1
|
Campbell JA, Cianciotto NP. Legionella pneumophila Cas2 Promotes the Expression of Small Heat Shock Protein C2 That Is Required for Thermal Tolerance and Optimal Intracellular Infection. Infect Immun 2022; 90:e0036922. [PMID: 36073935 PMCID: PMC9584283 DOI: 10.1128/iai.00369-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
Previously, we demonstrated that Cas2 encoded within the CRISPR-Cas locus of Legionella pneumophila strain 130b promotes the ability of the Legionella pathogen to infect amoebal hosts. Given that L. pneumophila Cas2 has RNase activity, we posited that the cytoplasmic protein is regulating the expression of another Legionella gene(s) that fosters intracellular infection. Proteomics revealed 10 proteins at diminished levels in the cas2 mutant, and reverse transcription-quantitative (qRT-PCR) confirmed the reduced expression of a gene encoding putative small heat shock protein C2 (HspC2), among several others. As predicted, the gene was expressed more highly at 37°C to 50°C than that at 30°C, and an hspC2 mutant, but not its complemented derivative, displayed ~100-fold reduced CFU following heat shock at 55°C. Compatible with the effect of Cas2 on hspC2 expression, strains lacking Cas2 also had impaired thermal tolerance. The hspC2 mutant, like the cas2 mutant before it, was greatly impaired for infection of Acanthamoeba castellanii, a frequent host for legionellae in waters. HspC2 and Cas2 were not required for entry into these host cells but promoted the replicative phase of intracellular infection. Finally, the hspC2 mutant exhibited an additional defect during the infection of macrophages, which are the primary host for legionellae during lung infection. In summary, hspC2 is upregulated by the presence of Cas2, and HspC2 uniquely promotes both L. pneumophila extracellular survival at high temperatures and infection of amoebal and human host cells. To our knowledge, these findings also represent the first genetic proof linking Cas2 to thermotolerance, expanding the repertoire of noncanonical functions associated with CRISPR-Cas proteins.
Collapse
Affiliation(s)
- Jackson A. Campbell
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
2
|
The Tail-Specific Protease Is Important for Legionella pneumophila To Survive Thermal Stress in Water and inside Amoebae. Appl Environ Microbiol 2021; 87:AEM.02975-20. [PMID: 33608288 DOI: 10.1128/aem.02975-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
Legionella pneumophila (Lp) is an inhabitant of natural and human-made water systems, where it replicates within amoebae and ciliates and survives within biofilms. When Lp-contaminated aerosols are breathed in, Lp can enter the lungs and may infect human alveolar macrophages, causing severe pneumonia known as Legionnaires' disease. Lp is often found in hot water distribution systems (HWDS), which are linked to nosocomial outbreaks. Heat treatment is used to disinfect HWDS and reduce the concentration of Lp However, Lp is often able to recolonize these water systems, indicating an efficient heat shock response. Tail-specific proteases (Tsp) are typically periplasmic proteases implicated in degrading aberrant proteins in the periplasm and important for surviving thermal stress. In Lp Philadelphia-1, Tsp is encoded by the lpg0499 gene. In this paper, we show that Tsp is important for surviving thermal stress in water and for optimal infection of amoeba when a shift in temperature occurs during intracellular growth. We also demonstrate that Tsp is expressed in the postexponential phase but repressed in the exponential phase and that the cis-encoded small regulatory RNA Lpr17 shows the opposite expression, suggesting that it represses translation of tsp In addition, our results show that tsp is regulated by CpxR, a major regulator in Lp, in an Lpr17-independent manner. Deletion of CpxR also reduced the ability of Lp to survive heat shock. In conclusion, our study shows that Tsp is likely an important factor for the survival and growth of Lp in water systems.IMPORTANCE Lp is a major cause of nosocomial and community-acquired pneumonia. Lp is found in water systems, including hot water distribution systems. Heat treatment is a method of disinfection often used to limit the presence of Lp in such systems; however, the benefit is usually short term, as Lp is able to quickly recolonize these systems. Presumably, Lp responds efficiently to thermal stress, but so far, not much is known about the genes involved. In this paper, we show that the Tsp and the two-component system CpxRA are required for resistance to thermal stress when Lp is free in water and when it is inside host cells. Our study identifies critical systems for the survival of Lp in its natural environment under thermal stress.
