1
|
Yu Q, Wang LC, Di Benigno S, Stein DC, Song W. Gonococcal invasion into epithelial cells depends on both cell polarity and ezrin. PLoS Pathog 2021; 17:e1009592. [PMID: 34852011 PMCID: PMC8668114 DOI: 10.1371/journal.ppat.1009592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/13/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
Neisseria gonorrhoeae (GC) establishes infection in women from the cervix, lined with heterogeneous epithelial cells from non-polarized stratified at the ectocervix to polarized columnar at the endocervix. We have previously shown that GC differentially colonize and transmigrate across the ecto and endocervical epithelia. However, whether and how GC invade into heterogeneous cervical epithelial cells is unknown. This study examined GC entry of epithelial cells with various properties, using human cervical tissue explant and non-polarized/polarized epithelial cell line models. While adhering to non-polarized and polarized epithelial cells at similar levels, GC invaded into non-polarized more efficiently than polarized epithelial cells. The enhanced GC invasion in non-polarized epithelial cells was associated with increased ezrin phosphorylation, F-actin and ezrin recruitment to GC adherent sites, and the elongation of GC-associated microvilli. Inhibition of ezrin phosphorylation inhibited F-actin and ezrin recruitment and microvilli elongation, leading to a reduction in GC invasion. The reduced GC invasion in polarized epithelial cells was associated with non-muscle myosin II-mediated F-actin disassembly and microvilli denudation at GC adherence sites. Surprisingly, intraepithelial GC were only detected inside epithelial cells shedding from the cervix by immunofluorescence microscopy, but not significantly in the ectocervical and the endocervical regions. We observed similar ezrin and F-actin recruitment in exfoliated cervical epithelial cells but not in those that remained in the ectocervical epithelium, as the luminal layer of ectocervical epithelial cells expressed ten-fold lower levels of ezrin than those beneath. However, GC inoculation induced F-actin reduction and myosin recruitment in the endocervix, similar to what was seen in polarized epithelial cells. Collectively, our results suggest that while GC invade non-polarized epithelial cells through ezrin-driven microvilli elongation, the apical polarization of ezrin and F-actin inhibits GC entry into polarized epithelial cells. Neisseria gonorrhoeae (GC) causes gonorrhea in women by infecting the female reproductive tract. GC entry of epithelial cells has long been observed in patients’ biopsies and studied in various types of epithelial cells. However, how GC invade into the heterogeneous epithelia of the human cervix is unknown. This study reveals that both the expression level of ezrin, an actin-membrane linker protein, and the polarization of ezrin-actin networks in epithelial cells regulate GC invasion. GC interactions with non-polarized squamous epithelial cells expressing ezrin induce ezrin activation, ezrin-actin accumulation, and microvilli elongation at GC adherent sites, leading to invasion. Low ezrin expression levels in the luminal ectocervical epithelial cells are associated with low levels of intraepithelial GC. In contrast, apical polarization of ezrin-actin networks in columnar endocervical epithelial cells reduces GC invasion. GC interactions induce myosin activation, which causes disassembly of ezrin-actin networks and microvilli modification at GC adherent sites, extending GC-epithelial contact. Expression of opacity-associated proteins on GC promotes GC invasion by enhancing ezrin-actin accumulation in squamous epithelial cells and inhibiting ezrin-actin disassembly in columnar endocervical epithelial cells. Thus, reduced ezrin expression and ezrin-actin polarization are potential ways for cervical epithelial cells to curtail GC invasion.
Collapse
Affiliation(s)
- Qian Yu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Liang-Chun Wang
- Marine & Pathogenic Microbiology Lab, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Sofia Di Benigno
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Daniel C Stein
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
2
|
Virion Z, Doly S, Saha K, Lambert M, Guillonneau F, Bied C, Duke RM, Rudd PM, Robbe-Masselot C, Nassif X, Coureuil M, Marullo S. Sialic acid mediated mechanical activation of β 2 adrenergic receptors by bacterial pili. Nat Commun 2019; 10:4752. [PMID: 31628314 PMCID: PMC6800425 DOI: 10.1038/s41467-019-12685-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 09/21/2019] [Indexed: 01/14/2023] Open
Abstract
Meningococcus utilizes β-arrestin selective activation of endothelial cell β2 adrenergic receptor (β2AR) to cause meningitis in humans. Molecular mechanisms of receptor activation by the pathogen and of its species selectivity remained elusive. We report that β2AR activation requires two asparagine-branched glycan chains with terminally exposed N-acetyl-neuraminic acid (sialic acid, Neu5Ac) residues located at a specific distance in its N-terminus, while being independent of surrounding amino-acid residues. Meningococcus triggers receptor signaling by exerting direct and hemodynamic-promoted traction forces on β2AR glycans. Similar activation is recapitulated with beads coated with Neu5Ac-binding lectins, submitted to mechanical stimulation. This previously unknown glycan-dependent mode of allosteric mechanical activation of a G protein-coupled receptor contributes to meningococcal species selectivity, since Neu5Ac is only abundant in humans due to the loss of CMAH, the enzyme converting Neu5Ac into N-glycolyl-neuraminic acid in other mammals. It represents an additional mechanism of evolutionary adaptation of a pathogen to its host.
