1
|
Motavallihaghi S, Tanzadehpanah H, Soleimani Asl S, Shojaeian A, Yousefimashouf M, Barati N. In vitro anticancer activity of hydatid cyst fluid on colon cancer cell line (C26). EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-023-00394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Abstract
Background
Colon cancer is the third most common cancer and the fourth leading cause of death from cancer. Some parasites are introduced as an antineoplastic agents that can inhibit the progress of some cancers. The aim of this study was to investigate the effect of crude hydatid cyst fluid (HCF) on clone cancer cell line (C26).
Methods
HCF was isolated from hydatid cysts by syringe, and at the first, its toxicity was obtained by 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Cell cycle analysis and apoptosis were measured by flow cytometer, and also the expression of Bcl-2 Associated X-protein (BAX) and B-cell lymphoma-2 (BCL2) genes was measured by quantitative reverse transcription PCR.
Results
The amount of apoptosis was increased in B antigen-treated cell lines in comparison with the control group. Also, the expression of BAX was increased in the treated group, while the BCL2 expression was decreased in comparison with the control one. Cell cycle analysis in the antigen-treated group compared to the other groups showed that the cells were more in the G0/G1 phase, as well as in the G2/M phase, and fewer cells were in the synthesis phase.
Conclusion
Our finding showed that HCF possibly contains active compounds and can limit the growth and development of C26 cell line by reducing or increasing the genes involved in apoptosis and finally the effect on the cell cycle.
Graphical Abstract
Collapse
|
2
|
Sandin SI, de Alba E. Quantitative Studies on the Interaction between Saposin-like Proteins and Synthetic Lipid Membranes. Methods Protoc 2022; 5:mps5010019. [PMID: 35200535 PMCID: PMC8878781 DOI: 10.3390/mps5010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/05/2022] Open
Abstract
Members of the saposin-fold protein family and related proteins sharing a similar fold (saposin-like proteins; SAPLIP) are peripheral-membrane binding proteins that perform essential cellular functions. Saposins and SAPLIPs are abundant in both plant and animal kingdoms, and peripherally bind to lipid membranes to play important roles in lipid transfer and hydrolysis, defense mechanisms, surfactant stabilization, and cell proliferation. However, quantitative studies on the interaction between proteins and membranes are challenging due to the different nature of the two components in relation to size, structure, chemical composition, and polarity. Using liposomes and the saposin-fold member saposin C (sapC) as model systems, we describe here a method to apply solution NMR and dynamic light scattering to study the interaction between SAPLIPs and synthetic membranes at the quantitative level. Specifically, we prove with NMR that sapC binds reversibly to the synthetic membrane in a pH-controlled manner and show the dynamic nature of its fusogenic properties with dynamic light scattering. The method can be used to infer the optimal pH for membrane binding and to determine an apparent dissociation constant (KDapp) for protein-liposome interaction. We propose that these experiments can be applied to other proteins sharing the saposin fold.
Collapse
Affiliation(s)
- Suzanne I. Sandin
- Department of Bioengineering, School of Engineering, University of California Merced, Merced, CA 95343, USA;
- Chemistry and Biochemistry Ph.D. Program, University of California Merced, Merced, CA 95343, USA
| | - Eva de Alba
- Department of Bioengineering, School of Engineering, University of California Merced, Merced, CA 95343, USA;
- Correspondence:
| |
Collapse
|
3
|
Sandin SI, Gravano DM, Randolph CJ, Sharma M, de Alba E. Engineering of Saposin C Protein Chimeras for Enhanced Cytotoxicity and Optimized Liposome Binding Capability. Pharmaceutics 2021; 13:pharmaceutics13040583. [PMID: 33921905 PMCID: PMC8072984 DOI: 10.3390/pharmaceutics13040583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
Saposin C (sapC) is a lysosomal, peripheral-membrane protein displaying liposome fusogenic capabilities. Proteoliposomes of sapC and phosphatidylserine have been shown to be toxic for cancer cells and are currently on clinical trial to treat glioblastoma. As proof-of-concept, we show two strategies to enhance the applications of sapC proteoliposomes: (1) Engineering chimeras composed of sapC to modulate proteoliposome function; (2) Engineering sapC to modify its lipid binding capabilities. In the chimera design, sapC is linked to a cell death-inducing peptide: the BH3 domain of the Bcl-2 protein PUMA. We show by solution NMR and dynamic light scattering that the chimera is functional at the molecular level by fusing liposomes and by interacting with prosurvival Bcl-xL, which is PUMA’s known mechanism to induce cell death. Furthermore, sapC-PUMA proteoliposomes enhance cytotoxicity in glioblastoma cells compared to sapC. Finally, the sapC domain of the chimera has been engineered to optimize liposome binding at pH close to physiological values as protein–lipid interactions are favored at acidic pH in the native protein. Altogether, our results indicate that the properties of sapC proteoliposomes can be modified by engineering the protein surface and by the addition of small peptides as fusion constructs.