Collapse
|
3
|
Saoud J, Carrier MC, Massé É, Faucher SP. The small regulatory RNA Lpr10 regulates the expression of RpoS in Legionella pneumophila. Mol Microbiol 2020; 115:789-806. [PMID: 33191583 DOI: 10.1111/mmi.14644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
Legionella pneumophila (Lp) is a waterborne bacterium able to infect human alveolar macrophages, causing Legionnaires' disease. Lp can survive for several months in water, while searching for host cells to grow in, such as ciliates and amoeba. In Lp, the sigma factor RpoS is essential for survival in water. A previous transcriptomic study showed that RpoS positively regulates the small regulatory RNA Lpr10. In the present study, deletion of lpr10 results in an increased survival of Lp in water. Microarray analysis and RT-qPCR revealed that Lpr10 negatively regulates the expression of RpoS in the postexponential phase. Electrophoretic mobility shift assay and in-line probing showed that Lpr10 binds to a region upstream of the previously identified transcription start sites (TSS) of rpoS. A third putative transcription start site was identified by primer extension analysis, upstream of the Lpr10 binding site. In addition, nlpD TSS produces a polycistronic mRNA including the downstream gene rpoS, indicating a fourth TSS for rpoS. Our results suggest that the transcripts from the third and fourth TSS are negatively regulated by the Lpr10 sRNA. Therefore, we propose that Lpr10 is involved in a negative regulatory feedback loop to maintain expression of RpoS to an optimal level.
Collapse
Affiliation(s)
- Joseph Saoud
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| | - Marie-Claude Carrier
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, QC, Canada
| | - Éric Massé
- Department of Biochemistry and Functional Genomics, RNA Group, Université de Sherbrooke, QC, Canada
| | - Sébastien P Faucher
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Université de Montréal, Faculté de Médecine Vétérinaire, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
4
|
Similarities and differences between 6S RNAs from Bradyrhizobium japonicum and Sinorhizobium meliloti. J Microbiol 2020; 58:945-956. [PMID: 33125669 DOI: 10.1007/s12275-020-0283-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
6S RNA, a conserved and abundant small non-coding RNA found in most bacteria, regulates gene expression by inhibiting RNA polymerase (RNAP) holoenzyme. 6S RNAs from α-proteobacteria have been studied poorly so far. Here, we present a first in-depth analysis of 6S RNAs from two α-proteobacteria species, Bradyrhizobium japonicum and Sinorhizobium meliloti. Although both belong to the order Rhizobiales and are typical nitrogen-fixing symbionts of legumes, their 6S RNA expression profiles were found to differ: B. japonicum 6S RNA accumulated in the stationary phase, thus being reminiscent of Escherichia coli 6S RNA, whereas S. meliloti 6S RNA level peaked at the transition to the stationary phase, similarly to Rhodobacter sphaeroides 6S RNA. We demonstrated in vitro that both RNAs have hallmarks of 6S RNAs: they bind to the σ70-type RNAP holoenzyme and serve as templates for de novo transcription of so-called product RNAs (pRNAs) ranging in length from ∼13 to 24 nucleotides, with further evidence of the synthesis of even longer pRNAs. Likewise, stably bound pRNAs were found to rearrange the 6S RNA structure to induce its dissociation from RNAP. Compared with B. japonicum 6S RNA, considerable conformational heterogeneity was observed for S. meliloti 6S RNA and its complexes with pRNAs, even though the two 6S RNAs share ∼75% sequence identity. Overall, our findings suggest that the two rhizobial 6S RNAs have diverged with respect to their regulatory impact on gene expression throughout the bacterial life cycle.
