein percentage, casein percentage (CNP), calcium content, somatic cell score (SCS), coagulation time, curd firmness after 30 min from rennet addition, and titratable acidity. The used data have been collected from 2014 to 2020 on 78,073 first-parity (485,218 test-day records), 48,766 second-parity (284,942 test-day records), and 21,948 third-parity (105,112 test-day records) Holstein cows distributed in 671 herds in the Walloon Region of Belgium. Data of 565,533 single nucleotide polymorphisms (SNP), located on 29 Bos taurus autosomes (BTA) of 6,617 animals (1,712 males), were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic BLUP approach. The proportion of the total additive genetic variance explained by windows of 50 consecutive SNPs (with an average size of ∼216 KB) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for positional candidate genes. Heritability estimates for the studied traits ranged from 0.10 (SCS) to 0.53 (CNP), 0.10 (SCS) to 0.50 (CNP), and 0.12 (SCS) to 0.49 (CNP) in the first, second, and third parity, respectively. Genome-wide association analyses identified 6 genomic regions (BTA1, BTA14 [4 regions], and BTA20) associated with the considered traits. Genes including the SLC37A1 (BTA1), SHARPIN, MROH1, DGAT1, FAM83H, TIGD5, MROH6, NAPRT, ADGRB1, GML, LYPD2, JRK (BTA14), and TRIO (BTA20) were identified as positional candidate genes for the studied CMP. The findings of this study help to unravel the genomic background of a cow's ability for cheese production and can be used for the future implementation and use of genomic evaluation to improve the cheese-making traits in Walloon Holstein cows.
Collapse
Affiliation(s)
- H Atashi
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Department of Animal Science, Shiraz University, 71441-13131 Shiraz, Iran.
| | - Y Chen
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - H Wilmot
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; National Fund for Scientific Research (FRS-FNRS), 1000 Brussels, Belgium
| | - C Bastin
- National Fund for Scientific Research (FRS-FNRS), 1000 Brussels, Belgium
| | - S Vanderick
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - X Hubin
- Elevéo asbl Awé Group, 5590 Ciney, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
8
|
Haque MA, Alam MZ, Iqbal A, Lee YM, Dang CG, Kim JJ. Genome-Wide Association Studies for Body Conformation Traits in Korean Holstein Population. Animals (Basel) 2023; 13:2964. [PMID: 37760364 PMCID: PMC10526087 DOI: 10.3390/ani13182964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The objective of this study was to identify quantitative trait loci (QTL) and nearby candidate genes that influence body conformation traits. Phenotypic data for 24 body conformation traits were collected from a population of 2329 Korean Holstein cattle, and all animals were genotyped using the 50 K Illumina bovine SNP chip. A total of 24 genome-wide significant SNPs associated with 24 body conformation traits were identified by genome-wide association analysis. The selection of the most promising candidate genes was based on gene ontology (GO) terms and the previously identified functions that influence various body conformation traits as determined in our study. These genes include KCNA1, RYBP, PTH1R, TMIE, and GNAI3 for body traits; ANGPT1 for rump traits; MALRD1, INHBA, and HOXA13 for feet and leg traits; and CDK1, RHOBTB1, and SLC17A1 for udder traits, respectively. These findings contribute to our understanding of the genetic basis of body conformation traits in this population and pave the way for future breeding strategies aimed at enhancing desirable traits in dairy cattle.
Collapse
Affiliation(s)
- Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (M.A.H.); (M.Z.A.); (A.I.); (Y.-M.L.)
| | - Mohammad Zahangir Alam
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (M.A.H.); (M.Z.A.); (A.I.); (Y.-M.L.)
| | - Asif Iqbal
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (M.A.H.); (M.Z.A.); (A.I.); (Y.-M.L.)
| | - Yun-Mi Lee
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (M.A.H.); (M.Z.A.); (A.I.); (Y.-M.L.)
| | - Chang-Gwon Dang
- Animal Breeding and Genetics Division, National Institute of Animal Science, Cheonan 31000, Chungcheongnam-do, Republic of Korea
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (M.A.H.); (M.Z.A.); (A.I.); (Y.-M.L.)
| |
Collapse
|
9
|
Li B, Khan MZ, Khan IM, Ullah Q, Cisang ZM, Zhang N, Wu D, Huang B, Ma Y, Khan A, Jiang N, Zahoor M. Genetics, environmental stress, and amino acid supplementation affect lactational performance via mTOR signaling pathway in bovine mammary epithelial cells. Front Genet 2023; 14:1195774. [PMID: 37636261 PMCID: PMC10448190 DOI: 10.3389/fgene.2023.1195774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Mammary glands are known for their ability to convert nutrients present in the blood into milk contents. In cows, milk synthesis and the proliferation of cow mammary epithelial cells (CMECs) are regulated by various factors, including nutrients such as amino acids and glucose, hormones, and environmental stress. Amino acids, in particular, play a crucial role in regulating cell proliferation and casein synthesis in mammalian epithelial cells, apart from being building blocks for protein synthesis. Studies have shown that environmental factors, particularly heat stress, can negatively impact milk production performance in dairy cattle. The mammalian target of rapamycin complex 1 (mTORC1) pathway is considered the primary signaling pathway involved in regulating cell proliferation and milk protein and fat synthesis in cow mammary epithelial cells in response to amino acids and heat stress. Given the significant role played by the mTORC signaling pathway in milk synthesis and cell proliferation, this article briefly discusses the main regulatory genes, the impact of amino acids and heat stress on milk production performance, and the regulation of mTORC signaling pathway in cow mammary epithelial cells.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Zhuo-Ma Cisang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Nan Zhang
- Tibet Autonomous Region Animal Husbandry Station, Lhasa, China
| | - Dan Wu
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nan Jiang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Su M, Lin X, Xiao Z, She Y, Deng M, Liu G, Sun B, Guo Y, Liu D, Li Y. Genome-Wide Association Study of Lactation Traits in Chinese Holstein Cows in Southern China. Animals (Basel) 2023; 13:2545. [PMID: 37570353 PMCID: PMC10417049 DOI: 10.3390/ani13152545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023] Open
Abstract
Lactation traits are economically important for dairy cows. Southern China has a high-temperature and high-humidity climate, and environmental and genetic interactions greatly impact dairy cattle performance. The aim of this study was to identify novel single-nucleotide polymorphism sites and novel candidate genes associated with lactation traits in Chinese Holstein cows under high-temperature and humidity conditions in southern China. A genome-wide association study was performed for the lactation traits of 392 Chinese Holstein cows, using GGP Bovine 100 K SNP gene chips. Some 23 single nucleotide polymorphic loci significantly associated with lactation traits were screened. Among them, 16 were associated with milk fat rate, 7 with milk protein rate, and 3 with heat stress. A quantitative trait locus that significantly affects milk fat percentage in Chinese Holstein cows was identified within a window of approximately 0.5 Mb in the region of 0.4-0.9 Mb on Bos taurus autosome 14. According to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, ten genes (DGAT1, IDH2, CYP11B1, GFUS, CYC1, GPT, PYCR3, OPLAH, ALDH1A3, and NAPRT) associated with lactation fat percentage, milk yield, antioxidant activity, stress resistance, and inflammation and immune response were identified as key candidates for lactation traits. The results of this study will help in the development of an effective selection and breeding program for Chinese Holstein cows in high-temperature and humidity regions.
Collapse
Affiliation(s)
- Minqiang Su
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Xiaojue Lin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Zupeng Xiao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Yuanhang She
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.S.); (X.L.); (Z.X.); (Y.S.); (M.D.); (G.L.); (B.S.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
11
|
Bekele R, Taye M, Abebe G, Meseret S. Genomic Regions and Candidate Genes Associated with Milk Production Traits in Holstein and Its Crossbred Cattle: A Review. Int J Genomics 2023; 2023:8497453. [PMID: 37547753 PMCID: PMC10400298 DOI: 10.1155/2023/8497453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/09/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
Genome-wide association studies (GWAS) are a powerful tool for identifying genomic regions and causative genes associated with economically important traits in dairy cattle, particularly complex traits, such as milk production. This is possible due to advances in next-generation sequencing technology. This review summarized information on identified candidate genes and genomic regions associated with milk production traits in Holstein and its crossbreds from various regions of the world. Milk production traits are important in dairy cattle breeding programs because of their direct economic impact on the industry and their close relationship with nutritional requirements. GWAS has been used in a large number of studies to identify genomic regions and candidate genes associated with milk production traits in dairy cattle. Many genomic regions and candidate genes have already been identified in Holstein and its crossbreds. Genes and single nucleotide polymorphisms (SNPs) that significantly affect milk yield (MY) were found in all autosomal chromosomes except chromosomes 27 and 29. Half of the reported SNPs associated with fat yield and fat percentage were found on chromosome 14. However, a large number of significant SNPs for protein yield (PY) and protein percentage were found on chromosomes 1, 5, and 20. Approximately 155 SNPs with significant influence on multiple milk production traits have been identified. Several promising candidate genes, including diacylglycerol O-acyltransferase 1, plectin, Rho GTPase activating protein 39, protein phosphatase 1 regulatory subunit 16A, and sphingomyelin phosphodiesterase 5 were found to have pleiotropic effects on all five milk production traits. Thus, to improve milk production traits it is of practical relevance to focus on significant SNPs and pleiotropic genes frequently found to affect multiple milk production traits.
Collapse
Affiliation(s)
- R. Bekele
- School of Animal and Range Sciences, College of Agriculture, Hawassa University, P.O. Box 5, Hawassa, Ethiopia
- Department of Animal Science, College of Agriculture and Natural Resource Sciences, Debre Berhan University, P.O. Box 445, Debre Berhan, Ethiopia
| | - M. Taye
- School of Animal and Range Sciences, College of Agriculture, Hawassa University, P.O. Box 5, Hawassa, Ethiopia
| | - G. Abebe
- School of Animal and Range Sciences, College of Agriculture, Hawassa University, P.O. Box 5, Hawassa, Ethiopia
| | - S. Meseret
- Livestock Genetics, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| |
Collapse
|
12
|
Rahman JU, Kumar D, Singh SP, Shahi BN, Ghosh AK, Verma MK, Pathak A, Dar AH, Kumar A, Sharma RK. Genome-wide identification and annotation of SNPs and their mapping in candidate genes related to milk production and fertility traits in Badri cattle. Trop Anim Health Prod 2023; 55:117. [PMID: 36928332 DOI: 10.1007/s11250-023-03535-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
This study was conducted in Badri cattle using a double digest restriction-site associated DNA sequencing approach. The study aimed to identify and annotate high confidence single nucleotide polymorphisms (SNPs) and their mapping in candidate genes related to production and fertility in dairy cattle. A total of 7,168,552 genome-wide SNPs were initially identified in Badri cattle by alignment with the Bos indicus reference genome. After filtration of SNPs, 65,483 high confidence SNPs were retained and further used for downstream analysis. Annotation of high confidence SNPs revealed 99.197% SNPs had modifier impact, 0.326% SNPs were low impact, 0.036% were high impact, and 0.441% were moderate impact SNPs. Most SNPs in Badri cattle were found in intergenic, transcript and intronic regions. The candidate genes for milk production PRKCE, ABCG2, GHR, EPS8, CAST and NRXN1 were found to harbour maximum high confidence variants. Among candidate genes for fertility in cattle, ATP2B1, SOX5, WDR27, ARHGAP12, CACNA1D, ANKRD6, GRIA3, ZNF521 and CAST822 have maximum high confidence variants mapped in them. The SNPs found mapped in the candidate genes will be important genetic tools in the search for phenotype-modifying nucleotide changes and will aid in formulating relevant genetic improvement programmes for dairy cattle.
