1
|
Perdiguero B, Pérez P, Marcos-Villar L, Albericio G, Astorgano D, Álvarez E, Sin L, Elena Gómez C, García-Arriaza J, Esteban M. Highly attenuated poxvirus-based vaccines against emerging viral diseases. J Mol Biol 2023:168173. [PMID: 37301278 DOI: 10.1016/j.jmb.2023.168173] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Although one member of the poxvirus family, variola virus, has caused one of the most devastating human infections worldwide, smallpox, the knowledge gained over the last 30 years on the molecular, virological and immunological mechanisms of these viruses has allowed the use of members of this family as vectors for the generation of recombinant vaccines against numerous pathogens. In this review, we cover different aspects of the history and biology of poxviruses with emphasis on their application as vaccines, from first- to fourth-generation, against smallpox, monkeypox, emerging viral diseases highlighted by the World Health Organization (COVID-19, Crimean-Congo haemorrhagic fever, Ebola and Marburg virus diseases, Lassa fever, Middle East respiratory syndrome and severe acute respiratory syndrome, Nipah and other henipaviral diseases, Rift Valley fever and Zika), as well as against one of the most concerning prevalent virus, the Human Immunodeficiency Virus, the causative agent of AcquiredImmunodeficiency Syndrome. We discuss the implications in human health of the 2022 monkeypox epidemic affecting many countries, and the rapid prophylactic and therapeutic measures adopted to control virus dissemination within the human population. We also describe the preclinical and clinical evaluation of the Modified Vaccinia virus Ankara and New York vaccinia virus poxviral strains expressing heterologous antigens from the viral diseases listed above. Finally, we report different approaches to improve the immunogenicity and efficacy of poxvirus-based vaccine candidates, such as deletion of immunomodulatory genes, insertion of host-range genes and enhanced transcription of foreign genes through modified viral promoters. Some future prospects are also highlighted.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Enrique Álvarez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Sin
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Kibler KV, Szczerba M, Lake D, Roeder AJ, Rahman M, Hogue BG, Roy Wong LY, Perlman S, Li Y, Jacobs BL. Intranasal Immunization with a Vaccinia Virus Vaccine Vector Expressing Pre-Fusion Stabilized SARS-CoV-2 Spike Fully Protected Mice against Lethal Challenge with the Heavily Mutated Mouse-Adapted SARS2-N501Y MA30 Strain of SARS-CoV-2. Vaccines (Basel) 2022; 10:1172. [PMID: 35893821 PMCID: PMC9394475 DOI: 10.3390/vaccines10081172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
The Omicron SARS-CoV-2 variant has been designated as a variant of concern because its spike protein is heavily mutated. In particular, the Omicron spike is mutated at five positions (K417, N440, E484, Q493, and N501) that have been associated with escape from neutralizing antibodies induced by either infection with or immunization against the early Washington strain of SARS-CoV-2. The mouse-adapted strain of SARS-CoV-2, SARS2-N501YMA30, contains a spike that is also heavily mutated, with mutations at four of the five positions in the Omicron spike associated with neutralizing antibody escape (K417, E484, Q493, and N501). In this manuscript, we show that intranasal immunization with a pre-fusion stabilized Washington strain spike, expressed from a highly attenuated, replication-competent vaccinia virus construct, NYVAC-KC, fully protected mice against symptoms and death from SARS2-N501YMA30. Similarly, immunization by scarification on the skin fully protected against death, but not from mild disease. This data demonstrates that the Washington strain spike, when expressed from a highly attenuated, replication-competent poxvirus-administered without parenteral injection-can fully protect against the heavily mutated mouse-adapted SARS2-N501YMA30.
Collapse
Affiliation(s)
- Karen V. Kibler
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA; (M.S.); (M.R.); (B.G.H.); (Y.L.); (B.L.J.)
| | - Mateusz Szczerba
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA; (M.S.); (M.R.); (B.G.H.); (Y.L.); (B.L.J.)
| | - Douglas Lake
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (D.L.); (A.J.R.)
| | - Alexa J. Roeder
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (D.L.); (A.J.R.)
| | - Masmudur Rahman
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA; (M.S.); (M.R.); (B.G.H.); (Y.L.); (B.L.J.)
| | - Brenda G. Hogue
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA; (M.S.); (M.R.); (B.G.H.); (Y.L.); (B.L.J.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (D.L.); (A.J.R.)
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA; (L.-Y.R.W.); (S.P.)
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA; (L.-Y.R.W.); (S.P.)
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Yize Li
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA; (M.S.); (M.R.); (B.G.H.); (Y.L.); (B.L.J.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (D.L.); (A.J.R.)
| | - Bertram L. Jacobs
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA; (M.S.); (M.R.); (B.G.H.); (Y.L.); (B.L.J.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (D.L.); (A.J.R.)
| |
Collapse
|
3
|
Travieso T, Li J, Mahesh S, Mello JDFRE, Blasi M. The use of viral vectors in vaccine development. NPJ Vaccines 2022; 7:75. [PMID: 35787629 PMCID: PMC9253346 DOI: 10.1038/s41541-022-00503-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/15/2022] [Indexed: 12/22/2022] Open
Abstract
Vaccines represent the single most cost-efficient and equitable way to combat and eradicate infectious diseases. While traditional licensed vaccines consist of either inactivated/attenuated versions of the entire pathogen or subunits of it, most novel experimental vaccines against emerging infectious diseases employ nucleic acids to produce the antigen of interest directly in vivo. These include DNA plasmid vaccines, mRNA vaccines, and recombinant viral vectors. The advantages of using nucleic acid vaccines include their ability to induce durable immune responses, high vaccine stability, and ease of large-scale manufacturing. In this review, we present an overview of pre-clinical and clinical data on recombinant viral vector vaccines and discuss the advantages and limitations of the different viral vector platforms.
Collapse
Affiliation(s)
- Tatianna Travieso
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jenny Li
- Duke University, Durham, NC, USA
| | - Sneha Mahesh
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Juliana Da Fonzeca Redenze E Mello
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Maria Blasi
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA. .,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Kibler KV, Szczerba M, Lake D, Roeder AJ, Rahman M, Hogue BG, Roy Wong LY, Perlman S, Li Y, Jacobs BL. Intranasal immunization with a vaccinia virus vaccine vector expressing pre-fusion stabilized SARS-CoV-2 spike fully protected mice against lethal challenge with the heavily mutated mouse-adapted SARS2-N501Y MA30 strain of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34909775 DOI: 10.1101/2021.07.28.454201] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The Omicron SARS-CoV-2 variant has been designated a variant of concern because its spike protein is heavily mutated. In particular, Omicron spike is mutated at 5 positions (K417, N440, E484, Q493 and N501) that have been associated with escape from neutralizing antibodies induced by either infection with or immunization against the early Washington strain of SARS-CoV-2. The mouse-adapted strain of SARS-CoV-2, SARS2-N501Y MA30 , contains a spike that is also heavily mutated, with mutations at 4 of the 5 positions in Omicron spike associated with neutralizing antibody escape (K417, E484, Q493 and N501). In this manuscript we show that intranasal immunization with a pre-fusion stabilized Washington strain spike, expressed from a highly attenuated, replication-competent vaccinia virus construct, NYVAC-KC, fully protected mice against disease and death from SARS2-N501Y MA30 . Similarly, immunization by scarification on the skin fully protected against death, but not from mild disease. This data demonstrates that Washington strain spike, when expressed from a highly attenuated, replication-competent poxvirus, administered without parenteral injection can fully protect against the heavily mutated mouse-adapted SARS2-N501Y MA30 .
Collapse
Affiliation(s)
- Karen V Kibler
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Mateusz Szczerba
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Douglas Lake
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Alexa J Roeder
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Masmudur Rahman
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Brenda G Hogue
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Yize Li
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bertram L Jacobs
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
5
|
Kibler KV, Szczerba M, Lake D, Roeder AJ, Rahman M, Hogue BG, Roy Wong LY, Perlman S, Li Y, Jacobs BL. Intranasal immunization with a vaccinia virus vaccine vector expressing pre-fusion stabilized SARS-CoV-2 spike fully protected mice against lethal challenge with the heavily mutated mouse-adapted SARS2-N501Y MA30 strain of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.06.471483. [PMID: 34909775 PMCID: PMC8669842 DOI: 10.1101/2021.12.06.471483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Omicron SARS-CoV-2 variant has been designated a variant of concern because its spike protein is heavily mutated. In particular, Omicron spike is mutated at 5 positions (K417, N440, E484, Q493 and N501) that have been associated with escape from neutralizing antibodies induced by either infection with or immunization against the early Washington strain of SARS-CoV-2. The mouse-adapted strain of SARS-CoV-2, SARS2-N501Y MA30 , contains a spike that is also heavily mutated, with mutations at 4 of the 5 positions in Omicron spike associated with neutralizing antibody escape (K417, E484, Q493 and N501). In this manuscript we show that intranasal immunization with a pre-fusion stabilized Washington strain spike, expressed from a highly attenuated, replication-competent vaccinia virus construct, NYVAC-KC, fully protected mice against disease and death from SARS2-N501Y MA30 . Similarly, immunization by scarification on the skin fully protected against death, but not from mild disease. This data demonstrates that Washington strain spike, when expressed from a highly attenuated, replication-competent poxvirus, administered without parenteral injection can fully protect against the heavily mutated mouse-adapted SARS2-N501Y MA30 .
