1
|
Reyes-Sanchez M, Amaducci R, Sanchez-Martin P, Elices I, Rodriguez FB, Varona P. Automatized offline and online exploration to achieve a target dynamics in biohybrid neural circuits built with living and model neurons. Neural Netw 2023; 164:464-475. [PMID: 37196436 DOI: 10.1016/j.neunet.2023.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2023] [Accepted: 04/18/2023] [Indexed: 05/19/2023]
Abstract
Biohybrid circuits of interacting living and model neurons are an advantageous means to study neural dynamics and to assess the role of specific neuron and network properties in the nervous system. Hybrid networks are also a necessary step to build effective artificial intelligence and brain hybridization. In this work, we deal with the automatized online and offline adaptation, exploration and parameter mapping to achieve a target dynamics in hybrid circuits and, in particular, those that yield dynamical invariants between living and model neurons. We address dynamical invariants that form robust cycle-by-cycle relationships between the intervals that build neural sequences from such interaction. Our methodology first attains automated adaptation of model neurons to work in the same amplitude regime and time scale of living neurons. Then, we address the automatized exploration and mapping of the synapse parameter space that lead to a specific dynamical invariant target. Our approach uses multiple configurations and parallel computing from electrophysiological recordings of living neurons to build full mappings, and genetic algorithms to achieve an instance of the target dynamics for the hybrid circuit in a short time. We illustrate and validate such strategy in the context of the study of functional sequences in neural rhythms, which can be easily generalized for any variety of hybrid circuit configuration. This approach facilitates both the building of hybrid circuits and the accomplishment of their scientific goal.
Collapse
Affiliation(s)
- Manuel Reyes-Sanchez
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Rodrigo Amaducci
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pablo Sanchez-Martin
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Irene Elices
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Francisco B Rodriguez
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pablo Varona
- Grupo de Neurocomputación Biológica, Departamento de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
2
|
Lobule-Related Action Potential Shape- and History-Dependent Current Integration in Purkinje Cells of Adult and Developing Mice. Cells 2023; 12:cells12040623. [PMID: 36831290 PMCID: PMC9953991 DOI: 10.3390/cells12040623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Purkinje cells (PCs) are the principal cells of the cerebellar cortex and form a central element in the modular organization of the cerebellum. Differentiation of PCs based on gene expression profiles revealed two subpopulations with distinct connectivity, action potential firing and learning-induced activity changes. However, which basal cell physiological features underlie the differences between these subpopulations and to what extent they integrate input differentially remains largely unclear. Here, we investigate the cellular electrophysiological properties of PC subpopulation in adult and juvenile mice. We found that multiple fundamental cell physiological properties, including membrane resistance and various aspects of the action potential shape, differ between PCs from anterior and nodular lobules. Moreover, the two PC subpopulations also differed in the integration of negative and positive current steps as well as in size of the hyperpolarization-activated current. A comparative analysis in juvenile mice confirmed that most of these lobule-specific differences are already present at pre-weaning ages. Finally, we found that current integration in PCs is input history-dependent for both positive and negative currents, but this is not a distinctive feature between anterior and nodular PCs. Our results support the concept of a fundamental differentiation of PCs subpopulations in terms of cell physiological properties and current integration, yet reveals that history-dependent input processing is consistent across PC subtypes.
