1
|
Karolinska Institutet Human Embryonic Stem Cell Bank. Stem Cell Res 2020; 45:101810. [PMID: 32339905 DOI: 10.1016/j.scr.2020.101810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 11/21/2022] Open
Abstract
The Karolinska Institutet Human Embryonic Stem Cell Bank (KI Stem Cell Bank) was established at KI, Stockholm, Sweden, when the first human embryonic stem cell (hESC) line was derived by Professor Hovatta and colleagues in 2002. Since then, the bank has grown to include 60 hESC lines. From the very beginning the aim of the bank has been derivation of hESC lines suitable for clinical use. Step by step progress has been made towards this goal, including removal of xeno components, establishment of chemically defined conditions and Good Manufacturing Practice (GMP) compliancy. Today our bank includes such clinical grade hESC line, KARO1, derived and banked according to GMP guidelines. Many of the hESC lines in the bank have been distributed to the scientific community and are deposited in the Stockholm Medical Biobank available for research on collaborative basis.
Collapse
|
2
|
Gu YF, OuYang Q, Dai C, Lu CF, Lin G, Gong F, Lu GX. Abnormalities in centrosome number in human embryos and embryonic stem cells. Mol Reprod Dev 2016; 83:392-404. [PMID: 26946049 DOI: 10.1002/mrd.22633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 02/26/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Yi-Fan Gu
- Institute of Reproductive and Stem Cell Engineering; School of Basic Medical Science; Central South University; Changsha China
- Reproductive and Genetic Hospital of CITIC-XIANGYA; Changsha China
| | - Qi OuYang
- Institute of Reproductive and Stem Cell Engineering; School of Basic Medical Science; Central South University; Changsha China
- National Engineering and Research Center of Human Stem Cell; Changsha China
| | - Can Dai
- Institute of Reproductive and Stem Cell Engineering; School of Basic Medical Science; Central South University; Changsha China
- National Engineering and Research Center of Human Stem Cell; Changsha China
| | - Chang-Fu Lu
- Institute of Reproductive and Stem Cell Engineering; School of Basic Medical Science; Central South University; Changsha China
- Reproductive and Genetic Hospital of CITIC-XIANGYA; Changsha China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering; School of Basic Medical Science; Central South University; Changsha China
- Reproductive and Genetic Hospital of CITIC-XIANGYA; Changsha China
- National Engineering and Research Center of Human Stem Cell; Changsha China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering; School of Basic Medical Science; Central South University; Changsha China
- Reproductive and Genetic Hospital of CITIC-XIANGYA; Changsha China
| | - Guang-Xiu Lu
- Institute of Reproductive and Stem Cell Engineering; School of Basic Medical Science; Central South University; Changsha China
- Reproductive and Genetic Hospital of CITIC-XIANGYA; Changsha China
- National Engineering and Research Center of Human Stem Cell; Changsha China
| |
Collapse
|
3
|
Chen X, Niu W, Wang F, Yu W, Dai S, Kong H, Shu Y, Sun Y. Derivation of normal diploid human embryonic stem cells from tripronuclear zygotes with analysis of their copy number variation and loss of heterozygosity. Mol Reprod Dev 2016; 82:344-55. [PMID: 25988573 DOI: 10.1002/mrd.22485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 03/03/2015] [Indexed: 11/09/2022]
Abstract
This study sought to establish archives of genetic copy number variation (CNV) in human embryonic stem cell (hESC) lines that are associated with known diseases. We collected patients' fresh, discarded zygotes from in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) protocols. A total of 208 fresh, tripronuclear, discarded zygotes were also collected in this study from patients on the third day of their treatment cycle, prior to transfer. The blastula-formation rates were 13.51% (26/192) and 26.7% (4/15) while the high-quality blastocyst formation rates were 5.8% (11/192) and 20% (3/15) in the IVF and ICSI groups, respectively. The inner cell mass (ICM) from each embryo was mechanically separated, and then grown on feeder layers consisting of mouse embryonic fibroblasts and human foreskin fibroblasts (a 1:1 mixture). The hESC karyotype was determined by traditional G-banding; analysis of the results for the Zh19P25 and Zh20P24 cell lines showed that both were 46 XY. CNV and loss-of-heterozygosity analysis of hESC gDNA was performed to assess the genetic characteristics associated with molecular diseases using the high-resolution Infinium High-Density HumanCytoSNP-12 DNA chip. Seven CNVs in Zh19P25 and Zh20P24 were deletions, and a region that corresponds to Potocki-Shaffer disease, 11p11.2-11p11.12 in Zh20P24, showed a 2.98-Mb loss. These data together suggest that single-nucleotide polymorphism (SNP) microarray analysis for molecular cytogenetic features can help to distinguish hESC lines with a normal karyotype from tripronuclear zygotes with known, disease-related characteristics.