Collapse
Affiliation(s)
- Karen V. Kibler
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Mateusz Szczerba
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Douglas Lake
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Alexa J. Roeder
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Masmudur Rahman
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
| | - Brenda G. Hogue
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Yize Li
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bertram L. Jacobs
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
6
|
Tabachnick-Cherny S, Pulliam T, Church C, Koelle DM, Nghiem P. Polyomavirus-driven Merkel cell carcinoma: Prospects for therapeutic vaccine development. Mol Carcinog 2020; 59:807-821. [PMID: 32219902 PMCID: PMC8238237 DOI: 10.1002/mc.23190] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022]
Abstract
Great strides have been made in cancer immunotherapy including the breakthrough successes of anti-PD-(L)1 checkpoint inhibitors. In Merkel cell carcinoma (MCC), a rare and aggressive skin cancer, PD-(L)1 blockade is highly effective. Yet, ~50% of patients either do not respond to therapy or develop PD-(L)1 refractory disease and, thus, do not experience long-term benefit. For these patients, additional or combination therapies are needed to augment immune responses that target and eliminate cancer cells. Therapeutic vaccines targeting tumor-associated antigens, mutated self-antigens, or immunogenic viral oncoproteins are currently being developed to augment T-cell responses. Approximately 80% of MCC cases in the United States are driven by the ongoing expression of viral T-antigen (T-Ag) oncoproteins from genomically integrated Merkel cell polyomavirus (MCPyV). Since T-Ag elicits specific B- and T-cell immune responses in most persons with virus-positive MCC (VP-MCC), and ongoing T-Ag expression is required to drive VP-MCC cell proliferation, therapeutic vaccination with T-Ag is a rational potential component of immunotherapy. Failure of the endogenous T-cell response to clear VP-MCC (allowing clinically evident tumors to arise) implies that therapeutic vaccination will need to be potent anśd synergize with other mechanisms to enhance T-cell activity against tumor cells. Here, we review the relevant underlying biology of VP-MCC, potentially applicable therapeutic vaccine platforms, and antigen delivery formats. We also describe early successes in the field of therapeutic cancer vaccines and address several clinical scenarios in which VP-MCC patients could potentially benefit from a therapeutic vaccine.
Collapse
Affiliation(s)
- Shira Tabachnick-Cherny
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - Thomas Pulliam
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - Candice Church
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
| | - David M Koelle
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington
- Translational Research Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, Washington
- Seattle Cancer Care Alliance, Seattle, Washington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
7
|
Improved immune response against HIV-1 Env antigen by enhancing EEV production via a K151E mutation in the A34R gene of replication-competent vaccinia virus Tiantan. Antiviral Res 2018; 153:49-59. [DOI: 10.1016/j.antiviral.2018.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
|
8
|
Ryerson MR, Shisler JL. Characterizing the effects of insertion of a 5.2 kb region of a VACV genome, which contains known immune evasion genes, on MVA immunogenicity. Virus Res 2018; 246:55-64. [PMID: 29341877 DOI: 10.1016/j.virusres.2018.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/07/2023]
Abstract
Modified Vaccinia virus Ankara (MVA) is an attenuated Vaccinia virus (VACV) that is a popular vaccine vector candidate against many different pathogens. Its replication-restricted nature makes it a safe vaccine. However, higher doses or multiple boosts of MVA are necessary to elicit an immune response similar to wild-type VACV. Multiple strategies have been used to create modified MVA viruses that remain safe, but have increased immunogenicity. For example, one common strategy is to delete MVA immunomodulatory proteins in hopes of increasing the host immune response. Here, we take the opposite approach and examine, for the first time, how re-introduction of a 5.2 kb region of VACV DNA (that codes for multiple immunomodulatory proteins) into MVA alters viral immunogenicity. Since antigen presenting cells (APCs) are critical connectors between the innate and adaptive immune system, we examined the effect of MVA/5.2 kb infection in these cells in vitro. MVA/5.2 kb infection decreased virus-induced apoptosis and virus-induced NF-κB activation. MVA.5.2 kb infection decreased TNF production. However, MVA/5.2 kb infection did not alter APC maturation or IL-6 and IL-8 production in vitro. We further explored MVA/5.2 kb immunogenicity in vivo. VACV-specific CD8+ T cells were decreased after in vivo infection with MVA/5.2 kb versus MVA, suggesting that the MVA/5.2 kb construct is less immunogenic than MVA. These results demonstrate the limitations of in vitro studies for predicting the effects of genetic manipulation of MVA on immunogenicity. Although MVA/5.2 kb did not enhance MVA's immunogenicity, this study examined an unexplored strategy for optimizing MVA, and the insight gained from these results can help direct how to modify MVA in the future.
Collapse
Affiliation(s)
- Melissa R Ryerson
- Department of Microbiology, B103 Chemical and Life Science Building, 601 South Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA
| | - Joanna L Shisler
- Department of Microbiology, B103 Chemical and Life Science Building, 601 South Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
9
|
Meador LR, Kessans SA, Kilbourne J, Kibler KV, Pantaleo G, Roderiguez ME, Blattman JN, Jacobs BL, Mor TS. A heterologous prime-boosting strategy with replicating Vaccinia virus vectors and plant-produced HIV-1 Gag/dgp41 virus-like particles. Virology 2017; 507:242-256. [PMID: 28458036 PMCID: PMC5529300 DOI: 10.1016/j.virol.2017.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/24/2017] [Accepted: 04/06/2017] [Indexed: 12/22/2022]
Abstract
Showing modest efficacy, the RV144 HIV-1 vaccine clinical trial utilized a non-replicating canarypox viral vector and a soluble gp120 protein boost. Here we built upon the RV144 strategy by developing a novel combination of a replicating, but highly-attenuated Vaccinia virus vector, NYVAC-KC, and plant-produced HIV-1 virus-like particles (VLPs). Both components contained the full-length Gag and a membrane anchored truncated gp41 presenting the membrane proximal external region with its conserved broadly neutralizing epitopes in the pre-fusion conformation. We tested different prime/boost combinations of these components in mice and showed that the group primed with NYVAC-KC and boosted with both the viral vectors and plant-produced VLPs have the most robust Gag-specific CD8 T cell responses, at 12.7% of CD8 T cells expressing IFN-γ in response to stimulation with five Gag epitopes. The same immunization group elicited the best systemic and mucosal antibody responses to Gag and dgp41 with a bias towards IgG1.