Collapse
Affiliation(s)
- Suzanne I. Sandin
- Department of Bioengineering, University of California, Merced, CA 95343, USA; (S.I.S.); (C.J.R.); (M.S.)
- Chemistry and Chemical Biology Ph.D. Program, University of California, Merced, CA 95343, USA
| | - David M. Gravano
- Stem Cell Instrumentation Foundry, University of California, Merced, CA 95343, USA;
| | - Christopher J. Randolph
- Department of Bioengineering, University of California, Merced, CA 95343, USA; (S.I.S.); (C.J.R.); (M.S.)
| | - Meenakshi Sharma
- Department of Bioengineering, University of California, Merced, CA 95343, USA; (S.I.S.); (C.J.R.); (M.S.)
| | - Eva de Alba
- Department of Bioengineering, University of California, Merced, CA 95343, USA; (S.I.S.); (C.J.R.); (M.S.)
- Correspondence:
| |
Collapse
|
4
|
Naseri MH, Mahdavi M, Davoodi J, Tackallou SH, Goudarzvand M, Neishabouri SH. Up regulation of Bax and down regulation of Bcl2 during 3-NC mediated apoptosis in human cancer cells. Cancer Cell Int 2015; 15:55. [PMID: 26074734 PMCID: PMC4464715 DOI: 10.1186/s12935-015-0204-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/11/2015] [Indexed: 01/04/2023] Open
Abstract
Background Recently, we have reported the induction of apoptosis by 2-amino-4-(3-nitrophenyl)-3-cyano-7-(dimethylamino)-4H-chromene (3-NC) in HepG2, T47D and HCT116 cells with low nano molar IC50 values. In this study, anti-proliferative effects of modified 4-aryle-4H-chromenes derivatives; 2-amino-4-(3-bromophenyl)-3-cyano-7-(dimethylamino)-4H-chromene (3-BC), 2-amino-4-(3-trifluoromethylphenyl)-3-cyano-7-(dimethylamino)-4H-chromene (3-TFC) and 2-amino-4-(4,5-methylenedioxyphenyl)-3-cyano-7-(dimethylamino)-4H-chromene (4, 5-MC) were investigated in three human cancer cell lines. Compared to 3-NC none of the compounds displayed better anti-proliferative effect, although 3-BC appeared somewhat similar. Therefore 3-NC was selected for further studies. Methods and results Treatment of HepG2, T47D and HCT116 cells with this compound induced apoptosis as visualized by fluorescence microscopic study of Hoechst 33258 stained cells. Induction of apoptosis was quantified by Annexin V/PI staining using flow cytometry. Western blot analysis also revealed that 3-NC down-regulated the expression of anti-apoptotic protein Bcl2 and up-regulated pro-apoptotic protein Bax, in all of the cell lines. Nonetheless, HepG2 cell line was the most responsive to 3-NC as Bax and Bcl2 showed the most dramatic up and down regulation. Conclusion Our previous finding that 3-NC down regulates Inhibitor of Apoptosis Proteins (IAPs) and the present observation that Bax is upregulated and Bcl2 is down regulated upon 3-NC treatment, this chromene derivative has the potential to overcome chemotherapy resistance caused by up regulation of these proteins.