Collapse
|
3
|
Torres JJ, Baroni F, Latorre R, Varona P. Temporal discrimination from the interaction between dynamic synapses and intrinsic subthreshold oscillations. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Carrillo-Medina JL, Latorre R. Detection of Activation Sequences in Spiking-Bursting Neurons by means of the Recognition of Intraburst Neural Signatures. Sci Rep 2018; 8:16726. [PMID: 30425274 PMCID: PMC6233224 DOI: 10.1038/s41598-018-34757-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 10/24/2018] [Indexed: 11/18/2022] Open
Abstract
Bursting activity is present in many cells of different nervous systems playing important roles in neural information processing. Multiple assemblies of bursting neurons act cooperatively to produce coordinated spatio-temporal patterns of sequential activity. A major goal in neuroscience is unveiling the mechanisms underlying neural information processing based on this sequential dynamics. Experimental findings have revealed the presence of precise cell-type-specific intraburst firing patterns in the activity of some bursting neurons. This characteristic neural signature coexists with the information encoded in other aspects of the spiking-bursting signals, and its functional meaning is still unknown. We investigate the ability of a neuron conductance-based model to detect specific presynaptic activation sequences taking advantage of intraburst fingerprints identifying the source of the signals building up a sequential pattern of activity. Our simulations point out that a reader neuron could use this information to contextualize incoming signals and accordingly compute a characteristic response by relying on precise phase relationships among the activity of different emitters. This would provide individual neurons enhanced capabilities to control and negotiate sequential dynamics. In this regard, we discuss the possible implications of the proposed contextualization mechanism for neural information processing.
Collapse
Affiliation(s)
- José Luis Carrillo-Medina
- Departamento de Eléctrica y Electrónica, Universidad de las Fuerzas Armadas - ESPE, Sangolquí, Ecuador
| | - Roberto Latorre
- Grupo de Neurocomputación Biológica, Dpto. Ingeniería Informática, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
5
|
Latorre R, Torres JJ, Varona P. Interplay between Subthreshold Oscillations and Depressing Synapses in Single Neurons. PLoS One 2016; 11:e0145830. [PMID: 26730737 PMCID: PMC4701431 DOI: 10.1371/journal.pone.0145830] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/03/2015] [Indexed: 11/25/2022] Open
Abstract
In this paper we analyze the interplay between the subthreshold oscillations of a single neuron conductance-based model and the short-term plasticity of a dynamic synapse with a depressing mechanism. In previous research, the computational properties of subthreshold oscillations and dynamic synapses have been studied separately. Our results show that dynamic synapses can influence different aspects of the dynamics of neuronal subthreshold oscillations. Factors such as maximum hyperpolarization level, oscillation amplitude and frequency or the resulting firing threshold are modulated by synaptic depression, which can even make subthreshold oscillations disappear. This influence reshapes the postsynaptic neuron’s resonant properties arising from subthreshold oscillations and leads to specific input/output relations. We also study the neuron’s response to another simultaneous input in the context of this modulation, and show a distinct contextual processing as a function of the depression, in particular for detection of signals through weak synapses. Intrinsic oscillations dynamics can be combined with the characteristic time scale of the modulatory input received by a dynamic synapse to build cost-effective cell/channel-specific information discrimination mechanisms, beyond simple resonances. In this regard, we discuss the functional implications of synaptic depression modulation on intrinsic subthreshold dynamics.
Collapse
Affiliation(s)
- Roberto Latorre
- Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- * E-mail:
| | - Joaquín J. Torres
- Departamento de Electromagnetismo y Física de la Materia, and Institute Carlos I for Theoretical and Computational Physics, University of Granada, Granada, Spain
| | - Pablo Varona
- Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
6
|
Latorre R, Torres JJ, Varona P. Channel-specific input/output transformations arising from the interaction between dynamic synapses and subthreshold oscillations. BMC Neurosci 2015. [PMCID: PMC4698764 DOI: 10.1186/1471-2202-16-s1-p274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
7
|
Carrillo-Medina JL, Latorre R. Neural dynamics based on the recognition of neural fingerprints. Front Comput Neurosci 2015; 9:33. [PMID: 25852531 PMCID: PMC4371706 DOI: 10.3389/fncom.2015.00033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
Experimental evidence has revealed the existence of characteristic spiking features in different neural signals, e.g., individual neural signatures identifying the emitter or functional signatures characterizing specific tasks. These neural fingerprints may play a critical role in neural information processing, since they allow receptors to discriminate or contextualize incoming stimuli. This could be a powerful strategy for neural systems that greatly enhances the encoding and processing capacity of these networks. Nevertheless, the study of information processing based on the identification of specific neural fingerprints has attracted little attention. In this work, we study (i) the emerging collective dynamics of a network of neurons that communicate with each other by exchange of neural fingerprints and (ii) the influence of the network topology on the self-organizing properties within the network. Complex collective dynamics emerge in the network in the presence of stimuli. Predefined inputs, i.e., specific neural fingerprints, are detected and encoded into coexisting patterns of activity that propagate throughout the network with different spatial organization. The patterns evoked by a stimulus can survive after the stimulation is over, which provides memory mechanisms to the network. The results presented in this paper suggest that neural information processing based on neural fingerprints can be a plausible, flexible, and powerful strategy.