Collapse
Affiliation(s)
- Lydia R Meador
- Ira A. Fulton School of Engineering, Arizona State University, Tempe, AZ, USA; Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Sarah A Kessans
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jacquelyn Kilbourne
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Karen V Kibler
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland; Swiss Vaccine Research Institute, Lausanne, Switzerland
| | | | - Joseph N Blattman
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bertram L Jacobs
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Tsafrir S Mor
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
10
|
HIV/AIDS Vaccine Candidates Based on Replication-Competent Recombinant Poxvirus NYVAC-C-KC Expressing Trimeric gp140 and Gag-Derived Virus-Like Particles or Lacking the Viral Molecule B19 That Inhibits Type I Interferon Activate Relevant HIV-1-Specific B and T Cell Immune Functions in Nonhuman Primates. J Virol 2017; 91:JVI.02182-16. [PMID: 28179536 DOI: 10.1128/jvi.02182-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
The nonreplicating attenuated poxvirus vector NYVAC expressing clade C(CN54) HIV-1 Env(gp120) and Gag-Pol-Nef antigens (NYVAC-C) showed limited immunogenicity in phase I clinical trials. To enhance the capacity of the NYVAC vector to trigger broad humoral responses and a more balanced activation of CD4+ and CD8+ T cells, here we compared the HIV-1-specific immunogenicity elicited in nonhuman primates immunized with two replicating NYVAC vectors that have been modified by the insertion of the K1L and C7L vaccinia virus host range genes and express the clade C(ZM96) trimeric HIV-1 gp140 protein or a Gag(ZM96)-Pol-Nef(CN54) polyprotein as Gag-derived virus-like particles (termed NYVAC-C-KC). Additionally, one NYVAC-C-KC vector was generated by deleting the viral gene B19R, an inhibitor of the type I interferon response (NYVAC-C-KC-ΔB19R). An immunization protocol mimicking that of the RV144 phase III clinical trial was used. Two groups of macaques received two doses of the corresponding NYVAC-C-KC vectors (weeks 0 and 4) and booster doses with NYVAC-C-KC vectors plus the clade C HIV-1 gp120 protein (weeks 12 and 24). The two replicating NYVAC-C-KC vectors induced enhanced and similar HIV-1-specific CD4+ and CD8+ T cell responses, similar levels of binding IgG antibodies, low levels of IgA antibodies, and high levels of antibody-dependent cellular cytotoxicity responses and HIV-1-neutralizing antibodies. Small differences within the NYVAC-C-KC-ΔB19R group were seen in the magnitude of CD4+ and CD8+ T cells, the induction of some cytokines, and the neutralization of some HIV-1 isolates. Thus, replication-competent NYVAC-C-KC vectors acquired relevant immunological properties as vaccine candidates against HIV/AIDS, and the viral B19 molecule exerts some control of immune functions.IMPORTANCE It is of special importance to find a safe and effective HIV/AIDS vaccine that can induce strong and broad T cell and humoral immune responses correlating with HIV-1 protection. Here we developed novel replicating poxvirus NYVAC-based HIV/AIDS vaccine candidates expressing clade C HIV-1 antigens, with one of them lacking the vaccinia virus B19 protein, an inhibitor of the type I interferon response. Immunization of nonhuman primates with these novel NYVAC-C-KC vectors and the protein component gp120 elicited high levels of T cell and humoral immune responses, with the vector containing a deletion in B19R inducing a trend toward a higher magnitude of CD4+ and CD8+ T cell responses and neutralization of some HIV-1 strains. These poxvirus vectors could be considered HIV/AIDS vaccine candidates based on their activation of potential immune correlates of protection.
Collapse
|
11
|
Improved safety of a replication-competent poxvirus-based HIV vaccine with the introduction of the HSV-TK/GCV suicide gene system. Vaccine 2016; 34:3447-53. [PMID: 27195760 DOI: 10.1016/j.vaccine.2016.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Replication-competent vaccinia viruses (VACVs) show prolonged antigen expression time and greater stimulation of immune responses than their replication-incompetent counterparts. However, there is the potential risk of serious post-vaccination complications, especially for children and immunocompromised individuals, leading to safety concerns about the reintroduction of VACV as a vaccine vector. In this study, we improved the safety of the vaccinia virus TianTan (VACV-TT) based HIV vaccine by introducing the HSV-TK/GCV suicide gene system, which is composed of the herpes simplex virus type 1 thymidine kinase gene (HSV-tk) and the antiviral drug ganciclovir (GCV). MATERIALS AND METHODS By inserting the HSV-tk gene into the replication-competent VACV-TT genome, a new vector, TT-TK (VACV-TT expressing the HSV-tk gene), and a candidate vaccine, TT-EnvTK (TT-TK expressing the HIV-1 env gene), were constructed. RESULTS The new vector TT-TK exhibited reduced replication capacity both in vitro and in vivo in the presence of GCV. GCV inhibited the replication of TT-TK in the brains of mice and skin of rabbits, and provided 100% protection in mice against lethal challenge with TT-TK at a dose of 80mg/kg/day. Furthermore, the candidate vaccine TT-EnvTK induced cellular and humoral immunity against HIV-1 antigen that was comparable to the immunity induced by VTKgpe (VACV-TT expressing HIV-1 env, gag, and pol genes). DISCUSSION These promising results suggest a new strategy to mitigate the potential risk of post-vaccination complications from replication-competent VACV-based HIV vaccines.
Collapse
|
12
|
Musich T, Robert-Guroff M. New developments in an old strategy: heterologous vector primes and envelope protein boosts in HIV vaccine design. Expert Rev Vaccines 2016; 15:1015-27. [PMID: 26910195 DOI: 10.1586/14760584.2016.1158108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prime/boost vaccination strategies for HIV/SIV vaccine development have been used since the early 1990s and have become an established method for eliciting cell and antibody mediated immunity. Here we focus on induction of protective antibodies, both broadly neutralizing and non-neutralizing, with the viral envelope being the key target antigen. Prime/boost approaches are complicated by the diversity of autologous and heterologous priming vectors, and by various forms of envelope booster immunogens, many still in development as structural studies aim to design stable constructs with exposure of critical epitopes for protective antibody elicitation. This review discusses individual vaccine components, reviews recent prime/boost strategies and their outcomes, and highlights complicating factors arising as greater knowledge concerning induction of adaptive, protective immunity is acquired.
Collapse
Affiliation(s)
- Thomas Musich
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - Marjorie Robert-Guroff
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
13
|
Abstract
Orf virus (ORFV) is an epitheliotropic poxvirus, which belongs to the genus Parapoxvirus. Among them the highly attenuated, apathogenic strain D1701-V is regarded as a promising candidate for novel virus vector vaccines. Our recent work demonstrated that those ORFV-based recombinants were able to induce protective, long-lasting immunity in various hosts that are non-permissive for ORFV. In this chapter we describe procedures for the generation, selection, propagation, and titration of ORFV recombinants as well as transgene detection by PCR or immunohistochemical staining.
Collapse
Affiliation(s)
- Hanns-Joachim Rziha
- Institute of Immunology, Friedrich-Loeffler-Institute, Südufer 10, Island of Riems, Greifswald, Germany. .,Department of Immunology, Interfaculty Institute of Cell Biology, Eberhard Karls Universität, Auf der Morgenstelle 15, Tübingen, 72076, Germany.
| | - Jörg Rohde
- Institute of Immunology, Friedrich-Loeffler-Institute, Südufer 10, Island of Riems, Greifswald, Germany
| | - Ralf Amann
- Institute of Immunology, Friedrich-Loeffler-Institute, Südufer 10, Island of Riems, Greifswald, Germany.,Department of Immunology, Interfaculty Institute of Cell Biology, Eberhard Karls Universität, Auf der Morgenstelle 15, Tübingen, 72076, Germany
| |
Collapse
|
14
|
Abstract
The VLPNPV 2014 Conference that was convened at the Salk institute was the second conference of its kind to focus on advances in production, purification, and delivery of virus-like particles (VLPs) and nanoparticles. Many exciting developments were reported and discussed in this interdisciplinary arena, but here we report specifically on the contributions of plant-based platforms to VLP vaccine technology as reported in the section of the conference devoted to the topic as well in additional presentations throughout the meeting. The increasing popularity of plant production platforms is due to their lower cost, scalability, and lack of contaminating animal pathogens seen with other systems. Reports include production of complex VLPs consisting of 4 proteins expressed at finely-tuned expression levels, a prime-boost strategy for HIV vaccination using plant-made VLPs and a live viral vector, and the characterization and development of plant viral nanoparticles for use in cancer vaccines, drug delivery, and bioimaging.
Collapse
Key Words
- Ab, antibody
- BPV, bovine papillomavirus
- BTV, Bluetongue virus
- CPMV, cowpea mosaic virus
- ELISA, enzyme-linked immunosorbent assay
- HBV, Hepatitis B virus
- HER2, human epidermal growth factor receptor 2 (also called c-ErbB-2)
- HIV, human immunodeficiency virus
- HIV-1
- HT, HyperTrans
- Hepatitis B core antigen
- Ig, immunoglobulin
- MPR, membrane proximal region
- NPV, nano-particle vaccine
- PEG, polyethylene glycol
- PVX, potato virus X
- SNP, spherical nanoparticle
- TMV, tobacco mosaic virus
- UTR, untranslated region
- VLP, virus-like particle
- VNP, viral nanoparticle
- bluetongue virus
- c-Erbb-2 (human epidermal growth factor receptor 2)
- cowpea mosaic virus
- i.p., intraperitoneal
- live viral vectors
- potato virus X
- tobacco mosaic virus
- viral nanoparticles
- virus-like particles
Collapse
Affiliation(s)
- Lydia R Meador
- a School of Life Sciences and The Biodesign Institute ; Arizona State University ; Tempe , AZ USA
| | | |
Collapse
|
15
|
García-Arriaza J, Esteban M. Enhancing poxvirus vectors vaccine immunogenicity. Hum Vaccin Immunother 2015; 10:2235-44. [PMID: 25424927 DOI: 10.4161/hv.28974] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought.