Collapse
Affiliation(s)
- Mohammad Hassan Naseri
- Alborz University of Medical Sciences, Karaj, Iran ; Baqiyatallah University of Medical Sciences (BMSU), Tehran, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Jamshid Davoodi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | | | |
Collapse
|
5
|
Dannlowski U, Grabe HJ, Wittfeld K, Klaus J, Konrad C, Grotegerd D, Redlich R, Suslow T, Opel N, Ohrmann P, Bauer J, Zwanzger P, Laeger I, Hohoff C, Arolt V, Heindel W, Deppe M, Domschke K, Hegenscheid K, Völzke H, Stacey D, Meyer Zu Schwabedissen H, Kugel H, Baune BT. Multimodal imaging of a tescalcin (TESC)-regulating polymorphism (rs7294919)-specific effects on hippocampal gray matter structure. Mol Psychiatry 2015; 20:398-404. [PMID: 24776739 DOI: 10.1038/mp.2014.39] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/09/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
In two large genome-wide association studies, an intergenic single-nucleotide polymorphism (SNP; rs7294919) involved in TESC gene regulation has been associated with hippocampus volume. Further characterization of neurobiological effects of the TESC gene is warranted using multimodal brain-wide structural and functional imaging. Voxel-based morphometry (VBM8) was used in two large, well-characterized samples of healthy individuals of West-European ancestry (Münster sample, N=503; SHIP-TREND, N=721) to analyze associations between rs7294919 and local gray matter volume. In subsamples, white matter fiber structure was investigated using diffusion tensor imaging (DTI) and limbic responsiveness was measured by means of functional magnetic resonance imaging (fMRI) during facial emotion processing (N=220 and N=264, respectively). Furthermore, gene x environment (G × E) interaction and gene x gene interaction with SNPs from genes previously found to be associated with hippocampal size (FKBP5, Reelin, IL-6, TNF-α, BDNF and 5-HTTLPR/rs25531) were explored. We demonstrated highly significant effects of rs7294919 on hippocampal gray matter volumes in both samples. In whole-brain analyses, no other brain areas except the hippocampal formation and adjacent temporal structures were associated with rs7294919. There were no genotype effects on DTI and fMRI results, including functional connectivity measures. No G × E interaction with childhood maltreatment was found in both samples. However, an interaction between rs7294919 and rs2299403 in the Reelin gene was found that withstood correction for multiple comparisons. We conclude that rs7294919 exerts highly robust and regionally specific effects on hippocampal gray matter structures, but not on other neuropsychiatrically relevant imaging markers. The biological interaction between TESC and RELN pointing to a neurodevelopmental origin of the observed findings warrants further mechanistic investigations.
Collapse
Affiliation(s)
- U Dannlowski
- 1] Department of Psychiatry, University of Münster, Münster, Germany [2] Department of Psychiatry, University of Marburg, Marburg, Germany
| | - H J Grabe
- 1] Department of Psychiatry, University Medicine Greifswald, HELIOS-Hospital Stralsund, Stralsund, Germany [2] German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - K Wittfeld
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - J Klaus
- Department of Psychiatry, University of Münster, Münster, Germany
| | - C Konrad
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - D Grotegerd
- Department of Psychiatry, University of Münster, Münster, Germany
| | - R Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - T Suslow
- 1] Department of Psychiatry, University of Münster, Münster, Germany [2] Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Leipzig, Germany
| | - N Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - P Ohrmann
- Department of Psychiatry, University of Münster, Münster, Germany
| | - J Bauer
- Department of Psychiatry, University of Münster, Münster, Germany
| | - P Zwanzger
- Department of Psychiatry, University of Münster, Münster, Germany
| | - I Laeger
- Department of Psychiatry, University of Münster, Münster, Germany
| | - C Hohoff
- Department of Psychiatry, University of Münster, Münster, Germany
| | - V Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - W Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - M Deppe