Collapse
|
8
|
Baroni F, Burkitt AN, Grayden DB. Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking. PLoS Comput Biol 2014; 10:e1003574. [PMID: 24784237 PMCID: PMC4006709 DOI: 10.1371/journal.pcbi.1003574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 03/03/2014] [Indexed: 01/06/2023] Open
Abstract
High-frequency oscillations (above 30 Hz) have been observed in sensory and higher-order brain areas, and are believed to constitute a general hallmark of functional neuronal activation. Fast inhibition in interneuronal networks has been suggested as a general mechanism for the generation of high-frequency oscillations. Certain classes of interneurons exhibit subthreshold oscillations, but the effect of this intrinsic neuronal property on the population rhythm is not completely understood. We study the influence of intrinsic damped subthreshold oscillations in the emergence of collective high-frequency oscillations, and elucidate the dynamical mechanisms that underlie this phenomenon. We simulate neuronal networks composed of either Integrate-and-Fire (IF) or Generalized Integrate-and-Fire (GIF) neurons. The IF model displays purely passive subthreshold dynamics, while the GIF model exhibits subthreshold damped oscillations. Individual neurons receive inhibitory synaptic currents mediated by spiking activity in their neighbors as well as noisy synaptic bombardment, and fire irregularly at a lower rate than population frequency. We identify three factors that affect the influence of single-neuron properties on synchronization mediated by inhibition: i) the firing rate response to the noisy background input, ii) the membrane potential distribution, and iii) the shape of Inhibitory Post-Synaptic Potentials (IPSPs). For hyperpolarizing inhibition, the GIF IPSP profile (factor iii)) exhibits post-inhibitory rebound, which induces a coherent spike-mediated depolarization across cells that greatly facilitates synchronous oscillations. This effect dominates the network dynamics, hence GIF networks display stronger oscillations than IF networks. However, the restorative current in the GIF neuron lowers firing rates and narrows the membrane potential distribution (factors i) and ii), respectively), which tend to decrease synchrony. If inhibition is shunting instead of hyperpolarizing, post-inhibitory rebound is not elicited and factors i) and ii) dominate, yielding lower synchrony in GIF networks than in IF networks. Neurons in the brain engage in collective oscillations at different frequencies. Gamma and high-gamma oscillations (30–100 Hz and higher) have been associated with cognitive functions, and are altered in psychiatric disorders such as schizophrenia and autism. Our understanding of how high-frequency oscillations are orchestrated in the brain is still limited, but it is necessary for the development of effective clinical approaches to the treatment of these disorders. Some neuron types exhibit dynamical properties that can favour synchronization. The theory of weakly coupled oscillators showed how the phase response of individual neurons can predict the patterns of phase relationships that are observed at the network level. However, neurons in vivo do not behave like regular oscillators, but fire irregularly in a regime dominated by fluctuations. Hence, which intrinsic dynamical properties matter for synchronization, and in which regime, is still an open question. Here, we show how single-cell damped subthreshold oscillations enhance synchrony in interneuronal networks by introducing a depolarizing component, mediated by post-inhibitory rebound, that is correlated among neurons due to common inhibitory input.