Collapse
Affiliation(s)
- Zoe Virion
- Inserm, U1151, CNRS UMR 8253, Institut-Necker-Enfants-Malades, Université de Paris, Paris, France
| | - Stéphane Doly
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | - Kusumika Saha
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | - Mireille Lambert
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | | | - Camille Bied
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France
| | - Rebecca M Duke
- NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Blackrock, Co., Mount Merrion, Fosters Avenue, Dublin, Ireland
| | - Pauline M Rudd
- NIBRT GlycoScience Group, NIBRT - The National Institute for Bioprocessing Research and Training, Blackrock, Co., Mount Merrion, Fosters Avenue, Dublin, Ireland
| | - Catherine Robbe-Masselot
- CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Université Lille, 59000, Lille, France
| | - Xavier Nassif
- Inserm, U1151, CNRS UMR 8253, Institut-Necker-Enfants-Malades, Université de Paris, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Mathieu Coureuil
- Inserm, U1151, CNRS UMR 8253, Institut-Necker-Enfants-Malades, Université de Paris, Paris, France.
| | - Stefano Marullo
- Inserm, U1016, CNRS UMR8104, Institut Cochin, Université de Paris, Paris, France.
| |
Collapse
|
3
|
Zöllner R, Cronenberg T, Maier B. Motor Properties of PilT-Independent Type 4 Pilus Retraction in Gonococci. J Bacteriol 2019; 201:e00778-18. [PMID: 30692169 PMCID: PMC6707916 DOI: 10.1128/jb.00778-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 01/25/2023] Open
Abstract
Bacterial type 4 pili (T4P) belong to the strongest molecular machines. The gonococcal T4P retraction ATPase PilT supports forces exceeding 100 pN during T4P retraction. Here, we address the question of whether gonococcal T4P retract in the absence of PilT. We show that pilT deletion strains indeed retract their T4P, but the maximum force is reduced to 5 pN. Similarly, the speed of T4P retraction is lower by orders of magnitude compared to that of T4P retraction driven by PilT. Deleting the pilT paralogue pilT2 further reduces the speed of T4P retraction, yet T4P retraction is detectable in the absence of all three pilT paralogues. Furthermore, we show that depletion of proton motive force (PMF) slows but does not inhibit pilT-independent T4P retraction. We conclude that the retraction ATPase is not essential for gonococcal T4P retraction. However, the force generated in the absence of PilT is too low to support important functions of T4P, including twitching motility, fluidization of colonies, and induction of host cell response.IMPORTANCE Bacterial type 4 pili (T4P) have been termed the "Swiss Army knives" of bacteria because they perform numerous functions, including host cell interaction, twitching motility, colony formation, DNA uptake, protein secretion, and surface sensing. The pilus fiber continuously elongates or retracts, and these dynamics are functionally important. Curiously, only a subset of T4P systems employ T4P retraction ATPases to power T4P retraction. Here, we show that one of the strongest T4P machines, the gonococcal T4P, retracts without a retraction ATPase. Biophysical characterization reveals strongly reduced force and speed compared to retraction with ATPase. We propose that bacteria encode retraction ATPases when T4P have to generate high-force-supporting functions like twitching motility, triggering host cell response, or fluidizing colonies.