- Department of Neurology, University of Münster, Münster, Germany
| | - K Domschke
- Department of Psychiatry, University of Würzburg, Würzburg, Germany
| | - K Hegenscheid
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - H Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - D Stacey
- Discipline of Psychiatry, School of Medicine, University of Adelaide: North Terrace, Adelaide, SA, Australia
| | | | - H Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - B T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide: North Terrace, Adelaide, SA, Australia
| |
Collapse
|
6
|
Flint J, Timpson N, Munafò M. Assessing the utility of intermediate phenotypes for genetic mapping of psychiatric disease. Trends Neurosci 2014; 37:733-41. [PMID: 25216981 PMCID: PMC4961231 DOI: 10.1016/j.tins.2014.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 01/19/2023]
Abstract
Intermediate phenotypes are traits positioned somewhere between genetic variation and disease. They represent a target for attempts to find disease-associated genetic variants and elucidation of mechanisms. Psychiatry has been particularly enamoured with intermediate phenotypes, due to uncertainty about disease aetiology, inconclusive results in early psychiatric genetic studies, and their appeal relative to traditional diagnostic categories. In this review, we argue that new genetic findings are relevant to the question of the utility of these constructs. In particular, results from genome-wide association studies of psychiatric disorders now allow an assessment of the potential role of particular intermediate phenotypes. Based on such an analysis, as well as other recent results, we conclude that intermediate phenotypes are likely to be most valuable in understanding mechanism.
Collapse
Affiliation(s)
- Jonathan Flint
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, UK.
| | - Nicholas Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Marcus Munafò
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK; UK Centre for Tobacco and Alcohol Studies and School of Experimental Psychology, University of Bristol, Bristol BS8 1TU, UK
| |
Collapse
|
7
|
Genetic, psychosocial and clinical factors associated with hippocampal volume in the general population. Transl Psychiatry 2014; 4:e465. [PMID: 25313508 PMCID: PMC4350511 DOI: 10.1038/tp.2014.102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/13/2014] [Indexed: 01/14/2023] Open
Abstract
The hippocampus--crucial for memory formation, recall and mood regulation--is involved in the pathophysiology of dementia and depressive disorders. Recent genome-wide association studies (GWAS) have identified five genetic loci associated with hippocampal volume (HV). Previous studies have described psychosocial and clinical factors (for example, smoking, type 2 diabetes and hypertension) to have an impact on HV. However, the interplay between genetic, psychosocial and clinical factors on the HV remains unclear. Still, it is likely that genetic variants and clinical or psychosocial factors jointly act in modifying HV; it might be possible they even interact. Knowledge of these factors might help to quantify ones individual risk of or rather resilience against HV loss. We investigated subjects (N=2463; 55.7% women; mean age 53 years) from the Study of Health in Pomerania (SHIP-2; SHIP-TREND-0) who underwent whole-body magnetic resonance imaging (MRI) and genotyping. HVs were estimated with FreeSurfer. For optimal nonlinear model fitting, we used regression analyses with restricted cubic splines. Genetic variants and associated psychosocial or clinical factors were jointly assessed for potential two-way interactions. We observed associations between HV and gender (P<0.0001), age (P<0.0001), body height (P<0.0001), education (P=0.0053), smoking (P=0.0058), diastolic blood pressure (P=0.0211), rs7294919 (P=0.0065), rs17178006 (P=0.0002), rs6581612 (P=0.0036), rs6741949 (P=0.0112) and rs7852872 (P=0.0451). In addition, we found three significant interactions: between rs7294919 and smoking (P=0.0473), rs7294919 and diastolic blood pressure (P=0.0447) and between rs7852872 and rs6581612 (P=0.0114). We suggest that these factors might have a role in the individual susceptibility to hippocampus-associated disorders.