Collapse
Affiliation(s)
- Fabiano Baroni
- NeuroEngineering Laboratory, Dept. of Electrical & Electronic Engineering, University of Melbourne, Parkville, Victoria, Australia
- Centre for Neural Engineering, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Anthony N. Burkitt
- NeuroEngineering Laboratory, Dept. of Electrical & Electronic Engineering, University of Melbourne, Parkville, Victoria, Australia
- Centre for Neural Engineering, University of Melbourne, Parkville, Victoria, Australia
- Bionics Institute, East Melbourne, Victoria, Australia
| | - David B. Grayden
- NeuroEngineering Laboratory, Dept. of Electrical & Electronic Engineering, University of Melbourne, Parkville, Victoria, Australia
- Centre for Neural Engineering, University of Melbourne, Parkville, Victoria, Australia
- Bionics Institute, East Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Teka W, Marinov TM, Santamaria F. Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS Comput Biol 2014; 10:e1003526. [PMID: 24675903 PMCID: PMC3967934 DOI: 10.1371/journal.pcbi.1003526] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 01/20/2014] [Indexed: 11/22/2022] Open
Abstract
The voltage trace of neuronal activities can follow multiple timescale dynamics that arise from correlated membrane conductances. Such processes can result in power-law behavior in which the membrane voltage cannot be characterized with a single time constant. The emergent effect of these membrane correlations is a non-Markovian process that can be modeled with a fractional derivative. A fractional derivative is a non-local process in which the value of the variable is determined by integrating a temporal weighted voltage trace, also called the memory trace. Here we developed and analyzed a fractional leaky integrate-and-fire model in which the exponent of the fractional derivative can vary from 0 to 1, with 1 representing the normal derivative. As the exponent of the fractional derivative decreases, the weights of the voltage trace increase. Thus, the value of the voltage is increasingly correlated with the trajectory of the voltage in the past. By varying only the fractional exponent, our model can reproduce upward and downward spike adaptations found experimentally in neocortical pyramidal cells and tectal neurons in vitro. The model also produces spikes with longer first-spike latency and high inter-spike variability with power-law distribution. We further analyze spike adaptation and the responses to noisy and oscillatory input. The fractional model generates reliable spike patterns in response to noisy input. Overall, the spiking activity of the fractional leaky integrate-and-fire model deviates from the spiking activity of the Markovian model and reflects the temporal accumulated intrinsic membrane dynamics that affect the response of the neuron to external stimulation. Spike adaptation is a property of most neurons. When spike time adaptation occurs over multiple time scales, the dynamics can be described by a power-law. We study the computational properties of a leaky integrate-and-fire model with power-law adaptation. Instead of explicitly modeling the adaptation process by the contribution of slowly changing conductances, we use a fractional temporal derivative framework. The exponent of the fractional derivative represents the degree of adaptation of the membrane voltage, where 1 is the normal leaky integrator while values less than 1 produce increasing correlations in the voltage trace. The temporal correlation is interpreted as a memory trace that depends on the value of the fractional derivative. We identify the memory trace in the fractional model as the sum of the instantaneous differentiation weighted by a function that depends on the fractional exponent, and it provides non-local information to the incoming stimulus. The spiking dynamics of the fractional leaky integrate-and-fire model show memory dependence that can result in downward or upward spike adaptation. Our model provides a framework for understanding how long-range membrane voltage correlations affect spiking dynamics and information integration in neurons.
