1
|
Wu Z, Li H, Wu J, Lai X, Huang S, Yu M, Liao Q, Zhang C, Zhou L, Chen X, Guo H, Chen L. The profile of genome-wide DNA methylation, transcriptome, and proteome in streptomycin-resistant Mycobacterium tuberculosis. PLoS One 2024; 19:e0297477. [PMID: 38285653 PMCID: PMC10824437 DOI: 10.1371/journal.pone.0297477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 01/06/2024] [Indexed: 01/31/2024] Open
Abstract
Streptomycin-resistant (SM-resistant) Mycobacterium tuberculosis (M. tuberculosis) is a major concern in tuberculosis (TB) treatment. However, the mechanisms underlying streptomycin resistance remain unclear. This study primarily aimed to perform preliminary screening of genes associated with streptomycin resistance through conjoint analysis of multiple genomics. Genome-wide methylation, transcriptome, and proteome analyses were used to elucidate the associations between specific genes and streptomycin resistance in M. tuberculosis H37Rv. Methylation analysis revealed that 188 genes were differentially methylated between the SM-resistant and normal groups, with 89 and 99 genes being hypermethylated and hypomethylated, respectively. Furthermore, functional analysis revealed that these 188 differentially methylated genes were enriched in 74 pathways, with most of them being enriched in metabolic pathways. Transcriptome analysis revealed that 516 genes were differentially expressed between the drug-resistant and normal groups, with 263 and 253 genes being significantly upregulated and downregulated, respectively. KEGG analysis indicated that these 516 genes were enriched in 79 pathways, with most of them being enriched in histidine metabolism. The methylation level was negatively related to mRNA abundance. Proteome analysis revealed 56 differentially expressed proteins, including 14 upregulated and 42 downregulated proteins. Moreover, three hub genes (coaE, fadE5, and mprA) were obtained using synthetic analysis. The findings of this study suggest that an integrated DNA methylation, transcriptome, and proteome analysis can provide important resources for epigenetic studies in SM-resistant M. tuberculosis H37Rv.
Collapse
Affiliation(s)
- Zhuhua Wu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Haicheng Li
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiawen Wu
- Institute for tuberculosis control of Zhaoqing, Zhaoqing, China
| | - Xiaoyu Lai
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Shanshan Huang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Meiling Yu
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Qinghua Liao
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Chenchen Zhang
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Lin Zhou
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Xunxun Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Huixin Guo
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| | - Liang Chen
- Center for Tuberculosis Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
2
|
Butman HS, Kotzé TJ, Dowd CS, Strauss E. Vitamin in the Crosshairs: Targeting Pantothenate and Coenzyme A Biosynthesis for New Antituberculosis Agents. Front Cell Infect Microbiol 2020; 10:605662. [PMID: 33384970 PMCID: PMC7770189 DOI: 10.3389/fcimb.2020.605662] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Despite decades of dedicated research, there remains a dire need for new drugs against tuberculosis (TB). Current therapies are generations old and problematic. Resistance to these existing therapies results in an ever-increasing burden of patients with disease that is difficult or impossible to treat. Novel chemical entities with new mechanisms of action are therefore earnestly required. The biosynthesis of coenzyme A (CoA) has long been known to be essential in Mycobacterium tuberculosis (Mtb), the causative agent of TB. The pathway has been genetically validated by seminal studies in vitro and in vivo. In Mtb, the CoA biosynthetic pathway is comprised of nine enzymes: four to synthesize pantothenate (Pan) from l-aspartate and α-ketoisovalerate; five to synthesize CoA from Pan and pantetheine (PantSH). This review gathers literature reports on the structure/mechanism, inhibitors, and vulnerability of each enzyme in the CoA pathway. In addition to traditional inhibition of a single enzyme, the CoA pathway offers an antimetabolite strategy as a promising alternative. In this review, we provide our assessment of what appear to be the best targets, and, thus, which CoA pathway enzymes present the best opportunities for antitubercular drug discovery moving forward.