Collapse
|
8
|
Ma LL, Ou JR, Zhang W, Sun FR, Yu JT, Tan L. Single nucleotide polymorphism rs7294919 on chromosome 12q24.22 is associated with late-onset Alzheimer's disease in Han Chinese. Neurosci Lett 2014; 560:67-70. [DOI: 10.1016/j.neulet.2013.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/23/2013] [Accepted: 12/10/2013] [Indexed: 11/16/2022]
Affiliation(s)
- Ling-Li Ma
- Department of Neurology, Qingdao Municipal Hospital, Weifang Medical University, China
| | - Jiang-Rong Ou
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China
| | - Wei Zhang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China
| | - Fu-Rong Sun
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Weifang Medical University, China; Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China; Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, China; College of Medicine and Pharmaceutics, Ocean University of China, China.
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Weifang Medical University, China; Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, China; Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, China; College of Medicine and Pharmaceutics, Ocean University of China, China.
| |
Collapse
|
9
|
Structural biology of the Bcl-2 family and its mimicry by viral proteins. Cell Death Dis 2013; 4:e909. [PMID: 24201808 PMCID: PMC3847314 DOI: 10.1038/cddis.2013.436] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/09/2013] [Accepted: 10/02/2013] [Indexed: 12/16/2022]
Abstract
Intrinsic apoptosis in mammals is regulated by protein–protein interactions among the B-cell lymphoma-2 (Bcl-2) family. The sequences, structures and binding specificity between pro-survival Bcl-2 proteins and their pro-apoptotic Bcl-2 homology 3 motif only (BH3-only) protein antagonists are now well understood. In contrast, our understanding of the mode of action of Bax and Bak, the two necessary proteins for apoptosis is incomplete. Bax and Bak are isostructural with pro-survival Bcl-2 proteins and also interact with BH3-only proteins, albeit weakly. Two sites have been identified; the in-groove interaction analogous to the pro-survival BH3-only interaction and a site on the opposite molecular face. Interaction of Bax or Bak with activator BH3-only proteins and mitochondrial membranes triggers a series of ill-defined conformational changes initiating their oligomerization and mitochondrial outer membrane permeabilization. Many actions of the mammalian pro-survival Bcl-2 family are mimicked by viruses. By expressing proteins mimicking mammalian pro-survival Bcl-2 family proteins, viruses neutralize death-inducing members of the Bcl-2 family and evade host cell apoptosis during replication. Remarkably, structural elements are preserved in viral Bcl-2 proteins even though there is in many cases little discernible sequence conservation with their mammalian counterparts. Some viral Bcl-2 proteins are dimeric, but they have distinct structures to those observed for mammalian Bcl-2 proteins. Furthermore, viral Bcl-2 proteins modulate innate immune responses regulated by NF-κB through an interface separate from the canonical BH3-binding groove. Our increasing structural understanding of the viral Bcl-2 proteins is leading to new insights in the cellular Bcl-2 network by exploring potential alternate functional modes in the cellular context. We compare the cellular and viral Bcl-2 proteins and discuss how alterations in their structure, sequence and binding specificity lead to differences in behavior, and together with the intrinsic structural plasticity in the Bcl-2 fold enable exquisite control over critical cellular signaling pathways.
Collapse
|
10
|
Ramanan VK, Saykin AJ. Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer's disease, Parkinson's disease, and related disorders. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2013; 2:145-175. [PMID: 24093081 PMCID: PMC3783830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/25/2013] [Indexed: 06/02/2023]
Abstract
The discovery of causative genetic mutations in affected family members has historically dominated our understanding of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Nevertheless, most cases of neurodegenerative disease are not explained by Mendelian inheritance of known genetic variants, but instead are thought to have a complex etiology with numerous genetic and environmental factors contributing to susceptibility. Although unbiased genome-wide association studies (GWAS) have identified novel associations to neurodegenerative diseases, most of these hits explain only modest fractions of disease heritability. In addition, despite the substantial overlap of clinical and pathologic features among major neurodegenerative diseases, surprisingly few GWAS-implicated variants appear to exhibit cross-disease association. These realities suggest limitations of the focus on individual genetic variants and create challenges for the development of diagnostic and therapeutic strategies, which traditionally target an isolated molecule or mechanistic step. Recently, GWAS of complex diseases and traits have focused less on individual susceptibility variants and instead have emphasized the biological pathways and networks revealed by genetic associations. This new paradigm draws on the hypothesis that fundamental disease processes may be influenced on a personalized basis by a combination of variants - some common and others rare, some protective and others deleterious - in key genes and pathways. Here, we review and synthesize the major pathways implicated in neurodegeneration, focusing on GWAS from the most prevalent neurodegenerative disorders, AD and PD. Using literature mining, we also discover a novel regulatory network that is enriched with AD- and PD-associated genes and centered on the SP1 and AP-1 (Jun/Fos) transcription factors. Overall, this pathway- and network-driven model highlights several potential shared mechanisms in AD and PD that will inform future studies of these and other neurodegenerative disorders. These insights also suggest that biomarker and treatment strategies may require simultaneous targeting of multiple components, including some specific to disease stage, in order to assess and modulate neurodegeneration. Pathways and networks will provide ideal vehicles for integrating relevant findings from GWAS and other modalities to enhance clinical translation.