Collapse
Affiliation(s)
- Xuemei Chen
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenbin Niu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Wang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenzhu Yu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shanjun Dai
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huijuan Kong
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yimin Shu
- Department of Obstetrics and Gynecology, Stanford University Medical Center, Palo Alto, California
| | - Yingpu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Rungsiwiwut R, Numchaisrika P, Ahnonkitpanit V, Virutamasen P, Pruksananonda K. Triploid human embryonic stem cells derived from tripronuclear zygotes displayed pluripotency and trophoblast differentiation ability similar to the diploid human embryonic stem cells. J Reprod Dev 2016; 62:167-76. [PMID: 26821869 PMCID: PMC4848574 DOI: 10.1262/jrd.2015-113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Because the diploid human embryonic stem cells (hESCs) can be successfully derived from tripronuclear
zygotes thus, they can serve as an alternative source of derivation of normal karyotype hESC lines. The aim of
the present study was to compare the pluripotency and trophoblast differentiation ability of hESCs derived
from tripronuclear zygotes and diploid hESCs. In the present study, a total of 20 tripronuclear zygotes were
cultured; 8 zygotes developed to the blastocyst stage and 1 hESC line was generated. Unlike the previous
studies, chromosomal correction of tripronuclear zygotes during derivation of hESCs did not occur. The
established line carries 3 sets of chromosomes and showed a numerical aberration. Although the cell line
displayed an abnormal chromosome number, it was found the cell line has been shown to be pluripotent with the
ability to differentiate into 3 embryonic germ layers both in vitro and in
vivo. The expression of X inactive specific transcript (XIST) in mid-passage (passage 42) of
undifferentiated triploid hESCs was detected, indicating X chromosome inactivation of the cell line. Moreover,
when this cell line was induced to differentiate toward the trophoblast lineage, morphological and functional
trophoblast cells were observed, similar to the diploid hESC line.
Collapse
Affiliation(s)
- Ruttachuk Rungsiwiwut
- Reproductive Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
5
|
Damdimopoulou P, Rodin S, Stenfelt S, Antonsson L, Tryggvason K, Hovatta O. Human embryonic stem cells. Best Pract Res Clin Obstet Gynaecol 2015; 31:2-12. [PMID: 26602389 DOI: 10.1016/j.bpobgyn.2015.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
The establishment of permanent human embryonic stem cell lines (hESCs) was first reported in 1998. Due to their pluripotent nature and ability to differentiate to all cell types in the body, they have been considered as a cell source for regenerative medicine. Since then, intensive studies have been carried out regarding factors regulating pluripotency and differentiation. hESCs are obtained from supernumerary human IVF (in vitro fertilization) embryos that cannot be used for the couple's infertility treatment. Today, we can establish and expand these cells in animal substance-free conditions, even from single cells biopsied from eight-cell stage embryos. There are satisfactory tests for the demonstration of genetic stability, absence of tumorigenic mutations, functionality, and safety of hESCs. Clinical trials are ongoing for age-related macular degeneration (AMD) and spinal cord injury (SCI). This review focuses on the present state of these techniques.
Collapse
Affiliation(s)
- Pauliina Damdimopoulou
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.
| | - Sergey Rodin
- Department of Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Sonya Stenfelt
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.
| | - Liselotte Antonsson
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.
| | - Karl Tryggvason
- Department of Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore.