Collapse
Affiliation(s)
- Javid Ur Rahman
- Dapartment of Animal Genetics and Breeding, College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India.
| | - Devendra Kumar
- Dapartment of Animal Genetics and Breeding, College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Satya Pal Singh
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Bijendra Narayan Shahi
- Dapartment of Animal Genetics and Breeding, College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Ashis Kumar Ghosh
- Dapartment of Animal Genetics and Breeding, College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Manish Kumar Verma
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Abhishek Pathak
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Aashaq Hussain Dar
- Department of Livestock Production and Management, College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Anil Kumar
- Department of Livestock Production and Management, College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Rabendra Kumar Sharma
- Department of Livestock Production and Management, College of Veterinary & Animal Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| |
Collapse
|
13
|
Teng J, Wang D, Zhao C, Zhang X, Chen Z, Liu J, Sun D, Tang H, Wang W, Li J, Mei C, Yang Z, Ning C, Zhang Q. Longitudinal genome-wide association studies of milk production traits in Holstein cattle using whole-genome sequence data imputed from medium-density chip data. J Dairy Sci 2023; 106:2535-2550. [PMID: 36797187 DOI: 10.3168/jds.2022-22277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/20/2022] [Indexed: 02/16/2023]
Abstract
Longitudinal traits, such as milk production traits in dairy cattle, are featured by having phenotypic values at multiple time points, which change dynamically over time. In this study, we first imputed SNP chip (50-100K) data to whole-genome sequence (WGS) data in a Chinese Holstein population consisting of 6,470 cows. The imputation accuracies were 0.88 to 0.97 on average after quality control. We then performed longitudinal GWAS in this population based on a random regression test-day model using the imputed WGS data. The longitudinal GWAS revealed 16, 39, and 75 quantitative trait locus regions associated with milk yield, fat percentage, and protein percentage, respectively. We estimated the 95% confidence intervals (CI) for these quantitative trait locus regions using the logP drop method and identified 581 genes involved in these CI. Further, we focused on the CI that covered or overlapped with only 1 gene or the CI that contained an extremely significant top SNP. Twenty-eight candidate genes were identified in these CI. Most of them have been reported in the literature to be associated with milk production traits, such as DGAT1, HSF1, MGST1, GHR, ABCG2, ADCK5, and CSN1S1. Among the unreported novel genes, some also showed good potential as candidate genes, such as CCSER1, CUX2, SNTB1, RGS7, OSR2, and STK3, and are worth being further investigated. Our study provided not only new insights into the candidate genes for milk production traits, but also a general framework for longitudinal GWAS based on random regression test-day model using WGS data.
Collapse
Affiliation(s)
- Jun Teng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Dan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Changheng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Xinyi Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jianfeng Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dongxiao Sun
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Jianbin Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Cheng Mei
- Dongying Shenzhou AustAsia Modern Dairy Farm Co. Ltd., Dongying 257200, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chao Ning
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
14
|
Jia R, Xu L, Sun D, Han B. Genetic marker identification of SEC13 gene for milk production traits in Chinese holstein. Front Genet 2023; 13:1065096. [PMID: 36685890 PMCID: PMC9846039 DOI: 10.3389/fgene.2022.1065096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
SEC13 homolog, nuclear pore and COPII coat complex component (SEC13) is the core component of the cytoplasmic COPII complex, which mediates material transport from the endoplasmic reticulum to the Golgi complex. Our preliminary work found that SEC13 gene was differentially expressed in dairy cows during different stages of lactation, and involved in metabolic pathways of milk synthesis such as citric acid cycle, fatty acid, starch and sucrose metabolisms, so we considered that the SEC13 might be a candidate gene affecting milk production traits. In this study, we detected the polymorphisms of SEC13 gene and verified their genetic effects on milk yield and composition traits in a Chinese Holstein cow population. By sequencing the whole coding and partial flanking regions of SEC13, we found four single nucleotide polymorphisms (SNPs). Subsequent association analysis showed that these four SNPs were significantly associated with milk yield, fat yield, protein yield or protein percentage in the first and second lactations (p ≤.0351). We also found that two SNPs in SEC13 formed one haplotype block by Haploview4.2, and the block was significantly associated with milk yield, fat yield, fat percentage, protein yield or protein percentage (p ≤ .0373). In addition, we predicted the effect of SNP on 5'region on transcription factor binding sites (TFBSs), and found that the allele A of 22:g.54362761A>G could bind transcription factors (TFs) GATA5, GATA3, HOXD9, HOXA10, CDX1 and Hoxd13; and further dual-luciferase reporter assay verified that the allele A of this SNP inhibited the fluorescence activity. We speculate that the A allele of 22:g.54362761A>G might inhibit the transcriptional activity of SEC13 gene by binding the TFs, which may be a cause mutation affecting the formation of milk production traits in dairy cows. In summary, we proved that SEC13 has a significant genetic effect on milk production traits and the identified significant SNPs could be used as candidate genetic markers for GS SNP chips development; on the other hand, we verified the transcriptional regulation of 22:g.54362761A>G on SEC13 gene, providing research direction for further function validation tests.
Collapse
Affiliation(s)
- Ruike Jia
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Lingna Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Dongxiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
- National Dairy Innovation Center, Hohhot, China
| | - Bo Han
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Jiang H, Chai ZX, Cao HW, Zhang CF, Zhu Y, Zhang Q, Xin JW. Genome-wide identification of SNPs associated with body weight in yak. BMC Genomics 2022; 23:833. [PMID: 36522700 PMCID: PMC9756674 DOI: 10.1186/s12864-022-09077-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The yak is the most important livestock in the Qinghai-Tibet Plateau, and body weight directly affects the economic values of yak. Up to date, the genome-wide profiling of single-nucleotide polymorphisms (SNPs) associating with body weight has not been reported in yak. In the present study, the SNPs in 480 yaks from three breeds were analyzed using the commercial high-density (600 K) yak SNP chips. RESULTS The results identified 12 and 4 SNPs potentially associated with body weight in male and female yaks, respectively. Among them, 9 and 2 SNPs showed significant difference in yak body weight between different genotypes at each locus in male and female yaks, respectively. Further exploration found 33 coding genes within the 100 kbp upstream or downstream to the SNP loci, which might be potentially affected by the variation of SNPs. Among them, G protein-coupled receptor kinase 4 (GRK4) might be potentially affected by the SNP AX-174555047, which has been reported to affect the functioning of two body-weight associated hormones (parathyroid hormone, PTH, and adrenomedullin, ADM). Determination of PTH and ADM levels in yak revealed positive relationship between PTH level and body weight, negative relationship between ADM level and body weight along with the variation of AX-174555047 mutation. CONCLUSIONS These results suggested that the SNP AX-174555047 might potentially affect body weight through mediating GRK4 expression and then PTH and ADM functioning. Thus, the SNP AX-174555047 might be used as a biomarker for molecular breeding of yak. More investigations are required to validate this point.
Collapse
Affiliation(s)
- Hui Jiang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| | - Zhi-Xin Chai
- grid.412723.10000 0004 0604 889XKey Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041 Sichuan China
| | - Han-Wen Cao
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| | - Cheng-Fu Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| | - Yong Zhu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| | - Qiang Zhang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| | - Jin-Wei Xin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850000 Tibet China ,grid.464485.f0000 0004 1777 7975Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary (TAAAS), Lhasa, 850009 Tibet China
| |
Collapse
|
16
|
Narayana SG, de Jong E, Schenkel FS, Fonseca PA, Chud TC, Powel D, Wachoski-Dark G, Ronksley PE, Miglior F, Orsel K, Barkema HW. Underlying genetic architecture of resistance to mastitis in dairy cattle: A systematic review and gene prioritization analysis of genome-wide association studies. J Dairy Sci 2022; 106:323-351. [DOI: 10.3168/jds.2022-21923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022]
|
17
|
Easa AA, Selionova M, Aibazov M, Mamontova T, Sermyagin A, Belous A, Abdelmanova A, Deniskova T, Zinovieva N. Identification of Genomic Regions and Candidate Genes Associated with Body Weight and Body Conformation Traits in Karachai Goats. Genes (Basel) 2022; 13:genes13101773. [PMID: 36292658 PMCID: PMC9601913 DOI: 10.3390/genes13101773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/04/2022] Open
Abstract
The objective of this study was to identify the SNPs and candidate genes related to body weight and seven body conformation traits at the age of 8 months in the Russian aboriginal Karachai goats (n = 269) by conducting genome-wide association studies (GWAS), using genotypes generated by Goat SNP BeadChip (Illumina Inc., USA). We identified 241 SNPs, which were significantly associated with the studied traits, including 47 genome-wide SNPs (p < 10−5) and 194 suggestive SNPs (p < 10−4), distributed among all goat autosomes except for autosome 23. Fifty-six SNPs were common for two and more traits (1 SNP for six traits, 2 SNPs for five traits, 12 SNPs for four traits, 20 SNPs for three traits, and 21 SNPs for two traits), while 185 SNPs were associated with single traits. Structural annotation within a window of 0.4 Mb (±0.2 Mb from causal SNPs) revealed 238 candidate genes. The largest number of candidate genes was identified at Chr13 (33 candidate genes for the five traits). The genes identified in our study were previously reported to be associated with growth-related traits in different livestock species. The most significant genes for body weight were CRADD, HMGA2, MSRB3, MAX, HACL1 and RAB15, which regulate growth processes, body sizes, fat deposition, and average daily gains. Among them, the HMGA2 gene is a well-known candidate for prenatal and early postnatal development, and the MSRB3 gene is proposed as a candidate gene affecting the growth performance. APOB, PTPRK, BCAR1, AOAH and ASAH1 genes associated with withers height, rump height and body length, are involved in various metabolic processes, including fatty acid metabolism and lipopolysaccharide catabolism. In addition, WDR70, ZBTB24, ADIPOQ, and SORCS3 genes were linked to chest width. KCNG4 was associated with rump height, body length and chest perimeter. The identified candidate genes can be proposed as molecular markers for growth trait selection for genetic improvement in Karachai goats.
Collapse
Affiliation(s)
- Ahmed A. Easa
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour 22511, Egypt
- Correspondence: (A.A.E.); (N.Z.)
| | - Marina Selionova
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
| | - Magomet Aibazov
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
| | - Tatiana Mamontova
- Timiryazev Agricultural Academy, Russian State Agrarian University-Moscow, Timiryazevskaya Street, 41, Moscow 127550, Russia
| | - Alexander Sermyagin
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Anna Belous
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Alexandra Abdelmanova
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Tatiana Deniskova
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
| | - Natalia Zinovieva
- L K Ernst Federal Research Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, Moscow 142132, Russia
- Correspondence: (A.A.E.); (N.Z.)
| |
Collapse
|
18
|
Nazar M, Abdalla IM, Chen Z, Ullah N, Liang Y, Chu S, Xu T, Mao Y, Yang Z, Lu X. Genome-Wide Association Study for Udder Conformation Traits in Chinese Holstein Cattle. Animals (Basel) 2022; 12:2542. [PMID: 36230283 PMCID: PMC9559277 DOI: 10.3390/ani12192542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Udder conformation traits are one of the most economic traits in dairy cows, greatly affecting animal health, milk production, and producer profitability in the dairy industry. Genetic analysis of udder structure and scores have been developed in Holstein cattle. In our research, we conducted a genome-wide association study for five udder traits, including anterior udder attachment (AUA), central suspensory ligament (CSL), posterior udder attachment height (PUAH), posterior udder attachment width (PUAW), and udder depth (UD), in which the fixed and random model circulating probability unification (FarmCPU) model was applied for the association analysis. The heritability and the standard errors of these five udder traits ranged from 0.04 ± 0.00 to 0.49 ± 0.03. Phenotype data were measured from 1000 Holstein cows, and the GeneSeek Genomic Profiler (GGP) Bovine 100 K SNP chip was used to analyze genotypic data in Holstein cattle. For GWAS analysis, 984 individual cows and 84,407 single-nucleotide polymorphisms (SNPs) remained after quality control; a total of 18 SNPs were found at the GW significant threshold (p < 5.90 × 10−7). Many candidate genes were identified within 200kb upstream or downstream of the significant SNPs, which include MGST1, MGST2, MTUS1, PRKN, STXBP6, GRID2, E2F8, CDH11, FOXP1, SLF1, TMEM117, SBF2, GC, ADGRB3, and GCLC. Pathway analysis revealed that 58 Gene Ontology (GO) terms and 18 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched with adjusted p values, and these GO terms and the KEGG pathway analysis were associated with biological information, metabolism, hormonal growth, and development processes. These results could give valuable biological information for the genetic architecture of udder conformation traits in dairy Holstein cattle.