Collapse
Affiliation(s)
- Vijay K Ramanan
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolis, IN, USA
- Medical Scientist Training Program, Indiana University School of MedicineIndianapolis, IN, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of MedicineIndianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of MedicineIndianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|
11
|
Santiveri CM, Sborgi L, de Alba E. Nuclear magnetic resonance study of protein-protein interactions involving apoptosis regulator Diva (Boo) and the BH3 domain of proapoptotic Bcl-2 members. J Mol Recognit 2013. [PMID: 23192964 DOI: 10.1002/jmr.2240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
According to biochemical assays, the Bcl-2 protein Diva from mouse regulates programmed cell death by heterodimerizing with other members of the family and by interacting with the apoptotic protease-activating factor Apaf-1. In typical Bcl-2 heterodimers, peptide fragments comprising the Bcl-2 homology domain 3 (BH3 domain) of proapoptotic members are capable of forming functional complexes with prosurvival proteins. High-resolution structural studies have revealed that the BH3 peptide forms an α-helix positioned in a canonical hydrophobic cleft of the antiapoptotic protein. Because Diva shows mutations in conserved residues within this area, it has been proposed to have a different interacting surface. However, we showed previously that Diva binds through the canonical groove the BH3 peptide of the human Bcl-2 killing member Harakiri. To further test Diva's binding capabilities, here we show Nuclear Magnetic Resonance (NMR) data, indicating that Diva binds peptides derived from the BH3 domain of several other proapoptotic Bcl-2 proteins, including mouse Harakiri, Bid, Bak and Bmf. We have measured the binding affinities of the heterodimers, which show significant variability. Structural models of the protein-peptide complexes based on NMR chemical shift perturbation data indicate that the binding surface is analogous. These models do not rely on NMR NOE (Nuclear Overhauser Effect) data, and thus our results can only suggest that the complexes share similar intermolecular interactions. However, the observed affinity differences correlate with the α-helical population of the BH3-peptides obtained from circular dichroism experiments, which highlights a role of conformational selection in the binding mechanism. Altogether, our results shed light on important factors governing Diva-BH3 peptide molecular recognition mode.
Collapse
Affiliation(s)
- Clara M Santiveri
- Chemical and Physical Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, 9, Madrid, 28040, Spain
| | | | | |
Collapse
|
12
|
Liu NS, Du X, Lu J, He BP. Diva reduces cell death in response to oxidative stress and cytotoxicity. PLoS One 2012; 7:e43180. [PMID: 22905226 PMCID: PMC3419649 DOI: 10.1371/journal.pone.0043180] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 07/20/2012] [Indexed: 01/01/2023] Open
Abstract
Diva is a member of the Bcl2 family but its function in apoptosis remains largely unclear because of its specific expression found within limited adult tissues. Previous overexpression studies done on various cell lines yielded conflicting conclusions pertaining to its apoptotic function. Here, we discovered the expression of endogenous Diva in PC12 neuronal-like cell line and rat bone marrow mesenchymal stem cells (BMSCs), leading to their utilisation for the functional study of Diva. Through usage of recombinant Fas ligand, hydrogen peroxide, overexpression and knock down experiments, we discovered that Diva plays a crucial pro-survival role via the mitochondrial death pathway. In addition, immunoprecipitation studies also noted a decrease in Diva’s interaction with Bcl2 and Bax following apoptosis induced by oxidative stress. By overexpressing Diva in BMSCs, we had observed an increase in the cells’ capacity to survive under oxidative stress and microglial toxicity. The result obtained from our study gives us reason to believe that Diva plays an important role in controlling the survival of BMSCs. Through overexpression of Diva, the viability of these BMSCs may be boosted under adverse conditions.