Collapse
|
5
|
Quan FS, Kong HH, Lee HA, Chu KB, Moon EK. Identification of differentially expressed Legionella genes during its intracellular growth in Acanthamoeba. Heliyon 2020; 6:e05238. [PMID: 33088972 PMCID: PMC7566939 DOI: 10.1016/j.heliyon.2020.e05238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/01/2020] [Accepted: 10/08/2020] [Indexed: 11/28/2022] Open
Abstract
Legionella grows intracellularly in free-living amoeba as well as in mammalian macrophages. Until now, the overall gene expression pattern of intracellular Legionella in Acanthamoeba was not fully explained. Intracellular bacteria are capable of not only altering the gene expression of its host, but it can also regulate the expression of its own genes for survival. In this study, differentially expressed Legionella genes within Acanthamoeba during the 24 h intracellular growth period were investigated for comparative analysis. RNA sequencing analysis revealed 3,003 genes from the intracellular Legionella. Among them, 115 genes were upregulated and 1,676 genes were downregulated more than 2 fold compared to the free Legionella. Gene ontology (GO) analysis revealed the suppression of multiple genes within the intracellular Legionella, which were categorized under 'ATP binding' and 'DNA binding' in the molecular function domain. Gene expression of alkylhydroperoxidase, an enzyme involved in virulence and anti-oxidative stress response, was strongly enhanced 24 h post-intracellular growth. Amino acid ABC transporter substrate-binding protein that utilizes energy generation was also highly expressed. Genes associated with alkylhydroperoxidase, glucose pathway, and Dot/Icm type IV secretion system were shown to be differentially expressed. These results contribute to a better understanding of the survival strategies of intracellular Legionella within Acanthamoeba.
Collapse
Affiliation(s)
- Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea.,Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Hee Kong
- Department of Parasitology, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Hae-Ahm Lee
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Thüring M, Ganapathy S, Schlüter MAC, Lechner M, Hartmann RK. 6S-2 RNA deletion in the undomesticated B. subtilis strain NCIB 3610 causes a biofilm derepression phenotype. RNA Biol 2020; 18:79-92. [PMID: 32862759 DOI: 10.1080/15476286.2020.1795408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Bacterial 6S RNA regulates transcription via binding to the active site of RNA polymerase holoenzymes. 6S RNA has been identified in the majority of bacteria, in most cases encoded by a single gene. Firmicutes including Bacillus subtilis encode two 6S RNA paralogs, 6S-1 and 6S-2 RNA. Hypothesizing that the regulatory role of 6S RNAs may be particularly important under natural, constantly changing environmental conditions, we constructed 6S RNA deletion mutants of the undomesticated B. subtilis wild-type strain NCIB 3610. We observed a strong phenotype for the ∆6S-2 RNA strain that showed increased biofilm formation on solid media and the ability to form surface-attached biofilms in liquid culture. This phenotype remained undetected in derived laboratory strains (168, PY79) that are defective in biofilm formation. Quantitative RT-PCR data revealed transcriptional upregulation of biofilm marker genes such as tasA, epsA and bslA in the ∆6S-2 RNA strain, particularly during transition from exponential to stationary growth phase. Salt stress, which blocks sporulation at a very early stage, was found to override the derepressed biofilm phenotype of the ∆6S-2 RNA strain. Furthermore, the ∆6S-2 RNA strain showed retarded swarming activity and earlier spore formation. Finally, the ∆6S-1&2 RNA double deletion strain showed a prolonged lag phase of growth under oxidative, high salt and alkaline stress conditions, suggesting that the interplay of both 6S RNAs in B. subtilis optimizes and fine-tunes transcriptomic adaptations, thereby contributing to the fitness of B. subtilis under the unsteady and temporarily harsh conditions encountered in natural habitats.
Collapse
Affiliation(s)
- Marietta Thüring
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marburg, Germany
| | - Sweetha Ganapathy
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marburg, Germany
| | - M Amri C Schlüter
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marburg, Germany
| | - Marcus Lechner
- Center for Synthetic Microbiology, Bioinformatics Core Facility , Marburg, Germany
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg , Marburg, Germany
| |
Collapse
|
7
|
Collins AJ, Smith TJ, Sondermann H, O'Toole GA. From Input to Output: The Lap/c-di-GMP Biofilm Regulatory Circuit. Annu Rev Microbiol 2020; 74:607-631. [PMID: 32689917 DOI: 10.1146/annurev-micro-011520-094214] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are the dominant bacterial lifestyle. The regulation of the formation and dispersal of bacterial biofilms has been the subject of study in many organisms. Over the last two decades, the mechanisms of Pseudomonas fluorescens biofilm formation and regulation have emerged as among the best understood of any bacterial biofilm system. Biofilm formation by P. fluorescens occurs through the localization of an adhesin, LapA, to the outer membrane via a variant of the classical type I secretion system. The decision between biofilm formation and dispersal is mediated by LapD, a c-di-GMP receptor, and LapG, a periplasmic protease, which together control whether LapA is retained or released from the cell surface. LapA localization is also controlled by a complex network of c-di-GMP-metabolizing enzymes. This review describes the current understanding of LapA-mediated biofilm formation by P. fluorescens and discusses several emerging models for the regulation and function of this adhesin.