| | - Outi Hovatta
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
6
|
Van der Jeught M, O'Leary T, Duggal G, De Sutter P, Chuva de Sousa Lopes S, Heindryckx B. The post-inner cell mass intermediate: implications for stem cell biology and assisted reproductive technology. Hum Reprod Update 2015; 21:616-26. [PMID: 26089403 DOI: 10.1093/humupd/dmv028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 06/01/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Until recently, the temporal events that precede the generation of pluripotent embryonic stem cells (ESCs) and their equivalence with specific developmental stages in vivo was poorly understood. Our group has discovered the existence of a transient epiblast-like structure, coined the post-inner cell mass (ICM) intermediate or PICMI, that emerges before human ESC (hESCs) are established, which supports their primed nature (i.e. already showing some predispositions towards certain cell types) of pluripotency. METHODS The PICMI results from the progressive epithelialization of the ICM and it expresses a mixture of early and late epiblast markers, as well as some primordial germ cell markers. The PICMI is a closer progenitor of hESCs than the ICM and it can be seen as the first proof of why all existing hESCs, until recently, display a primed state of pluripotency. RESULTS Even though the pluripotent characteristics of ESCs differ from mouse (naïve) to human (primed), it has recently been shown in mice that a similar process of self-organization at the transition from ICM to (naïve) mouse ESCs (mESCs) transforms the amorphous ICM into a rosette of polarized epiblast cells, a mouse PICMI. The transient PICMI stage is therefore at the origin of both mESCs and hESCs. In addition, several groups have now reported the conversion from primed to the naïve (mESCs-like) hESCs, broadening the pluripotency spectrum and opening new opportunities for the use of pluripotent stem cells. CONCLUSIONS In this review, we discuss the recent discoveries of mouse and human transient states from ICM to ESCs and their relation towards the state of pluripotency in the eventual stem cells, being naïve or primed. We will now further investigate how these intermediate and/or different pluripotent stages may impact the use of human stem cells in regenerative medicine and assisted reproductive technology.
Collapse
Affiliation(s)
- Margot Van der Jeught
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| | - Thomas O'Leary
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Present address: Coastal Fertility Specialists, 1375 Hospital Drive, Mt Pleasant, SC 29464, USA
| | - Galbha Duggal
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Present address: Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Petra De Sutter
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| | - Susana Chuva de Sousa Lopes
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Björn Heindryckx
- Ghent Fertility and Stem Cell Team (G-FAST), Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent 9000, Belgium
| |
Collapse
|
7
|
Hovatta O, Rodin S, Antonsson L, Tryggvason K. Concise review: animal substance-free human embryonic stem cells aiming at clinical applications. Stem Cells Transl Med 2014; 3:1269-74. [PMID: 25298372 DOI: 10.5966/sctm.2014-0129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human embryonic stem cells have been considered the gold standard as a cell source for regenerative medicine since they were first cultured in 1998. They are pluripotent and can form principally all the cells types in the body. They are obtained from supernumerary human in vitro fertilization embryos that cannot be used for infertility treatment. Following studies on factors regulating pluripotency and differentiation, we now have techniques to establish and effectively expand these cells in animal substance-free conditions, even from single cells biopsied from eight-cell stage embryos in chemically defined feeder-free cultures. The genetic stability and absence of tumorigenic mutations can be determined. There are satisfactory animal tests for functionality and safety. The first clinical trials are ongoing for two indications: age-related macular degeneration and spinal cord injury.
Collapse
Affiliation(s)
- Outi Hovatta
- Departments of Clinical Science, Intervention and Technology and Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden; Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Sergey Rodin
- Departments of Clinical Science, Intervention and Technology and Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden; Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Liselotte Antonsson
- Departments of Clinical Science, Intervention and Technology and Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden; Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Karl Tryggvason
- Departments of Clinical Science, Intervention and Technology and Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden; Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
8
|
Zhu HB, Zhang ZH, Fadlalla E, Wang RX, Geng DF, Liu RZ. Culturing surplus poor-quality embryos to blastocyst stage have positive predictive value of clinical pregnancy rate. IRANIAN JOURNAL OF REPRODUCTIVE MEDICINE 2014; 12:609-16. [PMID: 25469133 PMCID: PMC4248145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 11/09/2013] [Accepted: 06/01/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Clinical reproductive centers produce large amounts of surplus poor-quality embryos annually, how to maximize the use of these embryos, and which of them have the potential to develop into blastocyst stage and influencing factors were lack of systematic research. OBJECTIVE To investigate the fate of surplus poor-quality embryos which were cultured to obtain blastocyst, determine the factors which may influence the blastulation, and discuss their application in predicting of the pregnancy outcomes. MATERIALS AND METHODS Day 3 (D3) after embryo transfer and freezing, surplus poor-quality embryos from IVF/ICSI cycles were cultured to blastocyst by the sequential method, then the blastulation outcomes were observed. Focusing on the blastulation rate of those embryos with different number cells and different embryonic grade; and last the relationship between the pregnancy outcomes of remained poor-quality embryos with successful blastulation or failed blastulation groups were studied. RESULTS Of 127 patients with 569 poor-quality in vitro cultured embryos, there were formation of 248 blastocysts from 91 patients (43.59%), which lead to development of 138 high-quality blastocysts (24.25%). With the increase in cells number of D 3 blastomeres, the blastulation rate gradually increased, that, 7-cell blastomeres blastulation rate was the highest (70.59%), and 8-cell blastomeres is a little below (70.37%); while the embryonic levels and blastulation rate did not show this positive relationship. The clinical pregnancy rate and implantation rate of those who had successful blastulation (67.03% and 42.39%) were higher than of those who failed to develop to blastocyst (p=0.039). CONCLUSION Day 3 poor-quality embryos with successful blastulation or with failed blastulation had predictive value on pregnancy outcomes. For embryo transfer 7-8 cells grade III-IV embryo is better than 4-5 cells grade I-II embryo, in case of lack good-quality embryos.