Collapse
Affiliation(s)
- Wondimu Teka
- UTSA Neurosciences Institute, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Toma M. Marinov
- UTSA Neurosciences Institute, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Fidel Santamaria
- UTSA Neurosciences Institute, The University of Texas at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Removal of default state-associated inhibition during repetition priming improves response articulation. J Neurosci 2013; 32:17740-52. [PMID: 23223294 DOI: 10.1523/jneurosci.4137-12.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Behavior is a product of both the stimuli encountered and the current internal state. At the level of the nervous system, the internal state alters the biophysical properties of, and connections between, neurons establishing a "network state." To establish a network state, the nervous system must be altered from an initial default/resting state, but what remains unclear is the extent to which this process represents induction from a passive default state or the removal of suppression by an active default state. We use repetition priming (a history-dependent improvement of behavioral responses to repeatedly encountered stimuli) to determine the cellular mechanisms underlying the transition from the default to the primed network state. We demonstrate that both removal of active suppression and induction of neuron excitability changes each contribute separately to the production of a primed state. The feeding system of Aplysia californica displays repetition priming via an increase in the activity of the radula closure neuron B8, which results in increased bite strength with each motor program. We found that during priming, B8 received progressively less inhibitory input from the multifunctional neurons B4/5. Additionally, priming enhanced the excitability of B8, but the rate at which B8 activity increased as a result of these changes was regulated by the progressive removal of inhibitory input. Thus, the establishment of the network state involves the induction of processes from a rested state, yet the consequences of these processes are conditional upon critical gating mechanisms actively enforced by the default state.
Collapse
|
11
|
Abstract
We present an unsupervised, local activation-dependent learning rule for intrinsic plasticity (IP) which affects the composition of ion channel conductances for single neurons in a use-dependent way. We use a single-compartment conductance-based model for medium spiny striatal neurons in order to show the effects of parameterization of individual ion channels on the neuronal membrane potential-curent relationship (activation function). We show that parameter changes within the physiological ranges are sufficient to create an ensemble of neurons with significantly different activation functions. We emphasize that the effects of intrinsic neuronal modulation on spiking behavior require a distributed mode of synaptic input and can be eliminated by strongly correlated input. We show how modulation and adaptivity in ion channel conductances can be utilized to store patterns without an additional contribution by synaptic plasticity (SP). The adaptation of the spike response may result in either "positive" or "negative" pattern learning. However, read-out of stored information depends on a distributed pattern of synaptic activity to let intrinsic modulation determine spike response. We briefly discuss the implications of this conditional memory on learning and addiction.
Collapse
Affiliation(s)
- Gabriele Scheler
- Carl Correns Foundation for Mathematical Biology, Mountain View, CA, 94040, USA
| |
Collapse
|
12
|
Chamorro P, Muñiz C, Levi R, Arroyo D, Rodríguez FB, Varona P. Generalization of the dynamic clamp concept in neurophysiology and behavior. PLoS One 2012; 7:e40887. [PMID: 22829895 PMCID: PMC3400657 DOI: 10.1371/journal.pone.0040887] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/14/2012] [Indexed: 11/19/2022] Open
Abstract
The idea of closed-loop interaction in in vitro and in vivo electrophysiology has been successfully implemented in the dynamic clamp concept strongly impacting the research of membrane and synaptic properties of neurons. In this paper we show that this concept can be easily generalized to build other kinds of closed-loop protocols beyond (or in addition to) electrical stimulation and recording in neurophysiology and behavioral studies for neuroethology. In particular, we illustrate three different examples of goal-driven real-time closed-loop interactions with drug microinjectors, mechanical devices and video event driven stimulation. Modern activity-dependent stimulation protocols can be used to reveal dynamics (otherwise hidden under traditional stimulation techniques), achieve control of natural and pathological states, induce learning, bridge between disparate levels of analysis and for a further automation of experiments. We argue that closed-loop interaction calls for novel real time analysis, prediction and control tools and a new perspective for designing stimulus-response experiments, which can have a large impact in neuroscience research.
Collapse
Affiliation(s)
- Pablo Chamorro
- Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Muñiz
- Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Levi
- Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, United States of America
| | - David Arroyo
- Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco B. Rodríguez
- Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Varona
- Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
13
|
Chamorro P, Marinazzo D, Levi R, Rodriguez FB, Varona P. A model study for causal relationships between voltage and calcium dynamics. BMC Neurosci 2011. [PMCID: PMC3240477 DOI: 10.1186/1471-2202-12-s1-p359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|