Collapse
Affiliation(s)
- Alan J Collins
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA;
| | - T Jarrod Smith
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA; .,Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | - George A O'Toole
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA;
| |
Collapse
|
8
|
Drecktrah D, Hall LS, Brinkworth AJ, Comstock JR, Wassarman KM, Samuels DS. Characterization of 6S RNA in the Lyme disease spirochete. Mol Microbiol 2020; 113:399-417. [PMID: 31742773 PMCID: PMC7047579 DOI: 10.1111/mmi.14427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/05/2019] [Accepted: 11/16/2019] [Indexed: 12/31/2022]
Abstract
6S RNA binds to RNA polymerase and regulates gene expression, contributing to bacterial adaptation to environmental stresses. In this study, we examined the role of 6S RNA in murine infectivity and tick persistence of the Lyme disease spirochete Borrelia (Borreliella) burgdorferi. B. burgdorferi 6S RNA (Bb6S RNA) binds to RNA polymerase, is expressed independent of growth phase or nutrient stress in culture, and is processed by RNase Y. We found that rny (bb0504), the gene encoding RNase Y, is essential for B. burgdorferi growth, while ssrS, the gene encoding 6S RNA, is not essential, indicating a broader role for RNase Y activity in the spirochete. Bb6S RNA regulates expression of the ospC and dbpA genes encoding outer surface protein C and decorin binding protein A, respectively, which are lipoproteins important for host infection. The highest levels of Bb6S RNA are found when the spirochete resides in unfed nymphs. ssrS mutants lacking Bb6S RNA were compromised for infectivity by needle inoculation, but injected mice seroconverted, indicating an ability to activate the adaptive immune response. ssrS mutants were successfully acquired by larval ticks and persisted through fed nymphs. Bb6S RNA is one of the first regulatory RNAs identified in B. burgdorferi that controls the expression of lipoproteins involved in host infectivity.
Collapse
Affiliation(s)
- Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Laura S. Hall
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | | | | - Karen M. Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - D. Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
9
|
Wassarman KM. 6S RNA, a Global Regulator of Transcription. Microbiol Spectr 2018; 6:10.1128/microbiolspec.RWR-0019-2018. [PMID: 29916345 PMCID: PMC6013841 DOI: 10.1128/microbiolspec.rwr-0019-2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Indexed: 01/06/2023] Open
Abstract
6S RNA is a small RNA regulator of RNA polymerase (RNAP) that is present broadly throughout the bacterial kingdom. Initial functional studies in Escherichia coli revealed that 6S RNA forms a complex with RNAP resulting in regulation of transcription, and cells lacking 6S RNA have altered survival phenotypes. The last decade has focused on deepening the understanding of several aspects of 6S RNA activity, including (i) addressing questions of how broadly conserved 6S RNAs are in diverse organisms through continued identification and initial characterization of divergent 6S RNAs; (ii) the nature of the 6S RNA-RNAP interaction through examination of variant proteins and mutant RNAs, cross-linking approaches, and ultimately a cryo-electron microscopic structure; (iii) the physiological consequences of 6S RNA function through identification of the 6S RNA regulon and promoter features that determine 6S RNA sensitivity; and (iv) the mechanism and cellular impact of 6S RNA-directed synthesis of product RNAs (i.e., pRNA synthesis). Much has been learned about this unusual RNA, its mechanism of action, and how it is regulated; yet much still remains to be investigated, especially regarding potential differences in behavior of 6S RNAs in diverse bacteria.