Collapse
Affiliation(s)
- Juan García-Arriaza
- a Department of Molecular and Cellular Biology; Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas (CSIC); Madrid, Spain
| | | |
Collapse
|
16
|
Head-to-Head Comparison of Poxvirus NYVAC and ALVAC Vectors Expressing Identical HIV-1 Clade C Immunogens in Prime-Boost Combination with Env Protein in Nonhuman Primates. J Virol 2015; 89:8525-39. [PMID: 26041302 DOI: 10.1128/jvi.01265-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 05/29/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED We compared the HIV-1-specific cellular and humoral immune responses elicited in rhesus macaques immunized with two poxvirus vectors (NYVAC and ALVAC) expressing the same HIV-1 antigens from clade C, Env gp140 as a trimeric cell-released protein and a Gag-Pol-Nef polyprotein as Gag-induced virus-like particles (VLPs) (referred to as NYVAC-C and ALVAC-C). The immunization protocol consisted of two doses of the corresponding poxvirus vector plus two doses of a combination of the poxvirus vector and a purified HIV-1 gp120 protein from clade C. This immunogenicity profile was also compared to that elicited by vaccine regimens consisting of two doses of the ALVAC vector expressing HIV-1 antigens from clades B/E (ALVAC-vCP1521) plus two doses of a combination of ALVAC-vCP1521 and HIV-1 gp120 protein from clades B/E (similar to the RV144 trial regimen) or clade C. The results showed that immunization of macaques with NYVAC-C stimulated at different times more potent HIV-1-specific CD4(+) T-cell responses and induced a trend toward higher-magnitude HIV-1-specific CD8(+) T-cell immune responses than did ALVAC-C. Furthermore, NYVAC-C induced a trend toward higher levels of binding IgG antibodies against clade C HIV-1 gp140, gp120, or murine leukemia virus (MuLV) gp70-scaffolded V1/V2 and toward best cross-clade-binding IgG responses against HIV-1 gp140 from clades A, B, and group M consensus, than did ALVAC-C. Of the linear binding IgG responses, most were directed against the V3 loop in all immunization groups. Additionally, NYVAC-C and ALVAC-C also induced similar levels of HIV-1-neutralizing antibodies and antibody-dependent cellular cytotoxicity (ADCC) responses. Interestingly, binding IgA antibody levels against HIV-1 gp120 or MuLV gp70-scaffolded V1/V2 were absent or very low in all immunization groups. Overall, these results provide a comprehensive survey of the immunogenicity of NYVAC versus ALVAC expressing HIV-1 antigens in nonhuman primates and indicate that NYVAC may represent an alternative candidate to ALVAC in the development of a future HIV-1 vaccine. IMPORTANCE The finding of a safe and effective HIV/AIDS vaccine immunogen is one of the main research priorities. Here, we generated two poxvirus-based HIV vaccine candidates (NYVAC and ALVAC vectors) expressing the same clade C HIV-1 antigens in separate vectors, and we analyzed in nonhuman primates their immunogenicity profiles. The results showed that immunization with NYVAC-C induced a trend toward higher HIV-1-specific cellular and humoral immune responses than did ALVAC-C, indicating that this new NYVAC vector could be a novel optimized HIV/AIDS vaccine candidate for human clinical trials.
Collapse
|
17
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
18
|
Mooij P, Koopman G, Drijfhout JW, Nieuwenhuis IG, Beenhakker N, Koestler J, Bogers WMJM, Wagner R, Esteban M, Pantaleo G, Heeney JL, Jacobs BL, Melief CJM. Synthetic long peptide booster immunization in rhesus macaques primed with replication-competent NYVAC-C-KC induces a balanced CD4/CD8 T-cell and antibody response against the conserved regions of HIV-1. J Gen Virol 2015; 96:1478-1483. [PMID: 25667320 DOI: 10.1099/vir.0.000074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/26/2015] [Indexed: 12/16/2022] Open
Abstract
The Thai trial (RV144) indicates that a prime-boost vaccine combination that induces both T-cell and antibody responses may be desirable for an effective HIV vaccine. We have previously shown that immunization with synthetic long peptides (SLP), covering the conserved parts of SIV, induced strong CD4 T-cell and antibody responses, but only modest CD8 T-cell responses. To generate a more balanced CD4/CD8 T-cell and antibody response, this study evaluated a pox-vector prime/SLP boost strategy in rhesus macaques. Priming with a replication-competent NYVAC, encoding HIV-1 clade C gag, pol and nef, induced modest IFNγ T-cell immune responses, predominantly directed against HIV-1 Gag. Booster immunization with SLP, covering the conserved parts of HIV-1 Gag, Pol and Env, resulted in a more than 10-fold increase in IFNγ ELISpot responses in four of six animals, which were predominantly HIV-1 Pol-specific. The animals showed a balanced polyfunctional CD4 and CD8 T-cell response and high Ab titres.
Collapse
Affiliation(s)
- Petra Mooij
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Jan Wouter Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Ivonne G Nieuwenhuis
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Niels Beenhakker
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Josef Koestler
- University of Regensburg, Franz-Josef-Strauss Allee 11, D93053 Regensburg, Germany
| | - Willy M J M Bogers
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Ralf Wagner
- University of Regensburg, Franz-Josef-Strauss Allee 11, D93053 Regensburg, Germany
| | | | - Giuseppe Pantaleo
- Swiss Vaccine Research Institute, Lausanne, Switzerland.,Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jonathan L Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | | | - Cornelis J M Melief
- ISA pharmaceuticals, J.H. Oortweg 19-21, 2333 CH Leiden, The Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
19
|
Interleukin-1- and type I interferon-dependent enhanced immunogenicity of an NYVAC-HIV-1 Env-Gag-Pol-Nef vaccine vector with dual deletions of type I and type II interferon-binding proteins. J Virol 2015; 89:3819-32. [PMID: 25609807 DOI: 10.1128/jvi.03061-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED NYVAC, a highly attenuated, replication-restricted poxvirus, is a safe and immunogenic vaccine vector. Deletion of immune evasion genes from the poxvirus genome is an attractive strategy for improving the immunogenic properties of poxviruses. Using systems biology approaches, we describe herein the enhanced immunological profile of NYVAC vectors expressing the HIV-1 clade C env, gag, pol, and nef genes (NYVAC-C) with single or double deletions of genes encoding type I (ΔB19R) or type II (ΔB8R) interferon (IFN)-binding proteins. Transcriptomic analyses of human monocytes infected with NYVAC-C, NYVAC-C with the B19R deletion (NYVAC-C-ΔB19R), or NYVAC-C with B8R and B19R deletions (NYVAC-C-ΔB8RB19R) revealed a concerted upregulation of innate immune pathways (IFN-stimulated genes [ISGs]) of increasing magnitude with NYVAC-C-ΔB19R and NYVAC-C-ΔB8RB19R than with NYVAC-C. Deletion of B8R and B19R resulted in an enhanced activation of IRF3, IRF7, and STAT1 and the robust production of type I IFNs and of ISGs, whose expression was inhibited by anti-type I IFN antibodies. Interestingly, NYVAC-C-ΔB8RB19R induced the production of much higher levels of proinflammatory cytokines (tumor necrosis factor [TNF], interleukin-6 [IL-6], and IL-8) than NYVAC-C or NYVAC-C-ΔB19R as well as a strong inflammasome response (caspase-1 and IL-1β) in infected monocytes. Top network analyses showed that this broad response mediated by the deletion of B8R and B19R was organized around two upregulated gene expression nodes (TNF and IRF7). Consistent with these findings, monocytes infected with NYVAC-C-ΔB8RB19R induced a stronger type I IFN-dependent and IL-1-dependent allogeneic CD4(+) T cell response than monocytes infected with NYVAC-C or NYVAC-C-ΔB19R. Dual deletion of type I and type II IFN immune evasion genes in NYVAC markedly enhanced its immunogenic properties via its induction of the increased expression of type I IFNs and IL-1β and make it an attractive candidate HIV vaccine vector. IMPORTANCE NYVAC is a replication-deficient poxvirus developed as a vaccine vector against HIV. NYVAC expresses several genes known to impair the host immune defenses by interfering with innate immune receptors, cytokines, or interferons. Given the crucial role played by interferons against viruses, we postulated that targeting the type I and type II decoy receptors used by poxvirus to subvert the host innate immune response would be an attractive approach to improve the immunogenicity of NYVAC vectors. Using systems biology approaches, we report that deletion of type I and type II IFN immune evasion genes in NYVAC poxvirus resulted in the robust expression of type I IFNs and interferon-stimulated genes (ISGs), a strong activation of the inflammasome, and upregulated expression of IL-1β and proinflammatory cytokines. Dual deletion of type I and type II IFN immune evasion genes in NYVAC poxvirus improves its immunogenic profile and makes it an attractive candidate HIV vaccine vector.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To briefly describe some of the replication-competent vectors being investigated for development of candidate HIV vaccines focusing primarily on technologies that have advanced to testing in macaques or have entered clinical trials. RECENT FINDINGS Replication-competent viral vectors have advanced to the stage at which decisions can be made regarding the future development of HIV vaccines. The viruses being used as replication-competent vector platforms vary considerably, and their unique attributes make it possible to test multiple vaccine design concepts and also mimic various aspects of an HIV infection. Replication-competent viral vectors encoding simian immunodeficiency virus or HIV proteins can be used to safely immunize macaques, and in some cases, there is evidence of significant vaccine efficacy in challenge protection studies. Several live HIV vaccine vectors are in clinical trials to evaluate immunogenicity, safety, the effect of mucosal delivery, and potential effects of preexisting immunity. SUMMARY A variety of DNA and RNA viruses are being used to develop replication-competent viral vectors for HIV vaccine delivery. Multiple viral vector platforms have proven to be well tolerated and immunogenic with evidence of efficacy in macaques. Some of the more advanced HIV vaccine prototypes based on vesicular stomatitis virus, vaccinia virus, measles virus, and Sendai virus are in clinical trials.