Collapse
Affiliation(s)
- Mudasir Nazar
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | | | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Numan Ullah
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yan Liang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shuangfeng Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tianle Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
19
|
Liu D, Xu Z, Zhao W, Wang S, Li T, Zhu K, Liu G, Zhao X, Wang Q, Pan Y, Ma P. Genetic parameters and genome-wide association for milk production traits and somatic cell score in different lactation stages of Shanghai Holstein population. Front Genet 2022; 13:940650. [PMID: 36134029 PMCID: PMC9483179 DOI: 10.3389/fgene.2022.940650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate the genetic parameters and genetic architectures of six milk production traits in the Shanghai Holstein population. The data used to estimate the genetic parameters consisted of 1,968,589 test-day records for 305,031 primiparous cows. Among the cows with phenotypes, 3,016 cows were genotyped with Illumina Bovine SNP50K BeadChip, GeneSeek Bovine 50K BeadChip, GeneSeek Bovine LD BeadChip v4, GeneSeek Bovine 150K BeadChip, or low-depth whole-genome sequencing. A genome-wide association study was performed to identify quantitative trait loci and genes associated with milk production traits in the Shanghai Holstein population using genotypes imputed to whole-genome sequences and both fixed and random model circulating probability unification and a mixed linear model with rMVP software. Estimated heritabilities (h2) varied from 0.04 to 0.14 for somatic cell score (SCS), 0.07 to 0.22 for fat percentage (FP), 0.09 to 0.27 for milk yield (MY), 0.06 to 0.23 for fat yield (FY), 0.09 to 0.26 for protein yield (PY), and 0.07 to 0.35 for protein percentage (PP), respectively. Within lactation, genetic correlations for SCS, FP, MY, FY, PY, and PP at different stages of lactation estimated in random regression model were ranged from -0.02 to 0.99, 0.18 to 0.99, 0.04 to 0.99, 0.04 to 0.99, 0.01 to 0.99, and 0.33 to 0.99, respectively. The genetic correlations were highest between adjacent DIM but decreased as DIM got further apart. Candidate genes included those related to production traits (DGAT1, MGST1, PTK2, and SCRIB), disease-related (LY6K, COL22A1, TECPR2, and PLCB1), heat stress-related (ITGA9, NDST4, TECPR2, and HSF1), and reproduction-related (7SK and DOCK2) genes. This study has shown that there are differences in the genetic mechanisms of milk production traits at different stages of lactation. Therefore, it is necessary to conduct research on milk production traits at different stages of lactation as different traits. Our results can also provide a theoretical basis for subsequent molecular breeding, especially for the novel genetic loci.
Collapse
Affiliation(s)
- Dengying Liu
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, China
| | - Wei Zhao
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyi Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tuowu Li
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Zhu
- Shanghai Dairy Cattle Breeding Centre Co, Ltd, Shanghai, China
| | - Guanglei Liu
- Shanghai Dairy Cattle Breeding Centre Co, Ltd, Shanghai, China
| | - Xiaoduo Zhao
- Shanghai Dairy Cattle Breeding Centre Co, Ltd, Shanghai, China
| | - Qishan Wang
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchun Pan
- Department of Animal Breeding and Reproduction, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Peipei Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Genome wide association study identifies novel candidate genes for growth and body conformation traits in goats. Sci Rep 2022; 12:9891. [PMID: 35701479 PMCID: PMC9197946 DOI: 10.1038/s41598-022-14018-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Pakistan is third largest country in term of goat population with distinct characteristics of breeds and estimated population of 78.2 million. Punjab province has 37% of country's total population with seven important documented goat breeds namely Beetal, Daira Din Pannah, Nachi, Barbari, Teddi, Pahari and Pothwari. There is paucity of literature on GWAS for economically important traits i.e., body weight and morphometric measurements. Therefore, we performed GWAS using 50 K SNP Chip for growth in term of age adjusted body weight and morphometric measurements in order to identify genomic regions influencing these traits among Punjab goat breeds. Blood samples were collected from 879 unrelated animals of seven goat breeds along with data for body weight and morphometric measurements including body length, body height, pubic bone length, heart girth and chest length. Genomic DNA was extracted and genotyped using 50 K SNP bead chip. Association of genotypic data with the phenotypic data was performed using Plink 1.9 software. Linear mixed model was used for the association study. Genes were annotated from Capra hircus genome using assembly ARS1. We have identified a number of highly significant SNPs and respective candidate genes associated with growth and body conformation traits. The functional aspects of these candidate genes suggested their potential role in body growth. Moreover, pleiotropic effects were observed for some SNPs for body weight and conformation traits. The results of current study contributed to a better understanding of genes influencing growth and body conformation traits in goat.
Collapse
|
21
|
Zare M, Atashi H, Hostens M. Genome-Wide Association Study for Lactation Performance in the Early and Peak Stages of Lactation in Holstein Dairy Cows. Animals (Basel) 2022; 12:ani12121541. [PMID: 35739877 PMCID: PMC9219502 DOI: 10.3390/ani12121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Although genome-wide association studies (GWAS) have been carried out within a variety of cattle breeds, they are mainly based on the accumulated 305-day lactation yield traits estimated by summing the test-day recorded every day during the lactation period, or combining the weekly or monthly test-day records by linear interpolation. Since the additive genetic variance for milk yield and composition changes during lactation, the genetic effects of QTL related to these traits are not constant during the lactation period. Therefore, a better understanding of the genetic architecture of milk production traits in different lactation stages (e.g., beginning, peak, and end stages of lactation) is needed. The aim of this study was to detect genomic loci associated with lactation performance during 9 to 50 days in milk (DIM) in Holstein dairy cows. Candidate genes identified for milk production traits showed contrasting results between the EARLY and PEAK stages of lactation. Based on the results of this study, it can be concluded that in any genomic study it should be taken into account that the genetic effects of genes related to the lactation performance are not constant during the lactation period. Abstract This study aimed to detect genomic loci associated with the lactation performance during 9 to 50 days in milk (DIM) in Holstein dairy cows. Daily milk yield (MY), fat yield (FY), and protein yield (PY) during 9 to 50 DIM were recorded on 134 multiparous Holstein dairy cows distributed in four research herds. Fat- and protein-corrected milk (FPCM), fat-corrected milk (FCM), and energy-corrected milk (ECM) were predicted. The records collected during 9 to 25 DIM were put into the early stage of lactation (EARLY) and those collected during 26 to 50 DIM were put into the peak stage of lactation (PEAK). Then, the mean of traits in each cow included in each lactation stage (EARLY and PEAK) were estimated and used as phenotypic observations for the genome-wide association study. The included animals were genotyped with the Illumina BovineHD Genotyping BeadChip (Illumina Inc., San Diego, CA, USA) for a total of 777,962 single nucleotide polymorphisms (SNPs). After quality control, 585,109 variants were analyzed using GEMMA software in a mixed linear model. Although there was no SNP associated with traits included at the 5% genome-wide significance threshold, 18 SNPs were identified to be associated with milk yield and composition at the suggestive genome-wide significance threshold. Candidate genes identified for milk production traits showed contrasting results between the EARLY and PEAK stages of lactation. This suggests that differential sets of candidate genes underlie the phenotypic expression of the considered traits in the EARLY and PEAK stages of lactation. Although further functional studies are needed to validate our findings in independent populations, it can be concluded that in any genomic study it should be taken into account that the genetic effects of genes related to the lactation performance are not constant during the lactation period.
Collapse
Affiliation(s)
- Mahsa Zare
- Department of Animal Science, Shiraz University, Shiraz 7144113131, Iran; (M.Z.); (H.A.)
| | - Hadi Atashi
- Department of Animal Science, Shiraz University, Shiraz 7144113131, Iran; (M.Z.); (H.A.)
| | - Miel Hostens
- Department of Population Health Sciences, University of Utrecht, Yalelaan 7, 3584 CL Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-30-253-1820
| |
Collapse
|
22
|
Pal D, Panigrahi M, Chhotaray S, Kumar H, Nayak SS, Rajawat D, Parida S, Gaur GK, Dutt T, Bhushan B. Unraveling genetic admixture in the Indian crossbred cattle by different approaches using Bovine 50K BeadChip. Trop Anim Health Prod 2022; 54:135. [PMID: 35292868 DOI: 10.1007/s11250-022-03133-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
With the upsurge of crossbreeding in India, the admixture levels are highly unpredictable in the composite breeds. Hence, in the present study, 72 Vrindavani animals were assessed for the level of admixture from their known ancestors that are Holstein-Friesian, Jersey, Brown Swiss, and Hariana, through three different software, namely, STRUCTURE, ADMIXTURE, and frappe. The genotype data for ancestral breeds were obtained from a public repository, i.e., DRYAD. The Frieswal crossbred cattle along with ancestral breeds like Holstein-Friesian and Sahiwal were also investigated for the level of admixture with the help of the above-mentioned software. The Frieswal population was found to comprise an average of 62.49, 61.12, and 61.21% of Holstein-Friesian and 37.50, 38.88, and 38.80% of Sahiwal estimated through STRUCTURE, ADMIXTURE, and frappe, respectively. The Vrindavani population was found to consist of on average 39.5, 42.4, and 42.3% of Holstein-Friesian; 22.9, 22.3, and 21.7% of Jersey; 10.7, 10.6, and 11.9% of Brown Swiss; and 26.9, 24.7, and 24.1% of Hariana blood estimated through STRUCTURE, ADMIXTURE, and frappe, respectively. A greater degree of variation was noted in the results from STRUCTURE vs. frappe, STRUCTURE vs. ADMIXTURE than in ADMIXTURE vs. frappe. From this study, we conclude that the admixture analysis based on a single software should be validated through the use of many different approaches for better prediction of admixture levels.
Collapse
Affiliation(s)
- Dhan Pal
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India.
| | - Supriya Chhotaray
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| | - Harshit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| | - Divya Rajawat
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| | - Subhashree Parida
- Division of Veterinary Pharmacology & Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - G K Gaur
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Uttar Pradesh, Izatnagar, Bareilly, 243122, India
| |
Collapse
|
23
|
Taherkhani L, Banabazi MH, EmamJomeh-Kashan N, Noshary A, Imumorin I. The Candidate Chromosomal Regions Responsible for Milk Yield of Cow: A GWAS Meta-Analysis. Animals (Basel) 2022; 12:ani12050582. [PMID: 35268150 PMCID: PMC8909671 DOI: 10.3390/ani12050582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
Milk yield (MY) is highly heritable and an economically important trait in dairy livestock species. To increase power to detect candidate genomic regions for this trait, we carried out a meta-analysis of genome-wide association studies (GWAS). In the present study, we identified 19 studies in PubMed for the meta-analysis. After review of the studies, 16 studies passed the filters for meta-analysis, and the number of chromosomes, detected markers and their positions, number of animals, and p-values were extracted from these studies and recorded. The final data set based on 16 GWAS studies had 353,698 cows and 3950 markers and was analyzed using METAL software. Our findings revealed 1712 significant (p-value < 2.5 × 10−6) genomic loci related to MY, with markers associated with MY found on all autosomes and sex chromosomes and the majority of them found on chromosome 14. Furthermore, gene ontology (GO) annotation was used to explore biological functions of the genes associated with MY; therefore, different regions of this chromosome may be suitable as genomic regions for further research into gene expression.