Collapse
Affiliation(s)
- Hailey S. Butman
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Timothy J. Kotzé
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Identification of Dephospho-Coenzyme A (Dephospho-CoA) Kinase in Thermococcus kodakarensis and Elucidation of the Entire CoA Biosynthesis Pathway in Archaea. mBio 2019; 10:mBio.01146-19. [PMID: 31337720 PMCID: PMC6650551 DOI: 10.1128/mbio.01146-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CoA is utilized in a wide range of metabolic pathways, and its biosynthesis is essential for all life. Pathways for CoA biosynthesis in bacteria and eukaryotes have been established. In archaea, however, the enzyme that catalyzes the final step in CoA biosynthesis, dephospho-CoA kinase (DPCK), had not been identified. In the present study, bioinformatic analyses identified a candidate for the DPCK in archaea, which was biochemically and genetically confirmed in the hyperthermophilic archaeon Thermococcus kodakarensis. Genetic analyses on genes presumed to encode bifunctional phosphopantothenoylcysteine synthetase-phosphopantothenoylcysteine decarboxylase and phosphopantetheine adenylyltransferase confirmed their involvement in CoA biosynthesis. Taken together with previous studies, the results reveal the entire pathway for CoA biosynthesis in a single archaeon and provide insight into the different mechanisms of CoA biosynthesis and their distribution in nature. Dephospho-coenzyme A (dephospho-CoA) kinase (DPCK) catalyzes the ATP-dependent phosphorylation of dephospho-CoA, the final step in coenzyme A (CoA) biosynthesis. DPCK has been identified and characterized in bacteria and eukaryotes but not in archaea. The hyperthermophilic archaeon Thermococcus kodakarensis encodes two homologs of bacterial DPCK and the DPCK domain of eukaryotic CoA synthase, TK1334 and TK2192. We purified the recombinant TK1334 and TK2192 proteins and found that they lacked DPCK activity. Bioinformatic analyses showed that, in several archaea, the uncharacterized gene from arCOG04076 protein is fused with the gene for phosphopantetheine adenylyltransferase (PPAT), which catalyzes the reaction upstream of the DPCK reaction in CoA biosynthesis. This observation suggested that members of arCOG04076, both fused to PPAT and standalone, could be the missing archaeal DPCKs. We purified the recombinant TK1697 protein, a standalone member of arCOG04076 from T. kodakarensis, and demonstrated its GTP-dependent DPCK activity. Disruption of the TK1697 resulted in CoA auxotrophy, indicating that TK1697 encodes a DPCK that contributes to CoA biosynthesis in T. kodakarensis. TK1697 homologs are widely distributed in archaea, suggesting that the arCOG04076 protein represents a novel family of DPCK that is not homologous to bacterial and eukaryotic DPCKs but is distantly related to bacterial and eukaryotic thiamine pyrophosphokinases. We also constructed and characterized gene disruption strains of TK0517 and TK2128, homologs of bifunctional phosphopantothenoylcysteine synthetase-phosphopantothenoylcysteine decarboxylase and PPAT, respectively. Both strains displayed CoA auxotrophy, indicating their contribution to CoA biosynthesis. Taken together with previous studies, the results experimentally validate the entire CoA biosynthesis pathway in T. kodakarensis.
Collapse
|
4
|
Evans JC, Trujillo C, Wang Z, Eoh H, Ehrt S, Schnappinger D, Boshoff HIM, Rhee KY, Barry CE, Mizrahi V. Validation of CoaBC as a Bactericidal Target in the Coenzyme A Pathway of Mycobacterium tuberculosis. ACS Infect Dis 2016; 2:958-968. [PMID: 27676316 PMCID: PMC5153693 DOI: 10.1021/acsinfecdis.6b00150] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Mycobacterium tuberculosis relies on its own ability to biosynthesize coenzyme A to meet the
needs of the myriad enzymatic reactions that depend on this cofactor
for activity. As such, the essential pantothenate and coenzyme A biosynthesis
pathways have attracted attention as targets for tuberculosis drug
development. To identify the optimal step for coenzyme A pathway disruption
in M. tuberculosis, we constructed
and characterized a panel of conditional knockdown mutants in coenzyme
A pathway genes. Here, we report that silencing of coaBC was bactericidal in vitro, whereas silencing of panB, panC, or coaE was bacteriostatic
over the same time course. Silencing of coaBC was
likewise bactericidal in vivo, whether initiated at infection or during
either the acute or chronic stages of infection, confirming that CoaBC
is required for M. tuberculosis to grow and persist in mice and arguing against significant CoaBC
bypass via transport and assimilation of host-derived pantetheine
in this animal model. These results provide convincing genetic validation
of CoaBC as a new bactericidal drug target.