Collapse
Affiliation(s)
- Nicole Suyun Liu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiaoli Du
- Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Jia Lu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Bei Ping He
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
13
|
Common variants at 12q14 and 12q24 are associated with hippocampal volume. Nat Genet 2012; 44:545-51. [PMID: 22504421 PMCID: PMC3427729 DOI: 10.1038/ng.2237] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 03/06/2012] [Indexed: 12/24/2022]
Abstract
Aging is associated with reductions in hippocampal volume (HV) that are accelerated by Alzheimer’s disease and vascular risk factors. Our genome-wide association study of dementia-free persons (n=9,232) identified 46 SNPs at four loci with p-values <4.0×10-7. Two additional samples (n=2,318) replicated associations at 12q24 within MSRB3/WIF1 (discovery + replication, rs17178006; p=5.3×10-11) and at 12q14 near HRK/FBXW8 (rs7294919; p=2.9×10-11). Remaining associations included one 2q24 SNP within DPP4 (rs6741949; p=2.9×10-7) and nine 9p33 SNPs within ASTN2 (rs7852872; p=1.0×10-7) that were also associated with HV (p<0.05) in a third younger, more heterogeneous sample (n=7,794). The ASTN2 SNP was also associated with decline in cognition in a largely independent sample (n=1,563). These associations implicate genes related to apoptosis (HRK), development (WIF1), oxidative stress (MSR3B), ubiquitination (FBXW8), enzymes targeted by new diabetes medications (DPP4), and neuronal migration (ASTN2), indicating novel genetic influences that influence hippocampal size and possibly the risk of cognitive decline and dementia.
Collapse
|
14
|
Intrinsic order and disorder in the bcl-2 member harakiri: insights into its proapoptotic activity. PLoS One 2011; 6:e21413. [PMID: 21731739 PMCID: PMC3121775 DOI: 10.1371/journal.pone.0021413] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 05/28/2011] [Indexed: 12/31/2022] Open
Abstract
Harakiri is a BH3-only member of the Bcl-2 family that localizes in membranes and induces cell death by binding to prosurvival Bcl-xL and Bcl-2. The cytosolic domain of Harakiri is largely disorder with residual α-helical conformation according to previous structural studies. As these helical structures could play an important role in Harakiri's function, we have used NMR and circular dichroism to fully characterize them at the residue-atomic level. In addition, we report structural studies on a peptide fragment spanning Harakiri's C-terminal hydrophobic sequence, which potentially operates as a transmembrane domain. We initially checked by enzyme immunoassays and NMR that peptides encompassing different lengths of the cytosolic domain are functional as they bind Bcl-xL and Bcl-2. The structural data in water indicate that the α-helical conformation is restricted to a 25-residue segment comprising the BH3 domain. However, structure calculation was precluded because of insufficient NMR restraints. To bypass this problem we used alcohol-water mixture to increase structure population and confirmed by NMR that the conformation in both milieus is equivalent. The resulting three-dimensional structure closely resembles that of peptides encompassing the BH3 domain of BH3-only members in complex with their prosurvival partners, suggesting that preformed structural elements in the disordered protein are central to binding. In contrast, the transmembrane domain forms in micelles a monomeric α-helix with a population close to 100%. Its three-dimensional structure here reported reveals features that explain its function as membrane anchor. Altogether these results are used to propose a tentative structural model of how Harakiri works.
Collapse
|