Collapse
Affiliation(s)
- Lida Taherkhani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (L.T.); (N.E.-K.)
| | - Mohammad Hossein Banabazi
- Department of Biotechnology, Animal Science Research Institute of Iran (ASRI), Agricultural Research, Education & Extension Organization (AREEO), Karaj 3146618361, Iran
- Department of Animal Breeding and Genetics (HGEN), Center for Veterinary Medicine and Animal Science (VHC), Swedish University of Agricultural Sciences (SLU), 75007 Uppsala, Sweden
- Correspondence: ; Tel.: +98-9352470999
| | - Nasser EmamJomeh-Kashan
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (L.T.); (N.E.-K.)
| | - Alireza Noshary
- Department of Animal Science, Karaj Branch, Islamic Azad University, Karaj 3187644511, Iran;
| | - Ikhide Imumorin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| |
Collapse
|
24
|
Shi S, Zhang Z, Li B, Zhang S, Fang L. Incorporation of Trait-Specific Genetic Information into Genomic Prediction Models. Methods Mol Biol 2022; 2467:329-340. [PMID: 35451781 DOI: 10.1007/978-1-0716-2205-6_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Due to the rapid development of high-throughput sequencing technology, we can easily obtain not only the genetic variants at the whole-genome sequence level (e.g., from 1000 Genomes project and 1000 Bull Genomes project), but also a wide range of functional annotations (e.g., enhancers and promoters from ENCODE, FAANG, and FarmGTEx projects) across a wide range of tissues, cell types, developmental stages, and environmental conditions. This huge amount of information leads to a revolution in studying genetics and genomics of complex traits in humans, livestock, and plant species. In this chapter, we focused on and reviewed the genomic prediction methods that incorporate external biological information into genomic prediction, such as sequence ontology, linkage disequilibrium (LD) of SNPs, quantitative trait loci (QTL), and multi-layer omics data (e.g., transcriptome, epigenome, and microbiome).
Collapse
Affiliation(s)
- Shaolei Shi
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhe Zhang
- Department of Animal Breeding and genetics, College of Animal Science, South China Agricultural University (SCAU), Guangzhou, China
| | - Bingjie Li
- The Roslin Institute Building, Scotland's Rural College, Edinburgh, UK
| | - Shengli Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
25
|
Ibeagha-Awemu EM, Bissonnette N, Bhattarai S, Wang M, Dudemaine PL, McKay S, Zhao X. Whole Genome Methylation Analysis Reveals Role of DNA Methylation in Cow's Ileal and Ileal Lymph Node Responses to Mycobacterium avium subsp. paratuberculosis Infection. Front Genet 2021; 12:797490. [PMID: 34992636 PMCID: PMC8724574 DOI: 10.3389/fgene.2021.797490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Johne's Disease (JD), caused by Mycobacterium avium subsp paratuberculosis (MAP), is an incurable disease of ruminants and other animal species and is characterized by an imbalance of gut immunity. The role of MAP infection on the epigenetic modeling of gut immunity during the progression of JD is still unknown. This study investigated the DNA methylation patterns in ileal (IL) and ileal lymph node (ILLN) tissues from cows diagnosed with persistent subclinical MAP infection over a one to 4 years period. DNA samples from IL and ILLN tissues from cows negative (MAPneg) (n = 3) or positive for MAP infection (MAPinf) (n = 4) were subjected to whole genome bisulfite sequencing. A total of 11,263 and 62,459 differentially methylated cytosines (DMCs), and 1259 and 8086 differentially methylated regions (DMRs) (FDR<0.1) were found between MAPinf and MAPneg IL and ILLN tissues, respectively. The DMRs were found on 394 genes (denoted DMR genes) in the IL and on 1305 genes in the ILLN. DMR genes with hypermethylated promoters/5'UTR [3 (IL) and 88 (ILLN)] or hypomethylated promoters/5'UTR [10 (IL) and 25 (ILLN)] and having multiple functions including response to stimulus/immune response (BLK, BTC, CCL21, AVPR1A, CHRNG, GABRA4, TDGF1), cellular processes (H2AC20, TEX101, GLA, NCKAP5L, RBM27, SLC18A1, H2AC20BARHL2, NLGN3, SUV39H1, GABRA4, PPA1, UBE2D2) and metabolic processes (GSTO2, H2AC20, SUV39H1, PPA1, UBE2D2) are potential DNA methylation candidate genes of MAP infection. The ILLN DMR genes were enriched for more biological process (BP) gene ontology (GO) terms (n = 374), most of which were related to cellular processes (27.6%), biological regulation (16.6%), metabolic processes (15.4%) and response to stimulus/immune response (8.2%) compared to 75 BP GO terms (related to cellular processes, metabolic processes and transport, and system development) enriched for IL DMR genes. ILLN DMR genes were enriched for more pathways (n = 47) including 13 disease pathways compared with 36 enriched pathways, including 7 disease/immune pathways for IL DMR genes. In conclusion, the results show tissue specific responses to MAP infection with more epigenetic changes (DMCs and DMRs) in the ILLN than in the IL tissue, suggesting that the ILLN and immune processes were more responsive to regulation by methylation of DNA relative to IL tissue. Our data is the first to demonstrate a potential role for DNA methylation in the pathogenesis of MAP infection in dairy cattle.
Collapse
Affiliation(s)
- Eveline M. Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Suraj Bhattarai
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, United States
| | - Mengqi Wang
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Pier-Luc Dudemaine
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Stephanie McKay
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, United States
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-Be-Bellevue, QC, Canada
| |
Collapse
|
26
|
Understanding the genomic architecture of clinical mastitis in Bos indicus. 3 Biotech 2021; 11:466. [PMID: 34745817 DOI: 10.1007/s13205-021-03012-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022] Open
Abstract
This study elucidated potential genetic variants and QTLs associated with clinical mastitis incidence traits in Bos indicus breed, Sahiwal. Estimated breeding values for the traits (calculated using Bayesian inference) were used as pseudo-phenotypes for association with genome-wide SNPs and further QTL regions underlying the traits were identified. In all, 25 SNPs were found to be associated with the traits at the genome-wide suggestive threshold (p ≤ 5 × 10-4) and these SNPs were used to define QTL boundaries based on the linkage disequilibrium structure. A total of 16 QTLs were associated with the trait EBVs including seven each for clinical mastitis incidence (CMI) in first and second lactations and two for CMI in third lactation. Nine out of sixteen QTLs overlapped with the already reported QTLs for mastitis traits, whereas seven were adjudged as novel ones. Important candidates for clinical mastitis in the identified QTL regions included DNAJB9, ELMO1, ARHGAP26, NR3C1, CACNB2, RAB4A, GRB2, NUP85, SUMO2, RBPJ, and RAB33B genes. These findings shed light on the genetic architecture of the disease in Bos indicus, and present potential regions for fine mapping and downstream analysis in future.
Collapse
|
27
|
Identification of candidate genes on the basis of SNP by time-lagged heat stress interactions for milk production traits in German Holstein cattle. PLoS One 2021; 16:e0258216. [PMID: 34648531 PMCID: PMC8516222 DOI: 10.1371/journal.pone.0258216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to estimate genotype by time-lagged heat stress (HS) variance components as well as main and interaction SNP-marker effects for maternal HS during the last eight weeks of cow pregnancy, considering milk production traits recorded in the offspring generation. The HS indicator was the temperature humidity index (THI) for each week. A dummy variable with the code = 1 for the respective week for THI ≥ 60 indicated HS, otherwise, for no HS, the code = 0 was assigned. The dataset included test-day and lactation production traits from 14,188 genotyped first parity Holstein cows. After genotype quality control, 41,139 SNP markers remained for the genomic analyses. Genomic animal models without (model VC_nHS) and with in-utero HS effects (model VC_wHS) were applied to estimate variance components. Accordingly, for genome-wide associations, models GWA_nHS and GWA_wHS, respectively, were applied to estimate main and interaction SNP effects. Common genomic and residual variances for the same traits were very similar from models VC_nHS and VC_wHS. Genotype by HS interaction variances varied, depending on the week with in-utero HS. Among all traits, lactation milk yield with HS from week 5 displayed the largest proportion for interaction variances (0.07). For main effects from model GWA_wHS, 380 SNPs were suggestively associated with all production traits. For the SNP interaction effects from model GWA_wHS, we identified 31 suggestive SNPs, which were located in close distance to 62 potential candidate genes. The inferred candidate genes have various biological functions, including mechanisms of immune response, growth processes and disease resistance. Two biological processes excessively represented in the overrepresentation tests addressed lymphocyte and monocyte chemotaxis, ultimately affecting immune response. The modelling approach considering time-lagged genotype by HS interactions for production traits inferred physiological mechanisms being associated with health and immunity, enabling improvements in selection of robust animals.
Collapse
|
28
|
Ilie DE, Mizeranschi AE, Mihali CV, Neamț RI, Goilean GV, Georgescu OI, Zaharie D, Carabaș M, Huțu I. Genome-Wide Association Studies for Milk Somatic Cell Score in Romanian Dairy Cattle. Genes (Basel) 2021; 12:genes12101495. [PMID: 34680890 PMCID: PMC8535694 DOI: 10.3390/genes12101495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Mastitis is one of the most frequently encountered diseases in dairy cattle, negatively affecting animal welfare and milk production. For this reason, contributions to understanding its genomic architecture are of great interest. Genome-wide association studies (GWAS) have identified multiple loci associated with somatic cell score (SCS) and mastitis in cattle. However, most of the studies have been conducted in different parts of the world on various breeds, and none of the investigations have studied the genetic architecture of mastitis in Romanian dairy cattle breeds up to this point in time. In this study, we report the first GWAS for SCS in dairy cattle breeds from Romania. For GWAS, we used an Axiom Bovine v3 SNP-chip (>63,000 Single Nucleotide Polymorphism -SNPs) and 33,330 records from 690 cows belonging to Romanian Spotted (RS) and Romanian Brown (RB) cattle. The results found one SNP significantly associated with SCS in the RS breed and 40 suggestive SNPs with -log10 (p) from 4 to 4.9 for RS and from 4 to 5.4 in RB. From these, 14 markers were located near 12 known genes (AKAP8, CLHC1, MEGF10, SATB2, GATA6, SPATA6, COL12A1, EPS8, LUZP2, RAMAC, IL12A and ANKRD55) in RB cattle, 3 markers were close to ZDHHC19, DAPK1 and MMP7 genes, while one SNP overlapped the HERC3 gene in RS cattle. Four genes (HERC3, LUZP2, AKAP8 and MEGF10) associated with SCS in this study were previously reported in different studies. The most significant SNP (rs110749552) associated with SCS was located within the HERC3 gene. In both breeds, the SNPs and position of association signals were distinct among the three parities, denoting that mastitis is controlled by different genes that are dependent according to parity. The current results contribute to an expansion in the body of knowledge regarding the proportion of genetic variability explained by SNPs for SCS in dairy cattle.
Collapse
Affiliation(s)
- Daniela Elena Ilie
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (O.I.G.); (I.H.)