Collapse
Affiliation(s)
- Karen M Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53562
| |
Collapse
|
10
|
Swart AL, Harrison CF, Eichinger L, Steinert M, Hilbi H. Acanthamoeba and Dictyostelium as Cellular Models for Legionella Infection. Front Cell Infect Microbiol 2018; 8:61. [PMID: 29552544 PMCID: PMC5840211 DOI: 10.3389/fcimb.2018.00061] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/13/2018] [Indexed: 12/20/2022] Open
Abstract
Environmental bacteria of the genus Legionella naturally parasitize free-living amoebae. Upon inhalation of bacteria-laden aerosols, the opportunistic pathogens grow intracellularly in alveolar macrophages and can cause a life-threatening pneumonia termed Legionnaires' disease. Intracellular replication in amoebae and macrophages takes place in a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). LCV formation requires the bacterial Icm/Dot type IV secretion system, which translocates literally hundreds of "effector" proteins into host cells, where they modulate crucial cellular processes for the pathogen's benefit. The mechanism of LCV formation appears to be evolutionarily conserved, and therefore, amoebae are not only ecologically significant niches for Legionella spp., but also useful cellular models for eukaryotic phagocytes. In particular, Acanthamoeba castellanii and Dictyostelium discoideum emerged over the last years as versatile and powerful models. Using genetic, biochemical and cell biological approaches, molecular interactions between amoebae and Legionella pneumophila have recently been investigated in detail with a focus on the role of phosphoinositide lipids, small and large GTPases, autophagy components and the retromer complex, as well as on bacterial effectors targeting these host factors.
Collapse
Affiliation(s)
- A Leoni Swart
- Institute of Medical Microbiology, Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Christopher F Harrison
- Max von Pettenkofer Institute, Medical Faculty, Ludwig-Maximilians University Munich, Munich, Germany
| | - Ludwig Eichinger
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany
| | - Michael Steinert
- Department of Life Sciences, Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| | - Hubert Hilbi
- Institute of Medical Microbiology, Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Quaile AT, Stogios PJ, Egorova O, Evdokimova E, Valleau D, Nocek B, Kompella PS, Peisajovich S, Yakunin AF, Ensminger AW, Savchenko A. The Legionella pneumophila effector Ceg4 is a phosphotyrosine phosphatase that attenuates activation of eukaryotic MAPK pathways. J Biol Chem 2018; 293:3307-3320. [PMID: 29301934 DOI: 10.1074/jbc.m117.812727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/18/2017] [Indexed: 01/08/2023] Open
Abstract
Host colonization by Gram-negative pathogens often involves delivery of bacterial proteins called "effectors" into the host cell. The pneumonia-causing pathogen Legionella pneumophila delivers more than 330 effectors into the host cell via its type IVB Dot/Icm secretion system. The collective functions of these proteins are the establishment of a replicative niche from which Legionella can recruit cellular materials to grow while evading lysosomal fusion inhibiting its growth. Using a combination of structural, biochemical, and in vivo approaches, we show that one of these translocated effector proteins, Ceg4, is a phosphotyrosine phosphatase harboring a haloacid dehalogenase-hydrolase domain. Ceg4 could dephosphorylate a broad range of phosphotyrosine-containing peptides in vitro and attenuated activation of MAPK-controlled pathways in both yeast and human cells. Our findings indicate that L. pneumophila's infectious program includes manipulation of phosphorylation cascades in key host pathways. The structural and functional features of the Ceg4 effector unraveled here provide first insight into its function as a phosphotyrosine phosphatase, paving the way to further studies into L. pneumophila pathogenicity.
Collapse
Affiliation(s)
- Andrew T Quaile
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Peter J Stogios
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Olga Egorova
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Elena Evdokimova
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Dylan Valleau
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Boguslaw Nocek
- Structural Biology Center, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439
| | - Purnima S Kompella
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Sergio Peisajovich
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Alexander F Yakunin
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Alexander W Ensminger
- Department of Biochemistry, Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada, and
| | - Alexei Savchenko
- From the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada, .,Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
12
|
Pinatel E, Peano C. RNA Sequencing and Analysis in Microorganisms for Metabolic Network Reconstruction. Methods Mol Biol 2018; 1716:239-265. [PMID: 29222757 DOI: 10.1007/978-1-4939-7528-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
There is a strict interplay between metabolic networks and transcriptional regulation in bacteria; indeed, the transcriptome regulation, affecting the expression of large gene sets, can be used to predict the likely "on" or "off" state of metabolic genes as a function of environmental factors. Up to date, many bacterial transcriptomes have been studied by RNAseq, hundreds of experiments have been performed, and Giga bases of sequences have been produced. All this transcriptional information could potentially be integrated into metabolic networks in order to obtain a more comprehensive view of their regulation and to increase their prediction power.To get high-quality transcriptomic data, to be integrated into metabolic networks, it is paramount to clearly know how to produce highly informative RNA sequencing libraries and how to manage RNA sequencing data.In this chapter, we will get across the main steps of an RNAseq experiment: from removal of ribosomal RNAs, to strand-specific library preparation, till data analysis and integration. We will try to share our experience and know-how, to give you a precise protocol to follow, and some useful recommendations or tips and tricks to adopt in order to go straightforward toward a successful RNAseq experiment.