Collapse
Affiliation(s)
- Robert Zöllner
- University of Cologne, Institute for Biological Physics, Cologne, Germany
| | - Tom Cronenberg
- University of Cologne, Institute for Biological Physics, Cologne, Germany
| | - Berenike Maier
- University of Cologne, Institute for Biological Physics, Cologne, Germany
| |
Collapse
|
4
|
Zöllner R, Cronenberg T, Kouzel N, Welker A, Koomey M, Maier B. Type IV Pilin Post-Translational Modifications Modulate Material Properties of Bacterial Colonies. Biophys J 2019; 116:938-947. [PMID: 30739725 PMCID: PMC6400827 DOI: 10.1016/j.bpj.2019.01.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/30/2022] Open
Abstract
Bacterial type 4 pili (T4P) are extracellular polymers that initiate the formation of microcolonies and biofilms. T4P continuously elongate and retract. These pilus dynamics crucially affect the local order, shape, and fluidity of microcolonies. The major pilin subunit of the T4P bears multiple post-translational modifications. By interfering with different steps of the pilin glycosylation and phosphoform modification pathways, we investigated the effect of pilin post-translational modification on the shape and dynamics of microcolonies formed by Neisseria gonorrhoeae. Deleting the phosphotransferase responsible for phosphoethanolamine modification at residue serine 68 inhibits shape relaxations of microcolonies after perturbation and causes bacteria carrying the phosphoform modification to segregate to the surface of mixed colonies. We relate these mesoscopic phenotypes to increased attractive forces generated by T4P between cells. Moreover, by deleting genes responsible for the pilin glycan structure, we show that the number of saccharides attached at residue serine 63 affects the ratio between surface tension and viscosity and cause sorting between bacteria carrying different pilin glycoforms. We conclude that different pilin post-translational modifications moderately affect the attractive forces between bacteria but have severe effects on the material properties of microcolonies.
Collapse
Affiliation(s)
- Robert Zöllner
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Tom Cronenberg
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Nadzeya Kouzel
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Anton Welker
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Michael Koomey
- Department of Biological Sciences, Center for Integrative Microbial Evolution, University of Oslo, Oslo, Norway
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Welker A, Cronenberg T, Zöllner R, Meel C, Siewering K, Bender N, Hennes M, Oldewurtel ER, Maier B. Molecular Motors Govern Liquidlike Ordering and Fusion Dynamics of Bacterial Colonies. PHYSICAL REVIEW LETTERS 2018; 121:118102. [PMID: 30265121 DOI: 10.1103/physrevlett.121.118102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 06/09/2018] [Indexed: 06/08/2023]
Abstract
Bacteria can adjust the structure of colonies and biofilms to enhance their survival rate under external stress. Here, we explore the link between bacterial interaction forces and colony structure. We show that the activity of extracellular pilus motors enhances local ordering and accelerates fusion dynamics of bacterial colonies. The radial distribution function of mature colonies shows local fluidlike order. The degree and dynamics of ordering are dependent on motor activity. At a larger scale, the fusion dynamics of two colonies shows liquidlike behavior whereby motor activity strongly affects surface tension and viscosity.
Collapse
Affiliation(s)
- Anton Welker
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| | - Tom Cronenberg
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| | - Robert Zöllner
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| | - Claudia Meel
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| | - Katja Siewering
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| | - Niklas Bender
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| | - Marc Hennes
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| | - Enno R Oldewurtel
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Zülpicher Straße 77, 50937 Köln, Germany
| |
Collapse
|
6
|
Zhao X, Liu Y, Guo Z, Zhang Y, Li Y, Liu W. Mechanical response and deformation mechanics of Type IV pili investigated using steered coarse-grained molecular dynamics simulation. J Biomech 2017; 56:97-101. [PMID: 28365063 DOI: 10.1016/j.jbiomech.2017.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/09/2017] [Accepted: 03/11/2017] [Indexed: 12/20/2022]
Abstract
Type IV pili are long filamentous structures on the surface of bacteria, which can be rapidly assembled or disassembled with pilin subunits by molecular motors. They can generate force during retraction and are involved in many bacterial functions. Steered molecular dynamics simulations with coarse-grained MARTINI models are carried out to investigate the mechanical behaviors of pili under tension. Our study is the first to report a Young's modulus of 0.80±0.07GPa and a spring constant of 1294.6±116.5kJmol-1nm-2 for pilus. Our results show the mechanical responses of pili are different from those described by the worm-like chain model and the van der Waal's interactions play a critical role in the mechanical responses. Moreover, the effects of pulling rates and virtual spring constants of pilus on Young's modulus are studied and two distinct morphological stages with the conformational changes appear during the extension of pilus are observed. This work provide insight into the mechanics and the deformation mechanism of pilus assembly.