- Correspondence:
| | - Alexandru Eugeniu Mizeranschi
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
| | - Ciprian Valentin Mihali
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
| | - Radu Ionel Neamț
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
| | - George Vlad Goilean
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
| | - Ovidiu Ionuț Georgescu
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (O.I.G.); (I.H.)
| | - Daniela Zaharie
- Faculty of Mathematics and Computer Science, West University of Timișoara, 300223 Timisoara, Romania;
| | - Mihai Carabaș
- Faculty of Automatic Control and Computer Science, Politehnica University of Bucharest, 060042 București, Romania;
| | - Ioan Huțu
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (O.I.G.); (I.H.)
| |
Collapse
|
29
|
Meta-analysis of genome-wide association studies and gene networks analysis for milk production traits in Holstein cows. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Genome-Wide Association Study Identifies Candidate Genes Associated with Feet and Leg Conformation Traits in Chinese Holstein Cattle. Animals (Basel) 2021; 11:ani11082259. [PMID: 34438715 PMCID: PMC8388412 DOI: 10.3390/ani11082259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Feet and leg problems are among the major reasons for dairy cows leaving the herd, as well as having direct association with production and reproduction efficiency, health (e.g., claw disorders and lameness) and welfare. Hence, understanding the genetic architecture underlying feet and conformation traits in dairy cattle offers new opportunities toward the genetic improvement and long-term selection. Through a genome-wide association study on Chinese Holstein cattle, we identified several candidate genes associated with feet and leg conformation traits. These results could provide useful information about the molecular breeding basis of feet and leg traits, thus improving the longevity and productivity of dairy cattle. Abstract Feet and leg conformation traits are considered one of the most important economical traits in dairy cattle and have a great impact on the profitability of milk production. Therefore, identifying the single nucleotide polymorphisms (SNPs), genes and pathways analysis associated with these traits might contribute to the genomic selection and long-term plan selection for dairy cattle. We conducted genome-wide association studies (GWASs) using the fixed and random model circulating probability unification (FarmCPU) method to identify SNPs associated with bone quality, heel depth, rear leg side view and rear leg rear view of Chinese Holstein cows. Phenotypic measurements were collected from 1000 individuals of Chinese Holstein cattle and the GeneSeek Genomic Profiler Bovine 100 K SNP chip was utilized for individual genotyping. After quality control, 984 individual cows and 84,906 SNPs remained for GWAS work; as a result, we identified 20 significant SNPs after Bonferroni correction. Several candidate genes were identified within distances of 200 kb upstream or downstream to the significant SNPs, including ADIPOR2, INPP4A, DNMT3A, ALDH1A2, PCDH7, XKR4 and CADPS. Further bioinformatics analyses showed 34 gene ontology terms and two signaling pathways were significantly enriched (p ≤ 0.05). Many terms and pathways are related to biological quality, metabolism and development processes; these identified SNPs and genes could provide useful information about the genetic architecture of feet and leg traits, thus improving the longevity and productivity of Chinese Holstein dairy cattle.
Collapse
|
31
|
Tiplady KM, Lopdell TJ, Reynolds E, Sherlock RG, Keehan M, Johnson TJJ, Pryce JE, Davis SR, Spelman RJ, Harris BL, Garrick DJ, Littlejohn MD. Sequence-based genome-wide association study of individual milk mid-infrared wavenumbers in mixed-breed dairy cattle. Genet Sel Evol 2021; 53:62. [PMID: 34284721 PMCID: PMC8290608 DOI: 10.1186/s12711-021-00648-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/22/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fourier-transform mid-infrared (FT-MIR) spectroscopy provides a high-throughput and inexpensive method for predicting milk composition and other novel traits from milk samples. While there have been many genome-wide association studies (GWAS) conducted on FT-MIR predicted traits, there have been few GWAS for individual FT-MIR wavenumbers. Using imputed whole-genome sequence for 38,085 mixed-breed New Zealand dairy cattle, we conducted GWAS on 895 individual FT-MIR wavenumber phenotypes, and assessed the value of these direct phenotypes for identifying candidate causal genes and variants, and improving our understanding of the physico-chemical properties of milk. RESULTS Separate GWAS conducted for each of 895 individual FT-MIR wavenumber phenotypes, identified 450 1-Mbp genomic regions with significant FT-MIR wavenumber QTL, compared to 246 1-Mbp genomic regions with QTL identified for FT-MIR predicted milk composition traits. Use of mammary RNA-seq data and gene annotation information identified 38 co-localized and co-segregating expression QTL (eQTL), and 31 protein-sequence mutations for FT-MIR wavenumber phenotypes, the latter including a null mutation in the ABO gene that has a potential role in changing milk oligosaccharide profiles. For the candidate causative genes implicated in these analyses, we examined the strength of association between relevant loci and each wavenumber across the mid-infrared spectrum. This revealed shared association patterns for groups of genomically-distant loci, highlighting clusters of loci linked through their biological roles in lactation and their presumed impacts on the chemical composition of milk. CONCLUSIONS This study demonstrates the utility of FT-MIR wavenumber phenotypes for improving our understanding of milk composition, presenting a larger number of QTL and putative causative genes and variants than found from FT-MIR predicted composition traits. Examining patterns of significance across the mid-infrared spectrum for loci of interest further highlighted commonalities of association, which likely reflects the physico-chemical properties of milk constituents.
Collapse
Affiliation(s)
- Kathryn M. Tiplady
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
- School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - Thomas J. Lopdell
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Edwardo Reynolds
- School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - Richard G. Sherlock
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Michael Keehan
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Thomas JJ. Johnson
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Jennie E. Pryce
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| | - Stephen R. Davis
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Richard J. Spelman
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Bevin L. Harris
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - Dorian J. Garrick
- School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - Mathew D. Littlejohn
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
- School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| |
Collapse
|
32
|
Jaswal S, Anand V, Ali SA, Jena MK, Kumar S, Kaushik JK, Mohanty AK. TMT based deep proteome analysis of buffalo mammary epithelial cells and identification of novel protein signatures during lactogenic differentiation. FASEB J 2021; 35:e21621. [PMID: 33977573 DOI: 10.1096/fj.202002476rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/04/2023]
Abstract
The lactating mammary gland harbours numerous matured alveoli with their lumen surrounded by differentiated mammary epithelial cells (MECs), which are exclusively involved in milk synthesis and secretion. Buffalo (Bubalus bubalis) is the second major milk-producing animal, and its physiology is different from cattle. The complete protein machinery involved in MECs differentiation is still not defined in ruminants, in particular, buffalo. Therefore, we have studied the differential expression of regulated proteins in the in vitro grown buffalo MECs (BuMECs) at different time points (on 3, 6, 12, and 15 days) of their differentiation in the presence of lactogenic hormones. TMT-based MS analysis identified 4,934 proteins; of them, 681 were differentially expressed proteins (DEPs). The principal component analysis suggested a highly heterogeneous expression of DEPs at the four-time points of hormone treatment, with most of them (307) attained the highest expression on 12 days. Bioinformatics analysis revealed the association of DEPs with 24 KEGG pathways. We observed few new proteins, namely ABCA13, IVL, VPS37, CZIB, RFX7, Rab5, TTLL12, SMEK1, GDI2, and TMEM131 in BuMECs. The function of one of the highly upregulated proteins, namely involucrin in the differentiation of BuMECs was confirmed based on biochemical inhibition assay. The results further conclude that the proteins with higher abundance can be considered as the potential biomarkers for differentiation, and they may have a significant association with the lactation process in buffalo too. The proteome dataset obtained can be used to understand the species-specific variations among other lactating animals.
Collapse
Affiliation(s)
- Shalini Jaswal
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Vijay Anand
- Department of Veterinary Physiology and Biochemistry, Veterinary College and Research Institute (TANUVAS), Orathanadu, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Manoj K Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Sudarshan Kumar
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Jai K Kaushik
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Ashok K Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| |
Collapse
|
33
|
Kim S, Lim B, Cho J, Lee S, Dang CG, Jeon JH, Kim JM, Lee J. Genome-Wide Identification of Candidate Genes for Milk Production Traits in Korean Holstein Cattle. Animals (Basel) 2021; 11:ani11051392. [PMID: 34068321 PMCID: PMC8153329 DOI: 10.3390/ani11051392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Milk production traits that are economically important in the dairy industry have been considered the main selection criteria for breeding. The present genome-wide association study was performed to identify chromosomal loci and candidate genes with potential effects on milk production phenotypes in a Korean Holstein population. A total of eight significant quantitative trait locus regions were identified for milk yield (Bos taurus autosome (BTA) 7 and 14), adjusted 305-d fat yield (BTA 3, 5, and 14), adjusted 305-d protein yield (BTA 8), and somatic cell score (BTA 8 and 23) of milk production traits. Furthermore, we discovered three main candidate genes (diacylglycerol O-acyltransferase 1 (DGAT1), phosphodiesterase 4B (PDE4B), and anoctamin 2 (ANO2)) through bioinformatics analysis. These genes may help to understand better the underlying genetic and molecular mechanisms for milk production phenotypes in the Korean Holstein population. Abstract We performed a genome-wide association study and fine mapping using two methods (single marker regression: frequentist approach and Bayesian C (BayesC): fitting selected single nucleotide polymorphisms (SNPs) in a Bayesian framework) through three high-density SNP chip platforms to analyze milk production phenotypes in Korean Holstein cattle (n = 2780). We identified four significant SNPs for each phenotype in the single marker regression model: AX-311625843 and AX-115099068 on Bos taurus autosome (BTA) 14 for milk yield (MY) and adjusted 305-d fat yield (FY), respectively, AX-428357234 on BTA 18 for adjusted 305-d protein yield (PY), and AX-185120896 on BTA 5 for somatic cell score (SCS). Using the BayesC model, we discovered significant 1-Mb window regions that harbored over 0.5% of the additive genetic variance effects for four milk production phenotypes. The concordant significant SNPs and 1-Mb window regions were characterized into quantitative trait loci (QTL). Among the QTL regions, we focused on a well-known gene (diacylglycerol O-acyltransferase 1 (DGAT1)) and newly identified genes (phosphodiesterase 4B (PDE4B), and anoctamin 2 (ANO2)) for MY and FY, and observed that DGAT1 is involved in glycerolipid metabolism, fat digestion and absorption, metabolic pathways, and retinol metabolism, and PDE4B is involved in cAMP signaling. Our findings suggest that the candidate genes in QTL are strongly related to physiological mechanisms related to the fat production and consequent total MY in Korean Holstein cattle.
Collapse
Affiliation(s)
- Sangwook Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (S.K.); (B.L.)
| | - Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (S.K.); (B.L.)
| | - Joohyeon Cho
- Dairy Cattle Genetic Improvement Center, Nonghyup, Goyang 10292, Gyeonggi-do, Korea; (J.C.); (S.L.)
| | - Seokhyun Lee
- Dairy Cattle Genetic Improvement Center, Nonghyup, Goyang 10292, Gyeonggi-do, Korea; (J.C.); (S.L.)
| | - Chang-Gwon Dang
- Animal Genetics and Breeding Division, National Institute of Animal Science, RDA, Cheonan 31000, Chungcheongnam-do, Korea;
| | - Jung-Hwan Jeon
- Animal Welfare Research Team, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea;
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (S.K.); (B.L.)
- Correspondence: (J.-M.K.); (J.L.); Tel.: +82-31-670-3263 (J.-M.K. & J.L.); Fax: +82-31-675-3108 (J.-M.K. & J.L.)
| | - Jungjae Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (S.K.); (B.L.)
- Correspondence: (J.-M.K.); (J.L.); Tel.: +82-31-670-3263 (J.-M.K. & J.L.); Fax: +82-31-675-3108 (J.-M.K. & J.L.)
| |
Collapse
|
34
|
Thakor PB, Hinsu AT, Bhatia DR, Shah TM, Nayee N, Sudhakar A, Rank DN, Joshi CG. High-throughput genotype-based population structure analysis of selected buffalo breeds. Transl Anim Sci 2021; 5:txab033. [PMID: 33981962 PMCID: PMC8103726 DOI: 10.1093/tas/txab033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 05/01/2021] [Indexed: 11/29/2022] Open
Abstract
India is considered as the home tract of some of the best buffalo breeds. However, the genetic structure of the Indian river buffalo is poorly understood. Hence, there is a need to characterize the populations and understand the genetic structure of various buffalo breeds for selection and to design breeding strategies. In this study, we have analyzed genetic variability and population structure of seven buffalo breeds from their respective geographical regions using Axiom Buffalo Genotyping Array. Diversity, as measured by expected heterozygosity, ranged from 0.364 in Surti to 0.384 in Murrah breed, and pair-wise FST values revealed the lowest genetic distance between Murrah and Nili-Ravi (0.0022), while the highest between Surti and Pandharpuri (0.030). Principal component analysis and structure analysis unveiled the differentiation of Surti, Pandharpuri, and Jaffarabadi in first two principal components and at K = 4, respectively, while remaining breeds were grouped together as a separate single cluster and admixed. Murrah and Mehsana showed early linkage disequilibrium (LD) decay, while Surti breed showed late decay. In LD blocks to quantitative trait locis (QTLs) concordance analysis, 4.65% of concordance was observed with 873 LD blocks overlapped with 2,330 QTLs. Overall, total 4,090 markers were identified from all LD blocks for six types of traits. Results of this study indicated that these single-nucleotide polymorphism (SNP) markers could differentiate phenotypically distinct breeds like Surti, Pandharpuri, and Jaffarabadi but not others. So, there is a need to develop SNP chip based on SNP markers identified by sequence information of local breeds.