Collapse
|
21
|
Deletion of the vaccinia virus N2L gene encoding an inhibitor of IRF3 improves the immunogenicity of modified vaccinia virus Ankara expressing HIV-1 antigens. J Virol 2014; 88:3392-410. [PMID: 24390336 DOI: 10.1128/jvi.02723-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED A modified vaccinia virus Ankara poxvirus vector expressing the HIV-1 Env, Gag, Pol, and Nef antigens from clade B (MVA-B) is currently being tested in clinical trials. To improve its immunogenicity, we have generated and characterized the immune profile of MVA-B containing a deletion of the vaccinia viral gene N2L, which codes for an inhibitor of IRF3 (MVA-B ΔN2L). Deletion of N2L had no effect on virus growth kinetics or on the expression of HIV-1 antigens; hence, the N2 protein is not essential for MVA replication. The innate immune responses triggered by MVA-B ΔN2L revealed an increase in beta interferon, proinflammatory cytokines, and chemokines. Mouse prime-boost protocols showed that MVA-B ΔN2L improves the magnitude and polyfunctionality of HIV-1-specific CD4(+) and CD8(+) T cell adaptive and memory immune responses, with most of the HIV-1 responses mediated by CD8(+) T cells. In the memory phase, HIV-1-specific CD8(+) T cells with an effector phenotype were predominant and in a higher percentage with MVA-B ΔN2L than with MVA-B. In both immunization groups, CD4(+) and CD8(+) T cell responses were directed mainly against Env. Furthermore, MVA-B ΔN2L in the memory phase enhanced levels of antibody against Env. For the vector immune responses, MVA-B ΔN2L induced a greater magnitude and polyfunctionality of VACV-specific CD8(+) T memory cells than MVA-B, with an effector phenotype. These results revealed the immunomodulatory role of N2L, whose deletion enhanced the innate immunity and improved the magnitude and quality of HIV-1-specific T cell adaptive and memory immune responses. These findings are relevant for the optimization of poxvirus vectors as vaccines. IMPORTANCE On the basis of the limited efficacy of the RV144 phase III clinical trial, new optimized poxvirus vectors as vaccines against HIV/AIDS are needed. Here we have generated and characterized a new HIV/AIDS vaccine candidate on the basis of the poxvirus MVA vector expressing HIV-1 Env, Gag, Pol, and Nef antigens (MVA-B) and containing a deletion in the vaccinia virus N2L gene. Our findings revealed the immunomodulatory role of N2L and proved that its deletion from the MVA-B vector triggered an enhanced innate immune response in human macrophages and monocyte-derived dendritic cells. Furthermore, in immunized mice, MVA-B ΔN2L induced improvements in the magnitude and quality of adaptive and memory HIV-1-specific CD4(+) and CD8(+) T cell immune responses, together with an increase in the memory phase of levels of antibody against Env. Thus, the selective deletion of the N2L viral immunomodulatory gene is important for the optimization of MVA vectors as HIV-1 vaccines.
Collapse
|
22
|
The canarypox virus vector ALVAC induces distinct cytokine responses compared to the vaccinia virus-based vectors MVA and NYVAC in rhesus monkeys. J Virol 2013; 88:1809-14. [PMID: 24257612 DOI: 10.1128/jvi.02386-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the growing use of poxvirus vectors as vaccine candidates for multiple pathogens and cancers, their innate stimulatory properties remain poorly characterized. Here we show that the canarypox virus-based vector ALVAC induced distinct systemic proinflammatory and antiviral cytokine and chemokine levels following the vaccination of rhesus monkeys compared to the vaccinia virus-based vectors MVA and NYVAC. These data suggest that there are substantial biological differences among leading poxvirus vaccine vectors that may influence resultant adaptive immune responses following vaccination.
Collapse
|
23
|
Sui Y, Gordon S, Franchini G, Berzofsky JA. Nonhuman primate models for HIV/AIDS vaccine development. ACTA ACUST UNITED AC 2013; 102:12.14.1-12.14.30. [PMID: 24510515 DOI: 10.1002/0471142735.im1214s102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of HIV vaccines has been hampered by the lack of an animal model that can accurately predict vaccine efficacy. Chimpanzees can be infected with HIV-1 but are not practical for research. However, several species of macaques are susceptible to the simian immunodeficiency viruses (SIVs) that cause disease in macaques, which also closely mimic HIV in humans. Thus, macaque-SIV models of HIV infection have become a critical foundation for AIDS vaccine development. Here we examine the multiple variables and considerations that must be taken into account in order to use this nonhuman primate (NHP) model effectively. These include the species and subspecies of macaques, virus strain, dose and route of administration, and macaque genetics, including the major histocompatibility complex molecules that affect immune responses, and other virus restriction factors. We illustrate how these NHP models can be used to carry out studies of immune responses in mucosal and other tissues that could not easily be performed on human volunteers. Furthermore, macaques are an ideal model system to optimize adjuvants, test vaccine platforms, and identify correlates of protection that can advance the HIV vaccine field. We also illustrate techniques used to identify different macaque lymphocyte populations and review some poxvirus vaccine candidates that are in various stages of clinical trials. Understanding how to effectively use this valuable model will greatly increase the likelihood of finding a successful vaccine for HIV.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Shari Gordon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Genoveffa Franchini
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| |
Collapse
|
24
|
Melamed S, Wyatt LS, Kastenmayer RJ, Moss B. Attenuation and immunogenicity of host-range extended modified vaccinia virus Ankara recombinants. Vaccine 2013; 31:4569-77. [PMID: 23928462 DOI: 10.1016/j.vaccine.2013.07.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 06/17/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Modified vaccinia virus Ankara (MVA) is being widely investigated as a safe smallpox vaccine and as an expression vector to produce vaccines against other infectious diseases and cancer. MVA was isolated following more than 500 passages in chick embryo fibroblasts and suffered several major deletions and numerous small mutations resulting in replication defects in human and most other mammalian cells as well as severe attenuation of pathogenicity. Due to the host range restriction, primary chick embryo fibroblasts are routinely used for production of MVA-based vaccines. While a replication defect undoubtedly contributes to safety of MVA, it is worth considering whether host range and attenuation are partially separable properties. Marker rescue transfection experiments resulted in the creation of recombinant MVAs with extended mammalian cell host range. Here, we characterize two host-range extended rMVAs and show that they (i) have acquired the ability to stably replicate in Vero cells, which are frequently used as a cell substrate for vaccine manufacture, (ii) are severely attenuated in immunocompetent and immunodeficient mouse strains following intranasal infection, (iii) are more pathogenic than MVA but less pathogenic than the ACAM2000 vaccine strain at high intracranial doses, (iv) do not form lesions upon tail scratch in mice in contrast to ACAM2000 and (v) induce protective humoral and cell-mediated immune responses similar to MVA. The extended host range of rMVAs may be useful for vaccine production.