Collapse
Affiliation(s)
- Eva Pinatel
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Clelia Peano
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Milan, Italy.
| |
Collapse
|
13
|
Hiller M, Lang C, Michel W, Flieger A. Secreted phospholipases of the lung pathogen Legionella pneumophila. Int J Med Microbiol 2017; 308:168-175. [PMID: 29108710 DOI: 10.1016/j.ijmm.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/06/2017] [Accepted: 10/22/2017] [Indexed: 11/28/2022] Open
Abstract
Legionella pneumophila is an intracellular pathogen and the main causative agent of Legionnaires' disease, a potentially fatal pneumonia. The bacteria infect both mammalian cells and environmental hosts, such as amoeba. Inside host cells, the bacteria withstand the multifaceted defenses of the phagocyte and replicate within a unique membrane-bound compartment, the Legionella-containing vacuole (LCV). For establishment and maintenance of the infection, L. pneumophila secretes many proteins including effector proteins by means of different secretion systems and outer membrane vesicles. Among these are a large variety of lipolytic enzymes which possess phospholipase/lysophospholipase and/or glycerophospholipid:cholesterol acyltransferase activities. Secreted lipolytic activities may contribute to bacterial virulence, for example via modification of eukaryotic membranes, such as the LCV. In this review, we describe the secretion systems of L. pneumophila, introduce the classification of phospholipases, and summarize the state of the art on secreted L. pneumophila phospholipases. We especially highlight those enzymes secreted via the type II secretion system Lsp, via the type IVB secretion system Dot/Icm, via outer membrane vesicles, and such where the mode of secretion has not yet been defined. We also give an overview on the complexity of their activities, activation mechanisms, localization, growth-phase dependent abundance, and their role in infection.
Collapse
Affiliation(s)
- Miriam Hiller
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Wiebke Michel
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Burgstraße 37, 38855 Wernigerode, Germany.
| |
Collapse
|
14
|
Mou Q, Leung PHM. Differential expression of virulence genes in Legionella pneumophila growing in Acanthamoeba and human monocytes. Virulence 2017; 9:185-196. [PMID: 28873330 PMCID: PMC5955191 DOI: 10.1080/21505594.2017.1373925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires’ disease, is widely distributed throughout natural and artificial water systems and can replicate in macrophages and amoebae. Amoebae are the natural hosts of L. pneumophila, whereas macrophages are incidentally infected. The life cycle of L. pneumophila comprises a replicative phase within the Legionella-containing vacuole (LCV) and a transmissive phase during which bacterial cells become motile and are released via killing of the host. Although the host death mechanisms induced by L. pneumophila have been studied, the expression patterns of related L. pneumophila genes have not been reported. The present study compared the expression patterns of host cell death-associated genes in L. pneumophila grown in the human monocytic cell line THP-1 and Acanthamoeba castellanii. Notably, when L. pneumophila was grown in THP-1, expression of the gene flaA, which is involved in the induction of pyroptosis, was downregulated during the course of infection. In contrast, sdhA associated indirectly with host death, was upregulated. Expression of the genes vipD and sidF, which are involved in the induction and suppression of apoptosis, changed by less than 2-fold. Notably, a lower percentage of pyroptotic cells was observed among infected THP-1 cells relative to uninfected cells, and the latter exhibited stronger expression of caspase-1. A different pattern was observed when L. pneumophila was grown in A. castellanii: flaA and vipD were activated, whereas sdhA and sidF were downregulated during the later stage of replication. The percentage of non-viable (annexin-V+ PI+ or annexin-V+PI−) A. castellanii organisms increased with Legionella infection, and the expression of metacaspase-1, which is involved in encystation was up-regulated at late infection time. In summary, L. pneumophila can multiply intracellularly in both amoebae and macrophages to induce cell death and secondary infection, and this characteristic is essential for its survival in water and the lungs. The gene expression profiles observed in this study indicated the increased cytotoxicity of L. pneumophila in A. castellanii, suggesting an increased adaptation of Legionella to this host.