Collapse
Affiliation(s)
- Xiaoxi Zhao
- School of Water Conservancy and Environmental Engineering, Zhengzhou University, Zhengzhou 450001, China; Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Yankai Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhouhang Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yizhe Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongchi Li
- Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Wei Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Maier B, Wong GCL. How Bacteria Use Type IV Pili Machinery on Surfaces. Trends Microbiol 2015; 23:775-788. [PMID: 26497940 DOI: 10.1016/j.tim.2015.09.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/24/2015] [Accepted: 09/10/2015] [Indexed: 01/05/2023]
Abstract
The bacterial type IV pilus (T4P) is a versatile molecular machine with a broad range of functions. Recent advances revealed that the molecular components and the biophysical properties of the machine are well conserved among phylogenetically distant bacterial species. However, its functions are diverse, and include adhesion, motility, and horizontal gene transfer. This review focusses on the role of T4P in surface motility and bacterial interactions. Different species have evolved distinct mechanisms for intracellular coordination of multiple pili and of pili with other motility machines, ranging from physical coordination to biochemical clocks. Coordinated behavior between multiple bacteria on a surface is achieved by active manipulation of surfaces and modulation of pilus-pilus interactions. An emerging picture is that the T4P actively senses and responds to environmental conditions.
Collapse
Affiliation(s)
- Berenike Maier
- Department of Physics, University of Cologne, Zülpicher Str. 77, 50937 Köln, Germany.
| | - Gerard C L Wong
- Department of Bioengineering, Department of Chemistry & Biochemistry, California Nano Systems Institute, University of California, Los Angeles, CA 90095-1600, USA
| |
Collapse
|
8
|
Dewenter L, Volkmann TE, Maier B. Oxygen governs gonococcal microcolony stability by enhancing the interaction force between type IV pili. Integr Biol (Camb) 2015; 7:1161-70. [PMID: 25892255 DOI: 10.1039/c5ib00018a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of small bacterial clusters, called microcolonies, is the first step towards the formation of bacterial biofilms. The human pathogen Neisseria gonorrhoeae requires type IV pili (T4P) for microcolony formation and for surface motility. Here, we investigated the effect of oxygen on the dynamics of microcolony formation. We found that an oxygen concentration exceeding 3 μM is required for formation and maintenance of microcolonies. Depletion of proton motive force triggers microcolony disassembly. Disassembly of microcolonies is actively driven by T4P retraction. Using laser tweezers we showed that under aerobic conditions T4P-T4P interaction forces exceed 50 pN. Under anaerobic conditions T4P-T4P interaction is severely inhibited. We conclude that oxygen is required for gonococcal microcolony formation by enhancing pilus-pilus interaction.
Collapse
Affiliation(s)
- Lena Dewenter
- Department of Physics, Universität zu Köln, Köln, Germany.
| | | | | |
Collapse
|
9
|
Abstract
Type IV pili (T4P) are multifunctional protein fibers produced on the surfaces of a wide variety of bacteria and archaea. The major subunit of T4P is the type IV pilin, and structurally related proteins are found as components of the type II secretion (T2S) system, where they are called pseudopilins; of DNA uptake/competence systems in both Gram-negative and Gram-positive species; and of flagella, pili, and sugar-binding systems in the archaea. This broad distribution of a single protein family implies both a common evolutionary origin and a highly adaptable functional plan. The type IV pilin is a remarkably versatile architectural module that has been adopted widely for a variety of functions, including motility, attachment to chemically diverse surfaces, electrical conductance, acquisition of DNA, and secretion of a broad range of structurally distinct protein substrates. In this review, we consider recent advances in this research area, from structural revelations to insights into diversity, posttranslational modifications, regulation, and function.
Collapse
|
10
|
Real-time sensing of enteropathogenic E. coli-induced effects on epithelial host cell height, cell-substrate interactions, and endocytic processes by infrared surface plasmon spectroscopy. PLoS One 2013; 8:e78431. [PMID: 24194932 PMCID: PMC3806826 DOI: 10.1371/journal.pone.0078431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/19/2013] [Indexed: 12/12/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is an important, generally non-invasive, bacterial pathogen that causes diarrhea in humans. The microbe infects mainly the enterocytes of the small intestine. Here we have applied our newly developed infrared surface plasmon resonance (IR-SPR) spectroscopy approach to study how EPEC infection affects epithelial host cells. The IR-SPR experiments showed that EPEC infection results in a robust reduction in the refractive index of the infected cells. Assisted by confocal and total internal reflection microscopy, we discovered that the microbe dilates the intercellular gaps and induces the appearance of fluid-phase-filled pinocytic vesicles in the lower basolateral regions of the host epithelial cells. Partial cell detachment from the underlying substratum was also observed. Finally, the waveguide mode observed by our IR-SPR analyses showed that EPEC infection decreases the host cell's height to some extent. Together, these observations reveal novel impacts of the pathogen on the host cell architecture and endocytic functions. We suggest that these changes may induce the infiltration of a watery environment into the host cell, and potentially lead to failure of the epithelium barrier functions. Our findings also indicate the great potential of the label-free IR-SPR approach to study the dynamics of host-pathogen interactions with high spatiotemporal sensitivity.