Collapse
Affiliation(s)
- Sharon Melamed
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | | | | | | |
Collapse
|
25
|
Rosalia RA, Quakkelaar ED, Redeker A, Khan S, Camps M, Drijfhout JW, Silva AL, Jiskoot W, van Hall T, van Veelen PA, Janssen G, Franken K, Cruz LJ, Tromp A, Oostendorp J, van der Burg SH, Ossendorp F, Melief CJM. Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation. Eur J Immunol 2013; 43:2554-65. [PMID: 23836147 DOI: 10.1002/eji.201343324] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/26/2013] [Accepted: 07/05/2013] [Indexed: 12/19/2022]
Abstract
The efficiency of antigen (Ag) processing by dendritic cells (DCs) is vital for the strength of the ensuing T-cell responses. Previously, we and others have shown that in comparison to protein vaccines, vaccination with synthetic long peptides (SLPs) has shown more promising (pre-)clinical results. Here, we studied the unknown mechanisms underlying the observed vaccine efficacy of SLPs. We report an in vitro processing analysis of SLPs for MHC class I and class II presentation by murine DCs and human monocyte-derived DCs. Compared to protein, SLPs were rapidly and much more efficiently processed by DCs, resulting in an increased presentation to CD4⁺ and CD8⁺ T cells. The mechanism of access to MHC class I loading appeared to differ between the two forms of Ag. Whereas whole soluble protein Ag ended up largely in endolysosomes, SLPs were detected very rapidly outside the endolysosomes after internalization by DCs, followed by proteasome- and transporter associated with Ag processing-dependent MHC class I presentation. Compared to the slower processing route taken by whole protein Ags, our results indicate that the efficient internalization of SLPs, accomplished by DCs but not by B or T cells and characterized by a different and faster intracellular routing, leads to enhanced CD8⁺ T-cell activation.
Collapse
Affiliation(s)
- Rodney A Rosalia
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
García-Arriaza J, Arnáez P, Gómez CE, Sorzano CÓS, Esteban M. Improving Adaptive and Memory Immune Responses of an HIV/AIDS Vaccine Candidate MVA-B by Deletion of Vaccinia Virus Genes (C6L and K7R) Blocking Interferon Signaling Pathways. PLoS One 2013; 8:e66894. [PMID: 23826170 PMCID: PMC3694958 DOI: 10.1371/journal.pone.0066894] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/13/2013] [Indexed: 02/01/2023] Open
Abstract
Poxvirus vector Modified Vaccinia Virus Ankara (MVA) expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (termed MVA-B) is a promising HIV/AIDS vaccine candidate, as confirmed from results obtained in a prophylactic phase I clinical trial in humans. To improve the immunogenicity elicited by MVA-B, we have generated and characterized the innate immune sensing and the in vivo immunogenicity profile of a vector with a double deletion in two vaccinia virus (VACV) genes (C6L and K7R) coding for inhibitors of interferon (IFN) signaling pathways. The innate immune signals elicited by MVA-B deletion mutants (MVA-B ΔC6L and MVA-B ΔC6L/K7R) in human macrophages and monocyte-derived dendritic cells (moDCs) showed an up-regulation of the expression of IFN-β, IFN-α/β-inducible genes, TNF-α, and other cytokines and chemokines. A DNA prime/MVA boost immunization protocol in mice revealed that these MVA-B deletion mutants were able to improve the magnitude and quality of HIV-1-specific CD4+ and CD8+ T cell adaptive and memory immune responses, which were mostly mediated by CD8+ T cells of an effector phenotype, with MVA-B ΔC6L/K7R being the most immunogenic virus recombinant. CD4+ T cell responses were mainly directed against Env, while GPN-specific CD8+ T cell responses were induced preferentially by the MVA-B deletion mutants. Furthermore, antibody levels to Env in the memory phase were slightly enhanced by the MVA-B deletion mutants compared to the parental MVA-B. These findings revealed that double deletion of VACV genes that act blocking intracellularly the IFN signaling pathway confers an immunological benefit, inducing innate immune responses and increases in the magnitude, quality and durability of the HIV-1-specific T cell immune responses. Our observations highlighted the immunomodulatory role of the VACV genes C6L and K7R, and that targeting common pathways, like IRF3/IFN-β signaling, could be a general strategy to improve the immunogenicity of poxvirus-based vaccine candidates.
Collapse
Affiliation(s)
- Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pilar Arnáez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
27
|
Poland GA, Kennedy RB, McKinney BA, Ovsyannikova IG, Lambert ND, Jacobson RM, Oberg AL. Vaccinomics, adversomics, and the immune response network theory: individualized vaccinology in the 21st century. Semin Immunol 2013; 25:89-103. [PMID: 23755893 DOI: 10.1016/j.smim.2013.04.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/23/2013] [Accepted: 04/18/2013] [Indexed: 02/08/2023]
Abstract
Vaccines, like drugs and medical procedures, are increasingly amenable to individualization or personalization, often based on novel data resulting from high throughput "omics" technologies. As a result of these technologies, 21st century vaccinology will increasingly see the abandonment of a "one size fits all" approach to vaccine dosing and delivery, as well as the abandonment of the empiric "isolate-inactivate-inject" paradigm for vaccine development. In this review, we discuss the immune response network theory and its application to the new field of vaccinomics and adversomics, and illustrate how vaccinomics can lead to new vaccine candidates, new understandings of how vaccines stimulate immune responses, new biomarkers for vaccine response, and facilitate the understanding of what genetic and other factors might be responsible for rare side effects due to vaccines. Perhaps most exciting will be the ability, at a systems biology level, to integrate increasingly complex high throughput data into descriptive and predictive equations for immune responses to vaccines. Herein, we discuss the above with a view toward the future of vaccinology.
Collapse
|
28
|
A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 2013; 31:3502-18. [PMID: 23707164 DOI: 10.1016/j.vaccine.2013.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/01/2013] [Accepted: 05/07/2013] [Indexed: 01/09/2023]
Abstract
Soon after HIV was discovered as the cause of AIDS in 1983-1984, there was an expectation that a preventive vaccine would be rapidly developed. In trying to achieve that goal, three successive scientific paradigms have been explored: induction of neutralizing antibodies, induction of cell mediated immunity, and exploration of combination approaches and novel concepts. Although major progress has been made in understanding the scientific basis for HIV vaccine development, efficacy trials have been critical in moving the field forward. In 2009, the field was reinvigorated with the modest results obtained from the RV144 trial conducted in Thailand. Here, we review those vaccine development efforts, with an emphasis on events that occurred during the earlier years. The goal is to provide younger generations of scientists with information and inspiration to continue the search for an HIV vaccine.
Collapse
|
29
|
Deletion of the viral anti-apoptotic gene F1L in the HIV/AIDS vaccine candidate MVA-C enhances immune responses against HIV-1 antigens. PLoS One 2012; 7:e48524. [PMID: 23119046 PMCID: PMC3485360 DOI: 10.1371/journal.pone.0048524] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/26/2012] [Indexed: 01/28/2023] Open
Abstract
Vaccinia virus (VACV) encodes an anti-apoptotic Bcl-2-like protein F1 that acts as an inhibitor of caspase-9 and of the Bak/Bax checkpoint but the role of this gene in immune responses is not known. Because dendritic cells that have phagocytosed apoptotic infected cells cross-present viral antigens to cytotoxic T cells inducing an antigen-specific immunity, we hypothesized that deletion of the viral anti-apoptotic F1L gene might have a profound effect on the capacity of poxvirus vectors to activate specific immune responses to virus-expressed recombinant antigens. This has been tested in a mouse model with an F1L deletion mutant of the HIV/AIDS vaccine candidate MVA-C that expresses Env and Gag-Pol-Nef antigens (MVA-C-ΔF1L). The viral gene F1L is not required for virus replication in cultured cells and its deletion in MVA-C induces extensive apoptosis and expression of immunomodulatory genes in infected cells. Analysis of the immune responses induced in BALB/c mice after DNA prime/MVA boost revealed that, in comparison with parental MVA-C, the mutant MVA-C-ΔF1L improves the magnitude of the HIV-1-specific CD8 T cell adaptive immune responses and impacts on the CD8 T cell memory phase by enhancing the magnitude of the response, reducing the contraction phase and changing the memory differentiation pattern. These findings reveal the immunomodulatory role of F1L and that the loss of this gene is a valid strategy for the optimization of MVA as vaccine vector.