Collapse
Affiliation(s)
- Joanna C. Evans
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| | - Carolina Trujillo
- Department of Microbiology
and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Zhe Wang
- Department of Microbiology
and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Hyungjin Eoh
- Department of Microbiology
and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Sabine Ehrt
- Department of Microbiology
and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Dirk Schnappinger
- Department of Microbiology
and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Helena I. M. Boshoff
- Tuberculosis
Research Section, Laboratory of Clinical Infectious Diseases, National
Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kyu Y. Rhee
- Department of Microbiology
and Immunology, Weill Cornell Medical College, New York, New York 10065, United States
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Clifton E. Barry
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
- Tuberculosis
Research Section, Laboratory of Clinical Infectious Diseases, National
Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| |
Collapse
|
5
|
Arber CE, Li A, Houlden H, Wray S. Review: Insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Neuropathol Appl Neurobiol 2016; 42:220-41. [PMID: 25870938 PMCID: PMC4832581 DOI: 10.1111/nan.12242] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/18/2015] [Indexed: 12/14/2022]
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of disorders characterized by dystonia, parkinsonism and spasticity. Iron accumulates in the basal ganglia and may be accompanied by Lewy bodies, axonal swellings and hyperphosphorylated tau depending on NBIA subtype. Mutations in 10 genes have been associated with NBIA that include Ceruloplasmin (Cp) and ferritin light chain (FTL), both directly involved in iron homeostasis, as well as Pantothenate Kinase 2 (PANK2), Phospholipase A2 group 6 (PLA2G6), Fatty acid hydroxylase 2 (FA2H), Coenzyme A synthase (COASY), C19orf12, WDR45 and DCAF17 (C2orf37). These genes are involved in seemingly unrelated cellular pathways, such as lipid metabolism, Coenzyme A synthesis and autophagy. A greater understanding of the cellular pathways that link these genes and the disease mechanisms leading to iron dyshomeostasis is needed. Additionally, the major overlap seen between NBIA and more common neurodegenerative diseases may highlight conserved disease processes. In this review, we will discuss clinical and pathological findings for each NBIA-related gene, discuss proposed disease mechanisms such as mitochondrial health, oxidative damage, autophagy/mitophagy and iron homeostasis, and speculate the potential overlap between NBIA subtypes.
Collapse
Affiliation(s)
- C E Arber
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - A Li
- Reta Lila Weston Institute, Institute of Neurology, University College London, London, UK
| | - H Houlden
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - S Wray
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| |
Collapse
|
6
|
Dusi S, Valletta L, Haack TB, Tsuchiya Y, Venco P, Pasqualato S, Goffrini P, Tigano M, Demchenko N, Wieland T, Schwarzmayr T, Strom TM, Invernizzi F, Garavaglia B, Gregory A, Sanford L, Hamada J, Bettencourt C, Houlden H, Chiapparini L, Zorzi G, Kurian MA, Nardocci N, Prokisch H, Hayflick S, Gout I, Tiranti V. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. Am J Hum Genet 2014; 94:11-22. [PMID: 24360804 PMCID: PMC3882905 DOI: 10.1016/j.ajhg.2013.11.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/14/2013] [Indexed: 11/19/2022] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) comprises a clinically and genetically heterogeneous group of disorders with progressive extrapyramidal signs and neurological deterioration, characterized by iron accumulation in the basal ganglia. Exome sequencing revealed the presence of recessive missense mutations in COASY, encoding coenzyme A (CoA) synthase in one NBIA-affected subject. A second unrelated individual carrying mutations in COASY was identified by Sanger sequence analysis. CoA synthase is a bifunctional enzyme catalyzing the final steps of CoA biosynthesis by coupling phosphopantetheine with ATP to form dephospho-CoA and its subsequent phosphorylation to generate CoA. We demonstrate alterations in RNA and protein expression levels of CoA synthase, as well as CoA amount, in fibroblasts derived from the two clinical cases and in yeast. This is the second inborn error of coenzyme A biosynthesis to be implicated in NBIA.
Collapse
Affiliation(s)
- Sabrina Dusi
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children, IRCCS Foundation Neurological Institute "C. Besta," 20126 Milan, Italy
| | - Lorella Valletta
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children, IRCCS Foundation Neurological Institute "C. Besta," 20126 Milan, Italy
| | - Tobias B Haack
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Yugo Tsuchiya
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Paola Venco
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children, IRCCS Foundation Neurological Institute "C. Besta," 20126 Milan, Italy
| | - Sebastiano Pasqualato
- Crystallography Unit, Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, 20139 Milan, Italy
| | - Paola Goffrini
- Department of Life Sciences, University of Parma, 43124 Parma, Italy
| | - Marco Tigano
- Department of Life Sciences, University of Parma, 43124 Parma, Italy
| | - Nikita Demchenko
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Thomas Wieland
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Thomas Schwarzmayr
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Federica Invernizzi
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children, IRCCS Foundation Neurological Institute "C. Besta," 20126 Milan, Italy
| | - Barbara Garavaglia
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children, IRCCS Foundation Neurological Institute "C. Besta," 20126 Milan, Italy
| | - Allison Gregory
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97329, USA
| | - Lynn Sanford
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97329, USA
| | - Jeffrey Hamada
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97329, USA
| | - Conceição Bettencourt
- UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Henry Houlden
- UCL Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Luisa Chiapparini
- Unit of Neuroradiology, IRCCS Foundation Neurological Institute "C. Besta," 20133 Milan, Italy
| | - Giovanna Zorzi
- Unit of Child Neurology, IRCCS Foundation Neurological Institute "C. Besta," 20133 Milan, Italy
| | - Manju A Kurian
- Neurosciences Unit, UCL-Institute of Child Health, Great Ormond Street Hospital, London WC1N 3JH, UK; Department of Neurology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Nardo Nardocci
- Unit of Child Neurology, IRCCS Foundation Neurological Institute "C. Besta," 20133 Milan, Italy
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Susan Hayflick
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97329, USA
| | - Ivan Gout
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Valeria Tiranti
- Unit of Molecular Neurogenetics - Pierfranco and Luisa Mariani Center for the study of Mitochondrial Disorders in Children, IRCCS Foundation Neurological Institute "C. Besta," 20126 Milan, Italy.