Collapse
Affiliation(s)
- Prakash B Thakor
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Anand Agriculture University, Anand 388001, India
| | - Ankit T Hinsu
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Anand Agriculture University, Anand 388001, India
| | - Dhruv R Bhatia
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Anand Agriculture University, Anand 388001, India
| | - Tejas M Shah
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agriculture University, Anand 388001, India
| | - Nilesh Nayee
- National Dairy Development Board, Anand 388001, India
| | - A Sudhakar
- National Dairy Development Board, Anand 388001, India
| | - Dharamshibhai N Rank
- Department of Animal Genetics and Breeding, College of Veterinary Science and Animal Husbandry, Anand Agriculture University, Anand 388001, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agriculture University, Anand 388001, India.,Gujarat Biotechnology Research Centre, Gandhinagar 382017, India
| |
Collapse
|
35
|
Hou Y, Xie Y, Yang S, Han B, Shi L, Bai X, Liang R, Dong T, Zhang S, Zhang Q, Sun D. EEF1D facilitates milk lipid synthesis by regulation of PI3K-Akt signaling in mammals. FASEB J 2021; 35:e21455. [PMID: 33913197 DOI: 10.1096/fj.202000682rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/11/2022]
Abstract
Mammal's milk is an abundantly foremost source of proteins, lipids, and micronutrients for human nutrition and health. Understanding the molecular mechanisms underlying synthesis of milk components provides practical benefits to improve the milk quality via systematic breeding program in mammals. Through RNAi with EEF1D in primary bovine mammary epithelial cells, we phenotypically observed aberrant formation of cytoplasmic lipid droplets and significantly decreased milk triglyceride level by 37.7%, and exploited the mechanisms by which EEF1D regulated milk lipid synthesis via insulin (PI3K-Akt), AMPK, and PPAR pathways. In the EEF1D CRISPR/Cas9 knockout mice, incompletely developed mammary glands at 9th day postpartum with small or unformed lumens, and significantly decreased triglyceride concentration in milk by 23.4% were observed, as well as the same gene expression alterations in the three pathways. For dairy cattle, we identified a critical regulatory mutation modifying EEF1D transcription activity, which interpreted 7% of the genetic variances of milk lipid yield and percentage. Our findings highlight the significance of EEF1D in mammary gland development and milk lipid synthesis in mammals.
Collapse
Affiliation(s)
- Yali Hou
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yan Xie
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
- Applied Technology Research and Development Center for Sericulture and Special Local Products of Hebei Universities, Institute of Sericulture, Chengde Medical University, Chengde, China
| | - Shaohua Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Bo Han
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Lijun Shi
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Xue Bai
- China National Center for Bioinformation, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Ruobing Liang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Tian Dong
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Shengli Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Qin Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Dongxiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
36
|
Dong W, Yang J, Zhang Y, Liu S, Ning C, Ding X, Wang W, Zhang Y, Zhang Q, Jiang L. Integrative analysis of genome-wide DNA methylation and gene expression profiles reveals important epigenetic genes related to milk production traits in dairy cattle. J Anim Breed Genet 2021; 138:562-573. [PMID: 33620112 DOI: 10.1111/jbg.12530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 02/03/2023]
Abstract
Epigenetic modification plays a critical role in establishing and maintaining cell differentiation, embryo development, tumorigenesis and many complex diseases. However, little is known about the epigenetic regulatory mechanisms for milk production in dairy cattle. Here, we conducted an epigenome-wide study, together with gene expression profiles to identify important epigenetic candidate genes related to the milk production traits in dairy cattle. Whole-genome bisulphite sequencing and RNA sequencing were employed to detect differentially methylated genes (DMG) and differentially expressed genes (DEG) in blood samples in dry period and lactation period between two groups of cows with extremely high and low milk production performance. A total of 10,877 and 6,617 differentially methylated regions were identified between the two groups in the two periods, which corresponded to 3,601 and 2,802 DMGs, respectively. Furthermore, 156 DEGs overlap with DMGs in comparison of the two groups, and 131 DEGs overlap with DMGs in comparison of the two periods. By integrating methylome, transcriptome and GWAS data, some potential candidate genes for milk production traits in dairy cattle were suggested, such as DOCK1, PTK2 and PIK3R1. Our studies may contribute to a better understanding of epigenetic modification on milk production traits of dairy cattle.
Collapse
Affiliation(s)
- Wanting Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chao Ning
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wenwen Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Yi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Li Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
Duan X, An B, Du L, Chang T, Liang M, Yang BG, Xu L, Zhang L, Li J, E G, Gao H. Genome-Wide Association Analysis of Growth Curve Parameters in Chinese Simmental Beef Cattle. Animals (Basel) 2021; 11:ani11010192. [PMID: 33467455 PMCID: PMC7830728 DOI: 10.3390/ani11010192] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
The objective of the present study was to perform a genome-wide association study (GWAS) for growth curve parameters using nonlinear models that fit original weight-age records. In this study, data from 808 Chinese Simmental beef cattle that were weighed at 0, 6, 12, and 18 months of age were used to fit the growth curve. The Gompertz model showed the highest coefficient of determination (R2 = 0.954). The parameters' mature body weight (A), time-scale parameter (b), and maturity rate (K) were treated as phenotypes for single-trait GWAS and multi-trait GWAS. In total, 9, 49, and 7 significant SNPs associated with A, b, and K were identified by single-trait GWAS; 22 significant single nucleotide polymorphisms (SNPs) were identified by multi-trait GWAS. Among them, we observed several candidate genes, including PLIN3, KCNS3, TMCO1, PRKAG3, ANGPTL2, IGF-1, SHISA9, and STK3, which were previously reported to associate with growth and development. Further research for these candidate genes may be useful for exploring the full genetic architecture underlying growth and development traits in livestock.
Collapse
Affiliation(s)
- Xinghai Duan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.D.); (B.A.); (L.D.); (T.C.); (M.L.); (L.X.); (L.Z.); (J.L.)
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| | - Bingxing An
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.D.); (B.A.); (L.D.); (T.C.); (M.L.); (L.X.); (L.Z.); (J.L.)
| | - Lili Du
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.D.); (B.A.); (L.D.); (T.C.); (M.L.); (L.X.); (L.Z.); (J.L.)
| | - Tianpeng Chang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.D.); (B.A.); (L.D.); (T.C.); (M.L.); (L.X.); (L.Z.); (J.L.)
| | - Mang Liang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.D.); (B.A.); (L.D.); (T.C.); (M.L.); (L.X.); (L.Z.); (J.L.)
| | - Bai-Gao Yang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.D.); (B.A.); (L.D.); (T.C.); (M.L.); (L.X.); (L.Z.); (J.L.)
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.D.); (B.A.); (L.D.); (T.C.); (M.L.); (L.X.); (L.Z.); (J.L.)
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.D.); (B.A.); (L.D.); (T.C.); (M.L.); (L.X.); (L.Z.); (J.L.)
| | - Guangxin E
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
- Correspondence: (G.E); (H.G.)
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.D.); (B.A.); (L.D.); (T.C.); (M.L.); (L.X.); (L.Z.); (J.L.)
- Correspondence: (G.E); (H.G.)
| |
Collapse
|
38
|
Peters SO, Kızılkaya K, Ibeagha-Awemu EM, Sinecen M, Zhao X. Comparative accuracies of genetic values predicted for economically important milk traits, genome-wide association, and linkage disequilibrium patterns of Canadian Holstein cows. J Dairy Sci 2020; 104:1900-1916. [PMID: 33358789 DOI: 10.3168/jds.2020-18489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/10/2020] [Indexed: 11/19/2022]
Abstract
Genomic selection methodologies and genome-wide association studies use powerful statistical procedures that correlate large amounts of high-density SNP genotypes and phenotypic data. Actual 305-d milk (MY), fat (FY), and protein (PY) yield data on 695 cows and 76,355 genotyping-by-sequencing-generated SNP marker genotypes from Canadian Holstein dairy cows were used to characterize linkage disequilibrium (LD) structure of Canadian Holstein cows. Also, the comparison of pedigree-based BLUP, genomic BLUP (GBLUP), and Bayesian (BayesB) statistical methods in the genomic selection methodologies and the comparison of Bayesian ridge regression and BayesB statistical methods in the genome-wide association studies were carried out for MY, FY, and PY. Results from LD analysis revealed that as marker distance decreases, LD increases through chromosomes. However, unexpected high peaks in LD were observed between marker pairs with larger marker distances on all chromosomes. The GBLUP and BayesB models resulted in similar heritability estimates through 10-fold cross-validation for MY and PY; however, the GBLUP model resulted in higher heritability estimates than BayesB model for FY. The predictive ability of GBLUP model was significantly lower than that of BayesB for MY, FY, and PY. Association analyses indicated that 28 high-effect markers and markers on Bos taurus autosome 14 located within 6 genes (DOP1B, TONSL, CPSF1, ADCK5, PARP10, and GRINA) associated significantly with FY.
Collapse
Affiliation(s)
- Sunday O Peters
- Department of Animal Science, Berry College, Mount Berry, GA 30149; Department of Animal and Dairy Science, University of Georgia, Athens 30602.
| | - Kadir Kızılkaya
- Department of Animal Science, Faculty of Agriculture, Aydin Adnan Menderes University, Aydin, 09100, Turkey
| | - Eveline M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, 2000 Rue College, Sherbrooke, QC, J1M 0C8 Canada
| | - Mahmut Sinecen
- Department of Computer Engineering, Faculty of Engineering, Aydin Adnan Menderes University, Aydin, 09100, Turkey
| | - Xin Zhao
- Department of Animal Science, McGill University, 21,111 Lakeshore Road, Ste-Anne-De-Bellevue, QC, H9S 3V9 Canada
| |
Collapse
|
39
|
Islam S, Reddy UK, Natarajan P, Abburi VL, Bajwa AA, Imran M, Zahoor MY, Abdullah M, Bukhari AM, Iqbal S, Ashraf K, Nadeem A, Rehman H, Rashid I, Shehzad W. Population demographic history and population structure for Pakistani Nili-Ravi breeding bulls based on SNP genotyping to identify genomic regions associated with male effects for milk yield and body weight. PLoS One 2020; 15:e0242500. [PMID: 33232358 PMCID: PMC7685427 DOI: 10.1371/journal.pone.0242500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/03/2020] [Indexed: 11/20/2022] Open
Abstract
The domestic Nili-Ravi water buffalo (Bubalus bubalis) is the best dairy animal contributing 68% to total milk production in Pakistan. In this study, we identified genome-wide single nucleotide polymorphisms (SNPs) to estimate various population genetic parameters such as diversity, pairwise population differentiation, linkage disequilibrium (LD) distribution and for genome-wide association study for milk yield and body weight traits in the Nili-Ravi dairy bulls that they may pass on to their daughters who are retained for milking purposes. The genotyping by sequencing approach revealed 13,039 reference genome-anchored SNPs with minor allele frequency of 0.05 among 167 buffalos. Population structure analysis revealed that the bulls were grouped into two clusters (K = 2), which indicates the presence of two different lineages in the Pakistani Nili-Ravi water buffalo population, and we showed the extent of admixture of these two lineages in our bull collection. LD analysis revealed 4169 significant SNP associations, with an average LD decay of 90 kb for these buffalo genome. Genome-wide association study involved a multi-locus mixed linear model for milk yield and body weight to identify genome-wide male effects. Our study further illustrates the utility of the genotyping by sequencing approach for identifying genomic regions to uncover additional demographic complexity and to improve the complex dairy traits of the Pakistani Nili-Ravi water buffalo population that would provide the lot of economic benefits to dairy industry.