Collapse
Affiliation(s)
- Qianqian Mou
- a Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Kowloon , Hong Kong , China
| | - Polly H M Leung
- a Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Kowloon , Hong Kong , China
| |
Collapse
|
15
|
Friedman RC, Kalkhof S, Doppelt-Azeroual O, Mueller SA, Chovancová M, von Bergen M, Schwikowski B. Common and phylogenetically widespread coding for peptides by bacterial small RNAs. BMC Genomics 2017; 18:553. [PMID: 28732463 PMCID: PMC5521070 DOI: 10.1186/s12864-017-3932-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 07/09/2017] [Indexed: 12/14/2022] Open
Abstract
Background While eukaryotic noncoding RNAs have recently received intense scrutiny, it is becoming clear that bacterial transcription is at least as pervasive. Bacterial small RNAs and antisense RNAs (sRNAs) are often assumed to be noncoding, due to their lack of long open reading frames (ORFs). However, there are numerous examples of sRNAs encoding for small proteins, whether or not they also have a regulatory role at the RNA level. Methods Here, we apply flexible machine learning techniques based on sequence features and comparative genomics to quantify the prevalence of sRNA ORFs under natural selection to maintain protein-coding function in 14 phylogenetically diverse bacteria. Importantly, we quantify uncertainty in our predictions, and follow up on them using mass spectrometry proteomics and comparison to datasets including ribosome profiling. Results A majority of annotated sRNAs have at least one ORF between 10 and 50 amino acids long, and we conservatively predict that 409±191.7 unannotated sRNA ORFs are under selection to maintain coding (mean estimate and 95% confidence interval), an average of 29 per species considered here. This implies that overall at least 10.3±0.5% of sRNAs have a coding ORF, and in some species around 20% do. 165±69 of these novel coding ORFs have some antisense overlap to annotated ORFs. As experimental validation, many of our predictions are translated in published ribosome profiling data and are identified via mass spectrometry shotgun proteomics. B. subtilis sRNAs with coding ORFs are enriched for high expression in biofilms and confluent growth, and S. pneumoniae sRNAs with coding ORFs are involved in virulence. sRNA coding ORFs are enriched for transmembrane domains and many are predicted novel components of type I toxin/antitoxin systems. Conclusions We predict over two dozen new protein-coding genes per bacterial species, but crucially also quantified the uncertainty in this estimate. Our predictions for sRNA coding ORFs, along with predicted novel type I toxins and tools for sorting and visualizing genomic context, are freely available in a user-friendly format at http://disco-bac.web.pasteur.fr. We expect these easily-accessible predictions to be a valuable tool for the study not only of bacterial sRNAs and type I toxin-antitoxin systems, but also of bacterial genetics and genomics. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3932-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robin C Friedman
- Systems Biology Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France. .,Molecular Microbial Pathogenesis Unit, Department of Cell Biology and Infection, Institut Pasteur, Paris, France. .,Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France.
| | - Stefan Kalkhof
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Current Address: Department of Bioanalytics, University of Applied Sciences and Arts of Coburg, Coburg, Germany
| | - Olivia Doppelt-Azeroual
- Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, Institut Pasteur, Paris, France
| | - Stephan A Mueller
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Current Address: Neuroproteomics, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Martina Chovancová
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.,Institute of Biochemistry, University of Leipzig, Leipzig, Germany
| | - Benno Schwikowski
- Systems Biology Laboratory, Department of Genomes and Genetics, Institut Pasteur, Paris, France.,Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| |
Collapse
|
16
|
Jwanoswki K, Wells C, Bruce T, Rutt J, Banks T, McNealy TL. The Legionella pneumophila GIG operon responds to gold and copper in planktonic and biofilm cultures. PLoS One 2017; 12:e0174245. [PMID: 28463986 PMCID: PMC5413113 DOI: 10.1371/journal.pone.0174245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 03/06/2017] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila contaminates man-made water systems and creates numerous exposure risks for Legionnaires’ Disease. Because copper/silver ionization is commonly used to control L. pneumophila, its mechanisms of metal response and detoxification are of significant interest. Here we describe an L. pneumophila operon with significant similarity to the GIG operon of Cupriavidus metallidurans. The Legionella GIG operon is present in a subset of strains and has been acquired as part of the ICE-βox 65-kB integrative conjugative element. We assessed GIG promoter activity following exposure of L. pneumophila to multiple concentrations of HAuCl4, CuSO4 and AgNO3. At 37°C, control stationary phase cultures exhibited GIG promoter activity. This activity increased significantly in response to 20 and 50uM HAuCl4 and CuSO4 but not in response to AgNO3. Conversely, at 26°C, cultures exhibited decreased promoter response to copper. GIG promoter activity was also induced by HAuCl4 or CuSO4 during early biofilm establishment at both temperatures. When an L. pneumophila GIG promoter construct was transformed into E. coli DH5α, cultures showed baseline expression levels that did not increase following metal addition. Analysis of L. pneumophila transcriptional regulatory mutants suggested that GIG up-regulation in the presence of metal ions may be influenced by the stationary phase sigma factor, RpoS.