Collapse
|
9
|
Pruksananonda K, Rungsiwiwut R, Numchaisrika P, Ahnonkitpanit V, Isarasena N, Virutamasen P. Eighteen-year cryopreservation does not negatively affect the pluripotency of human embryos: evidence from embryonic stem cell derivation. Biores Open Access 2013; 1:166-73. [PMID: 23514952 PMCID: PMC3559204 DOI: 10.1089/biores.2012.0242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Human embryonic stem (hES) cells are considered to be a potential source for the therapy of human diseases, drug screening, and the study of developmental biology. In the present study, we successfully derived hES cell lines from blastocysts developed from frozen and fresh embryos. Seventeen- to eighteen-year-old frozen embryos were thawed, cultured to the blastocyst stage, and induced to form hES cells using human foreskin fibroblasts. The Chula2.hES cell line and the Chula4.hES and Chula5.hES cell lines were derived from blastocysts developed from frozen and fresh embryos, respectively. The cell lines expressed pluripotent markers, including alkaline phosphatase (AP), Oct3/4, stage-specific embryonic antigen (SSEA)-4, and tumor recognition antigen (TRA)-1-60 and TRA-1-81 as detected with immunocytochemistry. The real-time polymerase chain reaction (RT-PCR) results showed that the cell lines expressed pluripotent genes, including OCT3/4, SOX2, NANOG, UTF, LIN28, REX1, NODAL, and E-Cadherin. In addition, the telomerase activities of the cell lines were higher than in the fibroblast cells. Moreover, the cell lines differentiated into all three germ layers both in vitro and in vivo. The cell lines had distinct identities, as revealed with DNA fingerprinting, and maintained their normal karyotype after a long-term culture. This study is the first to report the successful derivation of hES cell lines in Thailand and that frozen embryos maintained their pluripotency similar to fresh embryos, as shown by the success of hES cell derivation, even after years of cryopreservation. Therefore, embryos from prolonged cryopreservation could be an alternative source for embryonic stem cell research.