Collapse
Affiliation(s)
- Saher Islam
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Purushothaman Natarajan
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Venkata Lakshmi Abburi
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Amna Arshad Bajwa
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Yasir Zahoor
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Abdullah
- Department of Livestock Production, University of Veterinary and Animal Sciences, Pattoki, Pakistan
| | - Aamir Mehmood Bukhari
- Semen Production Unit, Qadirabad, District Sahiwal, Pakistan
- Livestock and Dairy Development Department, Government of the Punjab, Lahore, Pakistan
| | - Sajid Iqbal
- Semen Production Unit, Qadirabad, District Sahiwal, Pakistan
- Livestock and Dairy Development Department, Government of the Punjab, Lahore, Pakistan
| | - Kamran Ashraf
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Asif Nadeem
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Habibur Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Wasim Shehzad
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
40
|
Liu L, Zhang Q. Comparative proteome analysis reveals VPS28 regulates milk fat synthesis through ubiquitylation in bovine mammary epithelial cells. PeerJ 2020; 8:e9542. [PMID: 33194328 PMCID: PMC7394067 DOI: 10.7717/peerj.9542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/24/2020] [Indexed: 11/20/2022] Open
Abstract
In our previous study, we found that VPS28 (vacuolar protein sorting 28 homolog) could alter ubiquitylation level to regulate milk fat synthesis in bovine primary mammary epithelial cells (BMECs). While the information on the regulation of VPS28 on proteome of milk fat synthesis is less known, we explored its effect on milk fat synthesis using isobaric tags for relative and absolute quantitation assay after knocking down VPS28 in BMECs. A total of 2,773 proteins in three biological replicates with a false discovery rate of less than 1.2% were identified and quantified. Among them, a subset of 203 proteins were screened as significantly down-(111) and up-(92) regulated in VPS28 knockdown BMECs compared with the control groups. According to Gene Ontology analysis, the differentially expressed proteins were enriched in the "proteasome," "ubiquitylation," "metabolism of fatty acids," "phosphorylation," and "ribosome." Meanwhile, some changes occurred in the morphology of BMECs and an accumulation of TG (triglyceride) and dysfunction of proteasome were identified, and a series of genes associated with milk fat synthesis, ubiquitylation and proteasome pathways were analyzed by quantitative real-time PCR. The results of this study suggested VPS28 regulated milk fat synthesis was mediated by ubiquitylation; it could be an important new area of study for milk fat synthesis and other milk fat content traits in bovine.
Collapse
Affiliation(s)
- Lily Liu
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Qin Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
41
|
Liu L, Zhou J, Chen CJ, Zhang J, Wen W, Tian J, Zhang Z, Gu Y. GWAS-Based Identification of New Loci for Milk Yield, Fat, and Protein in Holstein Cattle. Animals (Basel) 2020; 10:E2048. [PMID: 33167458 PMCID: PMC7694478 DOI: 10.3390/ani10112048] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
High-yield and high-quality of milk are the primary goals of dairy production. Understanding the genetic architecture underlying these milk-related traits is beneficial so that genetic variants can be targeted toward the genetic improvement. In this study, we measured five milk production and quality traits in Holstein cattle population from China. These traits included milk yield, fat, and protein. We used the estimated breeding values as dependent variables to conduct the genome-wide association studies (GWAS). Breeding values were estimated through pedigree relationships by using a linear mixed model. Genotyping was carried out on the individuals with phenotypes by using the Illumina BovineSNP150 BeadChip. The association analyses were conducted by using the fixed and random model Circulating Probability Unification (FarmCPU) method. A total of ten single-nucleotide polymorphisms (SNPs) were detected above the genome-wide significant threshold (p < 4.0 × 10-7), including six located in previously reported quantitative traits locus (QTL) regions. We found eight candidate genes within distances of 120 kb upstream or downstream to the associated SNPs. The study not only identified the effect of DGAT1 gene on milk fat and protein, but also discovered novel genetic loci and candidate genes related to milk traits. These novel genetic loci would be an important basis for molecular breeding in dairy cattle.
Collapse
Affiliation(s)
- Liyuan Liu
- School of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China; (L.L.); (J.Z.); (J.Z.)
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, DC 99164, USA;
| | - Jinghang Zhou
- School of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China; (L.L.); (J.Z.); (J.Z.)
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, DC 99164, USA;
| | - Chunpeng James Chen
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, DC 99164, USA;
| | - Juan Zhang
- School of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China; (L.L.); (J.Z.); (J.Z.)
| | - Wan Wen
- Animal Husbandry Workstation, Yinchuan 750001, Ningxia, China; (W.W.); (J.T.)
| | - Jia Tian
- Animal Husbandry Workstation, Yinchuan 750001, Ningxia, China; (W.W.); (J.T.)
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington, DC 99164, USA;
| | - Yaling Gu
- School of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China; (L.L.); (J.Z.); (J.Z.)
| |
Collapse
|
42
|
Naserkheil M, Bahrami A, Lee D, Mehrban H. Integrating Single-Step GWAS and Bipartite Networks Reconstruction Provides Novel Insights into Yearling Weight and Carcass Traits in Hanwoo Beef Cattle. Animals (Basel) 2020; 10:ani10101836. [PMID: 33050182 PMCID: PMC7601430 DOI: 10.3390/ani10101836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Hanwoo is an indigenous cattle breed in Korea and popular for meat production owing to its rapid growth and high-quality meat. Its yearling weight and carcass traits (backfat thickness, carcass weight, eye muscle area, and marbling score) are economically important for the selection of young and proven bulls. In recent decades, the advent of high throughput genotyping technologies has made it possible to perform genome-wide association studies (GWAS) for the detection of genomic regions associated with traits of economic interest in different species. In this study, we conducted a weighted single-step genome-wide association study which combines all genotypes, phenotypes and pedigree data in one step (ssGBLUP). It allows for the use of all SNPs simultaneously along with all phenotypes from genotyped and ungenotyped animals. Our results revealed 33 relevant genomic regions related to the traits of interest. Gene set enrichment analysis indicated that the identified candidate genes were related to biological processes and functional terms that were involved in growth and lipid metabolism. In conclusion, these results suggest that the incorporation of GWAS results and network analysis can help us to better understand the genetic bases underlying growth and carcass traits. Abstract In recent years, studies on the biological mechanisms underlying complex traits have been facilitated by innovations in high-throughput genotyping technology. We conducted a weighted single-step genome-wide association study (WssGWAS) to evaluate backfat thickness, carcass weight, eye muscle area, marbling score, and yearling weight in a cohort of 1540 Hanwoo beef cattle using BovineSNP50 BeadChip. The WssGWAS uncovered thirty-three genomic regions that explained more than 1% of the additive genetic variance, mostly located on chromosomes 6 and 14. Among the identified window regions, seven quantitative trait loci (QTL) had pleiotropic effects and twenty-six QTL were trait-specific. Significant pathways implicated in the measured traits through Gene Ontology (GO) term enrichment analysis included the following: lipid biosynthetic process, regulation of lipid metabolic process, transport or localization of lipid, regulation of growth, developmental growth, and multicellular organism growth. Integration of GWAS results of the studied traits with pathway and network analyses facilitated the exploration of the respective candidate genes involved in several biological functions, particularly lipid and growth metabolism. This study provides novel insight into the genetic bases underlying complex traits and could be useful in developing breeding schemes aimed at improving growth and carcass traits in Hanwoo beef cattle.
Collapse
Affiliation(s)
- Masoumeh Naserkheil
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (M.N.); (A.B.)
| | - Abolfazl Bahrami
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj 77871-31587, Iran; (M.N.); (A.B.)
| | - Deukhwan Lee
- Department of Animal Life and Environment Sciences, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do 17579, Korea
- Correspondence: ; Tel.: +82-31-670-5091
| | - Hossein Mehrban
- Department of Animal Science, Shahrekord University, Shahrekord 88186-34141, Iran;
| |
Collapse
|
43
|
Hu G, Do DN, Gray J, Miar Y. Selection for Favorable Health Traits: A Potential Approach to Cope with Diseases in Farm Animals. Animals (Basel) 2020; 10:E1717. [PMID: 32971980 PMCID: PMC7552752 DOI: 10.3390/ani10091717] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Disease is a global problem for animal farming industries causing tremendous economic losses (>USD 220 billion over the last decade) and serious animal welfare issues. The limitations and deficiencies of current non-selection disease control methods (e.g., vaccination, treatment, eradication strategy, genome editing, and probiotics) make it difficult to effectively, economically, and permanently eliminate the adverse influences of disease in the farm animals. These limitations and deficiencies drive animal breeders to be more concerned and committed to dealing with health problems in farm animals by selecting animals with favorable health traits. Both genetic selection and genomic selection contribute to improving the health of farm animals by selecting certain health traits (e.g., disease tolerance, disease resistance, and immune response), although both of them face some challenges. The objective of this review was to comprehensively review the potential of selecting health traits in coping with issues caused by diseases in farm animals. Within this review, we highlighted that selecting health traits can be applied as a method of disease control to help animal agriculture industries to cope with the adverse influences caused by diseases in farm animals. Certainly, the genetic/genomic selection solution cannot solve all the disease problems in farm animals. Therefore, management, vaccination, culling, medical treatment, and other measures must accompany selection solution to reduce the adverse impact of farm animal diseases on profitability and animal welfare.
Collapse
Affiliation(s)
| | | | | | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (G.H.); (D.N.D.); (J.G.)
| |
Collapse
|
44
|
Wang Y, Wu XL, Li Z, Bao Z, Tait RG, Bauck S, Rosa GJM. Estimation of Genomic Breed Composition for Purebred and Crossbred Animals Using Sparsely Regularized Admixture Models. Front Genet 2020; 11:576. [PMID: 32595700 PMCID: PMC7300184 DOI: 10.3389/fgene.2020.00576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
A variety of statistical methods, such as admixture models, have been used to estimate genomic breed composition (GBC). These methods, however, tend to produce non-zero components to reference breeds that shared some genomic similarity with a test animal. These non-essential GBC components, in turn, offset the estimated GBC for the breed to which it belongs. As a result, not all purebred animals have 100% GBC of their respective breeds, which statistically indicates an elevated false-negative rate in the identification of purebred animals with 100% GBC as the cutoff. Otherwise, a lower cutoff of estimated GBC will have to be used, which is arbitrary, and the results are less interpretable. In the present study, three admixture models with regularization were proposed, which produced sparse solutions through suppressing the noise in the estimated GBC due to genomic similarities. The regularization or penalty forms included the L1 norm penalty, minimax concave penalty (MCP), and smooth clipped absolute deviation (SCAD). The performances of these regularized admixture models on the estimation of GBC were examined in purebred and composite animals, respectively, and compared to that of the non-regularized admixture model as the baseline model. The results showed that, given optimal values for λ, the three sparsely regularized admixture models had higher power and thus reduced the false-negative rate for the breed identification of purebred animals than the non-regularized admixture model. Of the three regularized admixture models, the two with a non-convex penalty outperformed the one with L1 norm penalty. In the Brangus, a composite cattle breed, estimated GBC were roughly comparable among the four admixture models, but all the four models underestimated the GBC for these composite animals when non-ancestral breeds were included as the reference. In conclusion, the admixture models with sparse regularization gave more parsimonious, consistent and interpretable results of estimated GBC for purebred animals than the non-regularized admixture model. Nevertheless, the utility of regularized admixture models for estimating GBC in crossbred or composite animals needs to be taken with caution.