| |
Collapse
|
7
|
Crystal structure of LpxK, the 4'-kinase of lipid A biosynthesis and atypical P-loop kinase functioning at the membrane interface. Proc Natl Acad Sci U S A 2012; 109:12956-61. [PMID: 22826246 DOI: 10.1073/pnas.1206072109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In Gram-negative bacteria, the hydrophobic anchor of the outer membrane lipopolysaccharide is lipid A, a saccharolipid that plays key roles in both viability and pathogenicity of these organisms. The tetraacyldisaccharide 4'-kinase (LpxK) of the diverse P-loop-containing nucleoside triphosphate hydrolase superfamily catalyzes the sixth step in the biosynthetic pathway of lipid A, and is the only known P-loop kinase to act upon a lipid substrate at the membrane. Here, we report the crystal structures of apo- and ADP/Mg(2+)-bound forms of Aquifex aeolicus LpxK to a resolution of 1.9 Å and 2.2 Å, respectively. LpxK consists of two α/β/α sandwich domains connected by a two-stranded β-sheet linker. The N-terminal domain, which has most structural homology to other family members, is responsible for catalysis at the P-loop and positioning of the disaccharide-1-phosphate substrate for phosphoryl transfer on the inner membrane. The smaller C-terminal domain, a substructure unique to LpxK, helps bind the nucleotide substrate and Mg(2+) cation using a 25° hinge motion about its base. Activity was severely reduced in alanine point mutants of conserved residues D138 and D139, which are not directly involved in ADP or Mg(2+) binding in our structures, indicating possible roles in phosphoryl acceptor positioning or catalysis. Combined structural and kinetic studies have led to an increased understanding of the enzymatic mechanism of LpxK and provided the framework for structure-based antimicrobial design.
Collapse
|
8
|
Walia G, Surolia A. Insights into the regulatory characteristics of the mycobacterial dephosphocoenzyme A kinase: implications for the universal CoA biosynthesis pathway. PLoS One 2011; 6:e21390. [PMID: 21731728 PMCID: PMC3123319 DOI: 10.1371/journal.pone.0021390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 05/26/2011] [Indexed: 11/18/2022] Open
Abstract
Being vastly different from the human counterpart, we suggest that the last enzyme of the Mycobacterium tuberculosis Coenzyme A biosynthetic pathway, dephosphocoenzyme A kinase (CoaE) could be a good anti-tubercular target. Here we describe detailed investigations into the regulatory features of the enzyme, affected via two mechanisms. Enzymatic activity is regulated by CTP which strongly binds the enzyme at a site overlapping that of the leading substrate, dephosphocoenzyme A (DCoA), thereby obscuring the binding site and limiting catalysis. The organism has evolved a second layer of regulation by employing a dynamic equilibrium between the trimeric and monomeric forms of CoaE as a means of regulating the effective concentration of active enzyme. We show that the monomer is the active form of the enzyme and the interplay between the regulator, CTP and the substrate, DCoA, affects enzymatic activity. Detailed kinetic data have been corroborated by size exclusion chromatography, dynamic light scattering, glutaraldehyde crosslinking, limited proteolysis and fluorescence investigations on the enzyme all of which corroborate the effects of the ligands on the enzyme oligomeric status and activity. Cysteine mutagenesis and the effects of reducing agents on mycobacterial CoaE oligomerization further validate that the latter is not cysteine-mediated or reduction-sensitive. These studies thus shed light on the novel regulatory features employed to regulate metabolite flow through the last step of a critical biosynthetic pathway by keeping the latter catalytically dormant till the need arises, the transition to the active form affected by a delicate crosstalk between an essential cellular metabolite (CTP) and the precursor to the pathway end-product (DCoA).
Collapse
Affiliation(s)
- Guneet Walia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- National Institute of Immunology, New Delhi, India
- * E-mail:
| |
Collapse
|