Collapse
Affiliation(s)
- Kamthorn Pruksananonda
- Human Embryonic Stem Cell Research Center, Chulalongkorn University , Bangkok, Thailand . ; Department of Obstetrics and Gynecology (Reproductive Medicine Unit), Chulalongkorn University , Bangkok, Thailand
| | | | | | | | | | | |
Collapse
|
10
|
O'Leary T, Heindryckx B, Lierman S, Van der Jeught M, Duggal G, De Sutter P, Chuva de Sousa Lopes SM. Derivation of human embryonic stem cells using a post–inner cell mass intermediate. Nat Protoc 2013; 8:254-64. [DOI: 10.1038/nprot.2012.157] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Van der Jeught M, O'Leary T, Ghimire S, Lierman S, Duggal G, Versieren K, Deforce D, Chuva de Sousa Lopes S, Heindryckx B, De Sutter P. The combination of inhibitors of FGF/MEK/Erk and GSK3β signaling increases the number of OCT3/4- and NANOG-positive cells in the human inner cell mass, but does not improve stem cell derivation. Stem Cells Dev 2012; 22:296-306. [PMID: 22784186 DOI: 10.1089/scd.2012.0256] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In embryonic stem cell culture, small molecules can be used to alter key signaling pathways to promote self-renewal and inhibit differentiation. In mice, small-molecule inhibition of both the FGF/MEK/Erk and the GSK3β pathways during preimplantation development suppresses hypoblast formation, and this results in more pluripotent cells of the inner cell mass (ICM). In this study, we evaluated the effects of different small-molecule inhibitors of the FGF/MEK/Erk and GSK3β pathway on embryo preimplantation development, early lineage segregation, and subsequent embryonic stem cell derivation in the humans. We did not observe any effect on blastocyst formation, but small-molecule inhibition did affect the number of OCT3/4- and NANOG-positive cells in the human ICM. We found that combined inhibition of the FGF/MEK/Erk and GSK3β pathways by PD0325901 and CHIR99021, respectively, resulted in ICMs containing significantly more OCT3/4-positive cells. Inhibition of FGF/MEK/Erk alone as well as in combination with inhibition of GSK3β significantly increased the number of NANOG-positive cells in blastocysts possessing good-quality ICMs. Secondly, we verified the influence of this increased pluripotency after 2i culture on the efficiency of stem cell derivation. Similar human embryonic stem cell (hESC) derivation rates were observed after 2i compared to control conditions, resulting in 2 control hESC lines and 1 hESC line from an embryo cultured in 2i conditions. In conclusion, we demonstrated that FGF/MEK/Erk and GSK3β signaling increases the number of OCT3/4- and NANOG-positive cells in the human ICM, but does not improve stem cell derivation.
Collapse
Affiliation(s)
- Margot Van der Jeught
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Vitrified blastocysts from Preimplantation Genetic Diagnosis (PGD) as a source for human Embryonic Stem Cell (hESC) derivation. J Assist Reprod Genet 2012; 29:1013-20. [PMID: 22735930 DOI: 10.1007/s10815-012-9820-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022] Open
Abstract
Embryos diagnosed as abnormal in Preimplantation Genetic Diagnosis (PGD) cycles are useful for the establishment of human Embryonic Stem Cells (hESC) lines with genetic disorders. These lines can be helpful for drug screening and for the development of new treatments. Vitrification has proved to be an efficient method to preserve human blastocysts. One hundred and three abnormal or undiagnosed vitrified blastocysts from the PGD programme at Institut Universitari Dexeus were donated for human embryonic stem cell derivation. The overall survival rate after warming was 70.6 %. Our results showed better survival rates when blastocysts have not started the hatching process (initial/expanded 87.8 %, hatching 68.3 % and hatched 27.3 %). Thirty-five blastocysts and 12 partially surviving embryos were seeded. One hESC line with the multiple exostoses type 2 paternal mutation was obtained.
Collapse
|
13
|
Ren X, Liu Q, Chen W, Zhu G, Li Y, Jin L, Zhang H. Selection and vitrification of embryos with a poor morphological score: a proposal to avoid embryo wastage. ACTA ACUST UNITED AC 2012; 32:405-409. [PMID: 22684566 DOI: 10.1007/s11596-012-0070-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Indexed: 11/28/2022]
Abstract
Embryos with a poor morphological score at cleavage stage are usually discarded because they are considered unsuitable for transfer and cryopreservation. This study examined the in vitro blastocyst development after extended culture of these embryos and the clinical outcomes after transfer of these blastocysts in warming cycles. A total of 597 blastocysts (24.7%) were obtained from 2421 embryos with low morphological scores after extended culture. One hundred and sixty blastocysts (6.6%) with optimal morphology were vitrified. Embryo utilization rate was increased from 30.8% to 32.6%. After warming, 61 out of 92 blastocysts (66.3%) survived and were transferred in 44 cycles. The clinical pregnancy rate and the implantation rate were 40.9% (18/44) and 32.8% (20/61) respectively. Thirteen healthy babies were born, and 5 pregnancies aborted spontaneously. Our study suggested that some blastocysts derived from embryos with a poor morphological score can be successfully vitrified and give rise to live births. Selection and vitrification of viable embryos after extended culture of embryos with a poor morphological score may constitute a proposal to avoid embryo wastage.