Collapse
|
30
|
Elena Gómez C, Perdiguero B, García-Arriaza J, Esteban M. Poxvirus vectors as HIV/AIDS vaccines in humans. Hum Vaccin Immunother 2012; 8:1192-207. [PMID: 22906946 PMCID: PMC3579898 DOI: 10.4161/hv.20778] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The RV144 phase III clinical trial with the combination of the poxvirus vector ALVAC and the HIV gp120 protein has taught us that a vaccine against HIV/AIDS is possible but further improvements are still needed. Although the HIV protective effect of RV144 was modest (31.2%), these encouraging results reinforce the use of poxvirus vectors as HIV/AIDS vaccine candidates. In this review we focus on the prophylactic clinical studies thus far performed with the more widely studied poxvirus vectors, ALVAC, MVA, NYVAC and fowlpox expressing HIV antigens. We describe the characteristics of each vector administered either alone or in combination with other vectors, with emphasis on the immune parameters evaluated in healthy volunteers, percentage of responders and triggering of humoral and T cell responses. Some of these immunogens induced broad, polyfunctional and long-lasting CD4(+) and CD8(+) T cell responses to HIV-1 antigens in most volunteers, with preference for effector memory T cells, and neutralizing antibodies, immune parameters that might be relevant in protection. Finally, we consider improvements in immunogenicity of the poxvirus vectors by the selective deletion of viral immunomodulatory genes and insertion of host range genes in the poxvirus genome. Overall, the poxvirus vectors have proven to be excellent HIV/AIDS vaccine candidates, with distinct behavior among them, and the future implementation will be dictated by their optimized immune profile in clinical trials.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC); Madrid, Spain
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC); Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC); Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC); Madrid, Spain
| |
Collapse
|
31
|
Petrovas C, Yamamoto T, Gerner MY, Boswell KL, Wloka K, Smith EC, Ambrozak DR, Sandler NG, Timmer KJ, Sun X, Pan L, Poholek A, Rao SS, Brenchley JM, Alam SM, Tomaras GD, Roederer M, Douek DC, Seder RA, Germain RN, Haddad EK, Koup RA. CD4 T follicular helper cell dynamics during SIV infection. J Clin Invest 2012; 122:3281-94. [PMID: 22922258 DOI: 10.1172/jci63039] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/05/2012] [Indexed: 12/16/2022] Open
Abstract
CD4 T follicular helper (TFH) cells interact with and stimulate the generation of antigen-specific B cells. TFH cell interaction with B cells correlates with production of SIV-specific immunoglobulins. However, the fate of TFH cells and their participation in SIV-induced antibody production is not well understood. We investigated the phenotype, function, location, and molecular signature of TFH cells in rhesus macaques. Similar to their human counterparts, TFH cells in rhesus macaques represented a heterogeneous population with respect to cytokine function. In a highly differentiated subpopulation of TFH cells, characterized by CD150lo expression, production of Th1 cytokines was compromised while IL-4 production was augmented, and cells exhibited decreased survival, cycling, and trafficking capacity. TFH cells exhibited a distinct gene profile that was markedly altered by SIV infection. TFH cells were infected by SIV; yet, in some animals, these cells actually accumulated during chronic SIV infection. Generalized immune activation and increased IL-6 production helped drive TFH differentiation during SIV infection. Accumulation of TFH cells was associated with increased frequency of activated germinal center B cells and SIV-specific antibodies. Therefore, chronic SIV does not disturb the ability of TFH cells to help B cell maturation and production of SIV-specific immunoglobulins.
Collapse
|
32
|
Gómez CE, Perdiguero B, Jiménez V, Filali-Mouhim A, Ghneim K, Haddad EK, Quakkerlaar ED, Delaloye J, Harari A, Roger T, Dunhen T, Sékaly RP, Melief CJM, Calandra T, Sallusto F, Lanzavecchia A, Wagner R, Pantaleo G, Esteban M. Systems analysis of MVA-C induced immune response reveals its significance as a vaccine candidate against HIV/AIDS of clade C. PLoS One 2012; 7:e35485. [PMID: 22536391 PMCID: PMC3334902 DOI: 10.1371/journal.pone.0035485] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/16/2012] [Indexed: 02/04/2023] Open
Abstract
Based on the partial efficacy of the HIV/AIDS Thai trial (RV144) with a canarypox vector prime and protein boost, attenuated poxvirus recombinants expressing HIV-1 antigens are increasingly sought as vaccine candidates against HIV/AIDS. Here we describe using systems analysis the biological and immunological characteristics of the attenuated vaccinia virus Ankara strain expressing the HIV-1 antigens Env/Gag-Pol-Nef of HIV-1 of clade C (referred as MVA-C). MVA-C infection of human monocyte derived dendritic cells (moDCs) induced the expression of HIV-1 antigens at high levels from 2 to 8 hpi and triggered moDCs maturation as revealed by enhanced expression of HLA-DR, CD86, CD40, HLA-A2, and CD80 molecules. Infection ex vivo of purified mDC and pDC with MVA-C induced the expression of immunoregulatory pathways associated with antiviral responses, antigen presentation, T cell and B cell responses. Similarly, human whole blood or primary macrophages infected with MVA-C express high levels of proinflammatory cytokines and chemokines involved with T cell activation. The vector MVA-C has the ability to cross-present antigens to HIV-specific CD8 T cells in vitro and to increase CD8 T cell proliferation in a dose-dependent manner. The immunogenic profiling in mice after DNA-C prime/MVA-C boost combination revealed activation of HIV-1-specific CD4 and CD8 T cell memory responses that are polyfunctional and with effector memory phenotype. Env-specific IgG binding antibodies were also produced in animals receiving DNA-C prime/MVA-C boost. Our systems analysis of profiling immune response to MVA-C infection highlights the potential benefit of MVA-C as vaccine candidate against HIV/AIDS for clade C, the prevalent subtype virus in the most affected areas of the world.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | - Victoria Jiménez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | - Abdelali Filali-Mouhim
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Khader Ghneim
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Elias K. Haddad
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Esther D. Quakkerlaar
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Julie Delaloye
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Thomas Dunhen
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Rafick P. Sékaly
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Cornelis J. M. Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | | | - Ralf Wagner
- University of Regensburg, Regensburg, Germany
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
33
|
Virus inhibition activity of effector memory CD8(+) T cells determines simian immunodeficiency virus load in vaccinated monkeys after vaccine breakthrough infection. J Virol 2012; 86:5877-84. [PMID: 22419810 DOI: 10.1128/jvi.00315-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of an effective AIDS vaccine is to generate immunity that will prevent human immunodeficiency virus 1 (HIV-1) acquisition. Despite limited progress toward this goal, renewed optimism has followed the recent success of the RV144 vaccine trial in Thailand. However, the lack of complete protection in this trial suggests that breakthroughs, where infection occurs despite adequate vaccination, will be a reality for many vaccine candidates. We previously reported that neutralizing antibodies elicited by DNA prime-recombinant adenovirus serotype 5 (rAd5) boost vaccination with simian immunodeficiency virus strain mac239 (SIVmac239) Gag-Pol and Env provided protection against pathogenic SIVsmE660 acquisition after repeated mucosal challenge. Here, we report that SIV-specific CD8(+) T cells elicited by that vaccine lowered both peak and set-point viral loads in macaques that became infected despite vaccination. These SIV-specific CD8(+) T cells showed strong virus-inhibitory activity (VIA) and displayed an effector memory (EM) phenotype. VIA correlated with high levels of CD107a mobilization and perforin expression in SIV-specific CD8(+) T cells. Remarkably, both the frequency and the number of Gag CM9-specific public clonotypes were strongly correlated with VIA mediated by EM CD8(+) T cells. The ability to elicit such virus-specific EM CD8(+) T cells might contribute substantially to an efficacious HIV/AIDS vaccine, even after breakthrough infection.
Collapse
|
34
|
Removal of vaccinia virus genes that block interferon type I and II pathways improves adaptive and memory responses of the HIV/AIDS vaccine candidate NYVAC-C in mice. J Virol 2012; 86:5026-38. [PMID: 22419805 DOI: 10.1128/jvi.06684-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Poxviruses encode multiple inhibitors of the interferon (IFN) system, acting at different levels and blocking the induction of host defense mechanisms. Two viral gene products, B19 and B8, have been shown to act as decoy receptors of type I and type II IFNs, blocking the binding of IFN to its receptor. Since IFN plays a major role in innate immune responses, in this investigation we asked to what extent the viral inhibitors of the IFN system impact the capacity of poxvirus vectors to activate immune responses. This was tested in a mouse model with single and double deletion mutants of the vaccine candidate NYVAC-C, which expresses the HIV-1 Env, Gag, Pol, and Nef antigens. When deleted individually or in double, the type I (B19) and type II (B8) IFN binding proteins were not required for virus replication in cultured cells. Studies of immune responses in mice after DNA prime/NYVAC boost revealed that deletion of B8R and/or B19R genes improved the magnitude and quality of HIV-1-specific CD8(+) T cell adaptive immune responses and impacted their memory phase, changing the contraction, the memory differentiation, the effect magnitude, and the functionality profile. For B cell responses, deletion of the viral gene B8R and/or B19R had no effect on antibody levels to HIV-1 Env. These findings revealed that single or double deletion of viral factors (B8 and B19) targeting the IFN pathway is a useful approach in the design of improved poxvirus-based vaccines.