Collapse
Affiliation(s)
- Yangfan Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, China.,Department of Animal Sciences, University of Wisconsin, Madison, WI, United States
| | - Xiao-Lin Wu
- Department of Animal Sciences, University of Wisconsin, Madison, WI, United States.,Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, United States
| | - Zhi Li
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, United States.,Department of Animal Science, University of Wyoming, Laramie, WY, United States
| | - Zhenmin Bao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Science, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Richard G Tait
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, United States
| | - Stewart Bauck
- Biostatistics and Bioinformatics, Neogen GeneSeek, Lincoln, NE, United States
| | - Guilherme J M Rosa
- Department of Animal Sciences, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
45
|
Du Y, Liu L, He Y, Dou T, Jia J, Ge C. Endocrine and genetic factors affecting egg laying performance in chickens: a review. Br Poult Sci 2020; 61:538-549. [PMID: 32306752 DOI: 10.1080/00071668.2020.1758299] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
1. Egg-laying performance reflects the overall reproductive performance of breeding hens. The genetic traits for egg-laying performance have low or medium heritability, and, depending on the period involved, usually ranges from 0.16 to 0.64. Egg-laying in chickens is regulated by a combination of environmental, endocrine and genetic factors. 2. The main endocrine factors that regulate egg-laying are gonadotropin-releasing hormone (GnRH), prolactin (PRL), follicle-stimulating hormone (FSH) and luteinising hormone (LH). 3. In the last three decades, many studies have explored this aspect at a molecular genetic level. Recent studies identified 31 reproductive hormone-based candidate genes that were significantly associated with egg-laying performance. With the development of genome-sequencing technology, 64 new candidate genes and 108 single nucleotide polymorphisms (SNPs) related to egg-laying performance have been found using genome-wide association studies (GWAS), providing novel insights into the molecular genetic mechanisms governing egg production. At the same time, microRNAs that regulate genes responsible for egg-laying in chickens were reviewed. 4. Research on endocrinological and genetic factors affecting egg-laying performance will greatly improve the reproductive performance of chickens and promote the protection, development, and utilisation of poultry. This review summarises studies on the endocrine and genetic factors of egg-laying performance in chickens from 1972 to 2019.
Collapse
Affiliation(s)
- Y Du
- College of Animal Science and Technology, Yunnan Agricultural University , Kunming, Yunnan, The People's Republic of China
| | - L Liu
- School of Forensic Medicine, Kunming Medical University , Kunming, Yunnan, The People's Republic of China
| | - Y He
- College of Animal Science and Technology, Yunnan Agricultural University , Kunming, Yunnan, The People's Republic of China
| | - T Dou
- College of Animal Science and Technology, Yunnan Agricultural University , Kunming, Yunnan, The People's Republic of China
| | - J Jia
- College of Animal Science and Technology, Yunnan Agricultural University , Kunming, Yunnan, The People's Republic of China
| | - C Ge
- College of Animal Science and Technology, Yunnan Agricultural University , Kunming, Yunnan, The People's Republic of China
| |
Collapse
|
46
|
Tiplady KM, Lopdell TJ, Littlejohn MD, Garrick DJ. The evolving role of Fourier-transform mid-infrared spectroscopy in genetic improvement of dairy cattle. J Anim Sci Biotechnol 2020; 11:39. [PMID: 32322393 PMCID: PMC7164258 DOI: 10.1186/s40104-020-00445-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 11/22/2022] Open
Abstract
Over the last 100 years, significant advances have been made in the characterisation of milk composition for dairy cattle improvement programs. Technological progress has enabled a shift from labour intensive, on-farm collection and processing of samples that assess yield and fat levels in milk, to large-scale processing of samples through centralised laboratories, with the scope extended to include quantification of other traits. Fourier-transform mid-infrared (FT-MIR) spectroscopy has had a significant role in the transformation of milk composition phenotyping, with spectral-based predictions of major milk components already being widely used in milk payment and animal evaluation systems globally. Increasingly, there is interest in analysing the individual FT-MIR wavenumbers, and in utilising the FT-MIR data to predict other novel traits of importance to breeding programs. This includes traits related to the nutritional value of milk, the processability of milk into products such as cheese, and traits relevant to animal health and the environment. The ability to successfully incorporate these traits into breeding programs is dependent on the heritability of the FT-MIR predicted traits, and the genetic correlations between the FT-MIR predicted and actual trait values. Linking FT-MIR predicted traits to the underlying mutations responsible for their variation can be difficult because the phenotypic expression of these traits are a function of a diverse range of molecular and biological mechanisms that can obscure their genetic basis. The individual FT-MIR wavenumbers give insights into the chemical composition of milk and provide an additional layer of granularity that may assist with establishing causal links between the genome and observed phenotypes. Additionally, there are other molecular phenotypes such as those related to the metabolome, chromatin accessibility, and RNA editing that could improve our understanding of the underlying biological systems controlling traits of interest. Here we review topics of importance to phenotyping and genetic applications of FT-MIR spectra datasets, and discuss opportunities for consolidating FT-MIR datasets with other genomic and molecular data sources to improve future dairy cattle breeding programs.
Collapse
Affiliation(s)
- K M Tiplady
- 1Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand.,2School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - T J Lopdell
- 1Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand
| | - M D Littlejohn
- 1Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240 New Zealand.,2School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| | - D J Garrick
- 2School of Agriculture, Massey University, Ruakura, Hamilton, 3240 New Zealand
| |
Collapse
|
47
|
Gonzalez M, Villa R, Villa C, Gonzalez V, Montano M, Medina G, Mahadevan P. Inspection of real and imputed genotypes reveled 76 SNPs associated to rear udder height in Holstein cattle. J Adv Vet Anim Res 2020; 7:234-241. [PMID: 32607355 PMCID: PMC7320818 DOI: 10.5455/javar.2020.g415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Objective This paper presents the obtained result of a study that realizes to associate a set of real and imputed single nucleotide polymorphisms (SNP) genotypes to the rear udder height in Holstein cows. Materials and methods Forty-six Holstein cows from an arid zone of Mexico were phenotyped and genotyped for this study. Blood samples were used for DNA extraction, genotyping was performed with the Illumina BovineLD Bead chip which interrogates 6,912 SNPs genome-wide, and imputation was performed using the Findhap software. After QC filters, a total of 22,251 high quality and informative SNPs were inspected. Results The results showed the detection of 76 significant SNPs throughout the complete genome. Significant SNPs fall inside 111 Quantitative Loci Traits related to protein percentage, milk yield, and fat, among others, in chromosomes 1, 2, 3, 5, 6, 9, 10, 11, 12, 13, 19, 20, 21, 23, 26, 27, and 29. Similarly, results confirm that a genotype imputation is a convenient option for genome-wide covering when selecting economic traits with low-density real SNP panels. Conclusion This study contributes to establishing a low-cost and profitable strategy for applying genomic selection in developing countries.
Collapse
Affiliation(s)
- Mirvana Gonzalez
- Laboratory of Bioinformatics and Biofotonics, Engineering Institute, Autonomous University of Baja California, Mexicali, B.C, Mexico
| | - Rafael Villa
- Laboratory of Bioinformatics and Biofotonics, Engineering Institute, Autonomous University of Baja California, Mexicali, B.C, Mexico
| | - Carlos Villa
- Laboratory of Bioinformatics and Biofotonics, Engineering Institute, Autonomous University of Baja California, Mexicali, B.C, Mexico
| | - Victor Gonzalez
- Institute for Research in Veterinary Science, Autonomous University of Baja California, Mexicali, B.C, Mexico
| | - Martin Montano
- Institute for Research in Veterinary Science, Autonomous University of Baja California, Mexicali, B.C, Mexico
| | - Gerardo Medina
- Institute for Research in Veterinary Science, Autonomous University of Baja California, Mexicali, B.C, Mexico
| | - Pad Mahadevan
- Department of Biology, University of Tampa, Tampa, FL, USA
| |
Collapse
|
48
|
Lu H, Wang Y, Bovenhuis H. Genome-wide association study for genotype by lactation stage interaction of milk production traits in dairy cattle. J Dairy Sci 2020; 103:5234-5245. [PMID: 32229127 DOI: 10.3168/jds.2019-17257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 01/28/2020] [Indexed: 01/14/2023]
Abstract
Substantial evidence demonstrates that the genetic background of milk production traits changes during lactation. However, most GWAS for milk production traits assume that genetic effects are constant during lactation and therefore might miss those quantitative trait loci (QTL) whose effects change during lactation. The GWAS for genotype by lactation stage interaction are aimed at explicitly detecting the QTL whose effects change during lactation. The purpose of this study was to perform GWAS for genotype by lactation stage interaction for milk yield, lactose yield, lactose content, fat yield, fat content, protein yield, and somatic cell score to detect QTL with changing effects during lactation. For this study, 19,286 test-day records of 1,800 first-parity Dutch Holstein cows were available and cows were genotyped using a 50K SNP panel. A total of 7 genomic regions with effects that change during lactation were detected in the GWAS for genotype by lactation stage interaction. Two regions on Bos taurus autosome (BTA)14 and BTA19 were also significant based on a GWAS that assumed constant genetic effects during lactation. Five regions on BTA4, BTA10, BTA11, BTA16, and BTA23 were only significant in the GWAS for genotype by lactation stage interaction. The biological mechanisms that cause these changes in genetic effects are still unknown, but negative energy balance and effects of pregnancy may play a role. These findings increase our understanding of the genetic background of lactation and may contribute to the development of better management indicators based on milk composition.
Collapse
Affiliation(s)
- Haibo Lu
- Animal Breeding and Genomics, Wageningen University and Research, PO Box 338, 6700AH, Wageningen, the Netherlands
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, P. R. China
| | - Henk Bovenhuis
- Animal Breeding and Genomics, Wageningen University and Research, PO Box 338, 6700AH, Wageningen, the Netherlands.
| |
Collapse
|
49
|
An B, Xu L, Xia J, Wang X, Miao J, Chang T, Song M, Ni J, Xu L, Zhang L, Li J, Gao H. Multiple association analysis of loci and candidate genes that regulate body size at three growth stages in Simmental beef cattle. BMC Genet 2020; 21:32. [PMID: 32171250 PMCID: PMC7071762 DOI: 10.1186/s12863-020-0837-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/04/2020] [Indexed: 01/08/2023] Open
Abstract
Background Body size traits as one of the main breeding selection criteria was widely used to monitor cattle growth and to evaluate the selection response. In this study, body size was defined as body height (BH), body length (BL), hip height (HH), heart size (HS), abdominal size (AS), and cannon bone size (CS). We performed genome-wide association studies (GWAS) of these traits over the course of three growth stages (6, 12 and 18 months after birth) using three statistical models, single-trait GWAS, multi-trait GWAS and LONG-GWAS. The Illumina Bovine HD 770 K BeadChip was used to identify genomic single nucleotide polymorphisms (SNPs) in 1217 individuals. Results In total, 19, 29, and 10 significant SNPs were identified by the three models, respectively. Among these, 21 genes were promising candidate genes, including SOX2, SNRPD1, RASGEF1B, EFNA5, PTBP1, SNX9, SV2C, PKDCC, SYNDIG1, AKR1E2, and PRIM2 identified by single-trait analysis; SLC37A1, LAP3, PCDH7, MANEA, and LHCGR identified by multi-trait analysis; and P2RY1, MPZL1, LINGO2, CMIP, and WSCD1 identified by LONG-GWAS. Conclusions Multiple association analysis was performed for six growth traits at each growth stage. These findings offer valuable insights for the further investigation of potential genetic mechanism of growth traits in Simmental beef cattle.
Collapse
Affiliation(s)
| | | | - Jiangwei Xia
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310000, China
| | - Xiaoqiao Wang
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Jian Miao
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Tianpeng Chang
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Meihua Song
- Zhuang Yuan Veterinary Station of Qixia city, Yantai, 265300, China
| | - Junqing Ni
- Heibei Livestock Breeding Workstation, Shijiazhuang, 050061, China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China.
| |
Collapse
|
50
|
Wang T, Li J, Gao X, Song W, Chen C, Yao D, Ma J, Xu L, Ma Y. Genome-wide association study of milk components in Chinese Holstein cows using single nucleotide polymorphism. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|