Collapse
Affiliation(s)
- Xinling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen Chen
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guijin Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yufeng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
14
|
Chen X, Luo Y, Fan Y, Yue L, Wu X, Chen Y, Sun X. Triploid and diploid embryonic stem cell lines derived from tripronuclear human zygotes. J Assist Reprod Genet 2012; 29:713-21. [PMID: 22527897 DOI: 10.1007/s10815-012-9764-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 03/28/2012] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Human embryonic stem cells (hESCs) are self-renewing, pluripotent cells that are valuable research tools and hold promise for use in regenerative medicine. The need for new hESC lines motivated our attempts to find a new resource for the derivation of hESC lines. The aim of this work was to establish more hESC lines from abnormal fertilized zygotes and to meet the emerging requirements for their use in cell replacement therapies, disease modeling, and basic research. METHODS A total of 130 tripronuclear human zygotes was collected 18-20 h post-insemination and cultured in a modified culture medium. The inner cell mass of 12 blastocysts were isolated by a mechanical method in order to establish embryonic stem cell lines. RESULTS We established four hESC lines derived from 130 trinuclear zygotes, one of which was triploid and the others were diploid. The efficiency of deriving hESC lines is 3.08 %. The ratio of deriving triploid and diploid hESC lines is 1:3. All of these hESC lines exhibited similar markers of undifferentiated hESCs and had the typical morphology of hESCs, a capacity for long-term proliferation, and pluripotent differentiation potential both in vivo and in vitro. CONCLUSIONS These abnormal zygotes, which otherwise would have been discarded, can serve as an alternative source for normal euploid hESC lines.
Collapse
Affiliation(s)
- Xinjie Chen
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Key Laboratory of Reproduction and Genetics, Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical College, Duobao Road 63#, Guangzhou, Guangdong, 510150, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
15
|
O'Leary T, Duggal G, Lierman S, Van den Abbeel E, Heindryckx B, De Sutter P. The influence of patient and cohort parameters on the incidence and developmental potential of embryos with poor quality traits for use in human embryonic stem cell derivation. Hum Reprod 2012; 27:1581-9. [PMID: 22442247 DOI: 10.1093/humrep/des040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human embryonic stem cells (hESCs) are most commonly derived from the inner cell mass (ICM) of blastocyst stage embryos. While the majority of hESC lines originate from good-quality embryos donated after cryogenic storage, poor-quality embryos (PQEs) not suitable for clinical use have also been shown to generate hESC. This provides a newfound function for embryos that would otherwise be discarded following IVF or ICSI. Owing to their lack of clinical importance, however, data on the poorest embryos in a cohort go largely unreported in the literature. It is therefore of interest to better understand the availability of PQEs from IVF/ICSI cycles and to determine their ability to develop into blastocysts with good-quality ICMs for use in hESC derivation. In this study, we investigate the influence of patient parameters and embryo cohort on PQE incidence, blastocyst development, ICM quality and successful hESC derivation from donated PQEs. METHODS PQEs from 736 patient cycles that did not meet our clinical criteria for transfer or cryopreservation were cultured until Day 6 of development and assessed for blastocyst formation and ICM quality. A subset of blastocysts with good-quality ICMs were then used for hESC derivation attempts. Anonymous patient data such as maternal age, embryo history and cohort parameters were then retrospectively compiled and analysed. RESULTS PQEs made up 46.8% of two pronucleate embryos created from IVF/ICSI. Including embryos with abnormal fertilization, a mean of 3.6 ± 2.8 embryos were donated per cycle with 32.6% developing to the blastocyst stage. Good-quality ICM were produced in 13.9% of PQEs cultured. Of good-quality ICM, 15.4% of those used in hESC derivation attempts resulted in a novel line. The PQEs that originated from older patients (>37 year) or from cycles that did not result in pregnancy had significantly diminished blastocyst development and ICM quality. Maternal age was also shown to further influence the ability of good-quality ICMs to generate hESC. CONCLUSIONS PQEs are an abundant source of embryos capable of developing to blastocysts with good-quality ICMs and subsequently generating novel hESC. We have shown that prognostic variables used to predict IVF/ICSI outcome can also help predict which PQEs have the best hESC developmental potential. Owing to the diversity of PQE origin, experiments designed to compare hESC derivation techniques or efficiency using PQEs should consider clinical IVF/ICSI parameters to establish groups with equal developmental competence. Additional investigation is needed to determine if these results are applicable to hESC derivation using good-quality embryos.
Collapse
Affiliation(s)
- T O'Leary
- Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|