Collapse
|
35
|
Lousberg EL, Diener KR, Brown MP, Hayball JD. Innate immune recognition of poxviral vaccine vectors. Expert Rev Vaccines 2012; 10:1435-49. [PMID: 21988308 DOI: 10.1586/erv.11.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The study of poxviruses pioneered the field of vaccinology after Jenner's remarkable discovery that 'vaccination' with the phylogenetically related cowpox virus conferred immunity to the devastating disease of smallpox. The study of poxviruses continues to enrich the field of virology because the global eradication of smallpox provides a unique example of the potency of effective immunization. Other poxviruses have since been developed as vaccine vectors for clinical and veterinary applications and include modified vaccinia virus strains such as modified vaccinia Ankara and NYVAC as well as the avipox viruses, fowlpox virus and canarypox virus. Despite the empirical development of poxvirus-based vectored vaccines, it is only now becoming apparent that we need to better understand how the innate arm of the immune system drives adaptive immunity to poxviruses, and how this information is relevant to vaccine design strategies, which are the topics addressed in this article.
Collapse
Affiliation(s)
- Erin L Lousberg
- Experimental Therapeutics Laboratory, Hanson Institute, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | | | | | | |
Collapse
|
36
|
Jing L, Haas J, Chong TM, Bruckner JJ, Dann GC, Dong L, Marshak JO, McClurkan CL, Yamamoto TN, Bailer SM, Laing KJ, Wald A, Verjans GMGM, Koelle DM. Cross-presentation and genome-wide screening reveal candidate T cells antigens for a herpes simplex virus type 1 vaccine. J Clin Invest 2012; 122:654-73. [PMID: 22214845 DOI: 10.1172/jci60556] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/09/2011] [Indexed: 11/17/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) not only causes painful recurrent oral-labial infections, it can also cause permanent brain damage and blindness. There is currently no HSV-1 vaccine. An effective vaccine must stimulate coordinated T cell responses, but the large size of the genome and the low frequency of HSV-1-specific T cells have hampered the search for the most effective T cell antigens for inclusion in a candidate vaccine. We have now developed what we believe to be novel methods to efficiently generate a genome-wide map of the responsiveness of HSV-1-specific T cells, and demonstrate the applicability of these methods to a second complex microbe, vaccinia virus. We used cross-presentation and CD137 activation-based FACS to enrich for polyclonal CD8+ T effector T cells. The HSV-1 proteome was prepared in a flexible format for analyzing both CD8+ and CD4+ T cells from study participants. Scans with participant-specific panels of artificial APCs identified an oligospecific response in each individual. Parallel CD137-based CD4+ T cell research showed discrete oligospecific recognition of HSV-1 antigens. Unexpectedly, the two HSV-1 proteins not previously considered as vaccine candidates elicited both CD8+ and CD4+ T cell responses in most HSV-1-infected individuals. In this era of microbial genomics, our methods - also demonstrated in principle for vaccinia virus for both CD8+ and CD4+ T cells - should be broadly applicable to the selection of T cell antigens for inclusion in candidate vaccines for many pathogens.
Collapse
Affiliation(s)
- Lichen Jing
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Quakkelaar ED, Melief CJM. Experience with synthetic vaccines for cancer and persistent virus infections in nonhuman primates and patients. Adv Immunol 2012; 114:77-106. [PMID: 22449779 DOI: 10.1016/b978-0-12-396548-6.00004-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Synthetic vaccines, in particular long synthetic peptides of approximately 25-50 amino acids in length, are attractive for HIV vaccine development and for induction of therapeutic immune responses in patients with (pre-)malignant disorders. In the case of preventive vaccine development against HIV, no major success has been achieved, but the possibilities are by no means exhausted. A long peptide vaccine consisting of 13 overlapping peptides, which together cover the entire length of the two oncogenic proteins E6 and E7 of high-risk human papilloma virus type 16 (HPV16), caused complete regression of all lesions and eradication of virus in 9 out of 20 women with high-grade vulvar intraepithelial neoplasia, a therapy-resistant preneoplastic disorder. The nature and strength of the vaccine-prompted T cell responses were significantly correlated with the clinical response. Synthetic peptide vaccines are attractive, because they allow rational improvement of vaccine design and detailed pharmacokinetic and pharmacodynamic studies not possible with conventional vaccines. Improvements are possible by addition or conjugation of adjuvants, notably TLR ligands, to the synthetic peptides.
Collapse
Affiliation(s)
- Esther D Quakkelaar
- Department of Immunohematology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW In the present review, we will provide the scientific rationale for applying systems biology to the development of vaccines and particularly HIV vaccines, the predictive power of systems biology on the vaccine immunological profile, the correlation between systems biology and the immunological functional profiles of different candidate vaccines, and the value of systems biology in the selection process of identifying the best-in-class candidate vaccines and in the decision process to move into in-vivo evaluation in clinical trials. RECENT FINDINGS Systems biology has been recently applied to the characterization of the protective yellow fever vaccine YF17D and of seasonal flu vaccines. This has been instrumental in the identification of the components of the immune response that need to be stimulated by the vaccine in order to generate protective immunity. It is worth noting that a systems biology approach is currently being performed to identify correlates of immune protection of the RV144 Thai vaccine, the only known vaccine that showed modest protection against HIV reacquisition. SUMMARY Systems biology represents a novel and powerful approach to predict the vaccine immunological profile, to identify the protective components of the immune response, and to help in the selection process of the best-in-class vaccines to move into clinical development.
Collapse
Affiliation(s)
- Elias K Haddad
- Vaccine and Gene Therapy Institute, Florida, Port St. Lucie, Florida, USA.
| | | |
Collapse
|
39
|
Kibler KV, Gomez CE, Perdiguero B, Wong S, Huynh T, Holechek S, Arndt W, Jimenez V, Gonzalez-Sanz R, Denzler K, Haddad EK, Wagner R, Sékaly RP, Tartaglia J, Pantaleo G, Jacobs BL, Esteban M. Improved NYVAC-based vaccine vectors. PLoS One 2011; 6:e25674. [PMID: 22096477 PMCID: PMC3212513 DOI: 10.1371/journal.pone.0025674] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 09/07/2011] [Indexed: 01/13/2023] Open
Abstract
While as yet there is no vaccine against HIV/AIDS, the results of the phase III Thai trial (RV144) have been encouraging and suggest that further improvements of the prime/boost vaccine combination of a poxvirus and protein are needed. With this aim, in this investigation we have generated derivatives of the candidate vaccinia virus vaccine vector NYVAC with potentially improved functions. This has been achieved by the re-incorporation into the virus genome of two host range genes, K1L and C7L, in conjunction with the removal of the immunomodulatory viral molecule B19, an antagonist of type I interferon action. These novel virus vectors, referred to as NYVAC-C-KC and NYVAC-C-KC-ΔB19R, have acquired relevant biological characteristics, giving higher levels of antigen expression in infected cells, replication-competency in human keratinocytes and dermal fibroblasts, activation of selective host cell signal transduction pathways, and limited virus spread in tissues. Importantly, these replication-competent viruses have been demonstrated to maintain a highly attenuated phenotype.
Collapse
Affiliation(s)
- Karen V. Kibler
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Carmen E. Gomez
- Centro Nacional de Biotecnologia-Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Beatriz Perdiguero
- Centro Nacional de Biotecnologia-Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Shukmei Wong
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Trung Huynh
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Susan Holechek
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - William Arndt
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Victoria Jimenez
- Centro Nacional de Biotecnologia-Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Ruben Gonzalez-Sanz
- Centro Nacional de Biotecnologia-Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Karen Denzler
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
| | - Elias K. Haddad
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Ralf Wagner
- University of Regensburg, Regensburg, Germany
| | - Rafick P. Sékaly
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
- University of Montreal, Montreal, Canada
| | - James Tartaglia
- Sanofi-Pasteur, Swiftwater, Pennsylvania, United States of America
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Bertram L. Jacobs
- The Biodesign Institute at Arizona State University, Tempe, Arizona, United States of America
- * E-mail: (BLJ); (ME)
| | - Mariano Esteban
- Centro Nacional de Biotecnologia-Consejo Superior de Investigaciones Cientificas, Madrid, Spain
- * E-mail: (BLJ); (ME)
| |
Collapse
|
40
|
Affiliation(s)
- Yves Lévy
- INSERM, Unite U955, Creteil, France.
| |
Collapse
|