Collapse
|
11
|
Speed switching of gonococcal surface motility correlates with proton motive force. PLoS One 2013; 8:e67718. [PMID: 23826337 PMCID: PMC3691265 DOI: 10.1371/journal.pone.0067718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/21/2013] [Indexed: 11/29/2022] Open
Abstract
Bacterial type IV pili are essential for adhesion to surfaces, motility, microcolony formation, and horizontal gene transfer in many bacterial species. These polymers are strong molecular motors that can retract at two different speeds. In the human pathogen Neisseria gonorrhoeae speed switching of single pili from 2 µm/s to 1 µm/s can be triggered by oxygen depletion. Here, we address the question how proton motive force (PMF) influences motor speed. Using pHluorin expression in combination with dyes that are sensitive to transmembrane ΔpH gradient or transmembrane potential ΔΨ, we measured both components of the PMF at varying external pH. Depletion of PMF using uncouplers reversibly triggered switching into the low speed mode. Reduction of the PMF by ≈ 35 mV was enough to trigger speed switching. Reducing ATP levels by inhibition of the ATP synthase did not induce speed switching. Furthermore, we showed that the strictly aerobic Myxococcus xanthus failed to move upon depletion of PMF or oxygen, indicating that although the mechanical properties of the motor are conserved, its regulatory inputs have evolved differently. We conclude that depletion of PMF triggers speed switching of gonococcal pili. Although ATP is required for gonococcal pilus retraction, our data indicate that PMF is an independent additional energy source driving the high speed mode.
Collapse
|
12
|
Kurre R, Maier B. Oxygen depletion triggers switching between discrete speed modes of gonococcal type IV pili. Biophys J 2012; 102:2556-63. [PMID: 22713571 DOI: 10.1016/j.bpj.2012.04.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 02/04/2023] Open
Abstract
Type IV pili are polymeric bacterial appendages that affect host cell interaction, motility, biofilm formation, and horizontal gene transfer. These force-generating motors work in at least three distinct velocity modes-elongation, and retraction at two distinct speeds, high and low. Yet it is unclear which regulatory inputs control their speeds. Here, we addressed this question for the human pathogen Neisseria gonorrhoeae. Using a combination of image analysis and surface analytics, we simultaneously monitored the speed of twitching motility and the concentration of oxygen. While oxygen was detectable, bacteria moved in the high-speed mode (1.5 μm/s). Upon full depletion of oxygen, gonococci simultaneously switched into the low-speed mode (0.5 μm/s). Speed switching was complete within seconds, independent of transcription, and reversible upon oxygen restoration. Using laser tweezers, we found that oxygen depletion triggered speed switching of the pilus motor at the single-molecule level. In the transition regime, single pili switched between both modes, indicating bistability. Switching is well described by a two-state model whereby the oxygen level controls the occupancy of the states.
Collapse
Affiliation(s)
- Rainer Kurre
- Faculty of Mathematical and Natural Sciences, University of Cologne, Cologne, Germany
| | | |
Collapse
|
13
|
Meel C, Kouzel N, Oldewurtel ER, Maier B. Three-dimensional obstacles for bacterial surface motility. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:530-534. [PMID: 22183854 DOI: 10.1002/smll.201101362] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/12/2011] [Indexed: 05/31/2023]
Abstract
Twitching motility enables bacteria to move over surfaces using type IV pili as grappling hooks. Here it is shown that the motility of the round Neisseria gonorrhoeae as well as of rod-shaped Myxococcus xanthus is guided by elevations with dimension and depth corresponding to the size of the bacteria.
Collapse
Affiliation(s)
- Claudia Meel
- Institute for Molecular Cell Biology, Westfälische Wilhelms Universität Münster, 48149 Münster, Germany
| | | | | | | |
Collapse
|