Collapse
Affiliation(s)
- Kathleen Jwanoswki
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Christina Wells
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Terri Bruce
- Clemson Light Imaging Facility, Clemson University, Clemson, South Carolina, United States of America
| | - Jennifer Rutt
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Tabitha Banks
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Tamara L. McNealy
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
17
|
Legionella pneumophila OxyR Is a Redundant Transcriptional Regulator That Contributes to Expression Control of the Two-Component CpxRA System. J Bacteriol 2017; 199:JB.00690-16. [PMID: 27994017 DOI: 10.1128/jb.00690-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/13/2016] [Indexed: 12/27/2022] Open
Abstract
Nominally an environmental organism, Legionella pneumophila is an intracellular parasite of protozoa but is also the causative agent of the pneumonia termed Legionnaires' disease, which results from inhalation of aerosolized bacteria by susceptible humans. Coordination of gene expression by a number of identified regulatory factors, including OxyR, assists L. pneumophila in adapting to the stresses of changing environments. L. pneumophila OxyR (OxyRLp) is an ortholog of Escherichia coli OxyR; however, OxyRLp was shown elsewhere to be functionally divergent, such that it acts as a transcription regulator independently of the oxidative stress response. In this study, the use of improved gene deletion methods has enabled us to generate an unmarked in-frame deletion of oxyR in L. pneumophila Lack of OxyRLp did not affect in vitro growth or intracellular growth in Acanthamoeba castellanii protozoa and U937-derived macrophages. The expression of OxyRLp does not appear to be regulated by CpxR, even though purified recombinant CpxR bound a DNA sequence similar to that reported for CpxR elsewhere. Surprisingly, a lack of OxyRLp resulted in elevated activity of the promoters located upstream of icmR and the lpg1441-cpxA operon, and OxyRLp directly bound to these promoter regions, suggesting that OxyRLp is a direct repressor. Interestingly, a strain overexpressing OxyRLp demonstrated reduced intracellular growth in A. castellanii but not in U937-derived macrophages, suggesting that balanced expression control of the two-component CpxRA system is necessary for survival in protozoa. Taken together, this study suggests that OxyRLp is a functionally redundant transcriptional regulator in L. pneumophila under the conditions evaluated herein.IMPORTANCELegionella pneumophila is an environmental pathogen, with its transmission to the human host dependent upon its ability to replicate in protozoa and survive within its aquatic niche. Understanding the genetic factors that contribute to L. pneumophila survival within each of these unique environments will be key to limiting future point-source outbreaks of Legionnaires' disease. The transcriptional regulator L. pneumophila OxyR (OxyRLp) has been previously identified as a potential regulator of virulence traits warranting further investigation. This study demonstrated that oxyR is nonessential for L. pneumophila survival in vitro and in vivo via mutational analysis. While the mechanisms of how OxyRLp expression is regulated remain elusive, this study shows that OxyRLp negatively regulates the expression of the cpxRA two-component system necessary for intracellular survival in protozoa.
Collapse
|
18
|
Machuca A, Martinez V. Transcriptome Analysis of the Intracellular Facultative Pathogen Piscirickettsia salmonis: Expression of Putative Groups of Genes Associated with Virulence and Iron Metabolism. PLoS One 2016; 11:e0168855. [PMID: 28033422 PMCID: PMC5199080 DOI: 10.1371/journal.pone.0168855] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
The intracellular facultative bacteria Piscirickettsia salmonis is one of the most important pathogens of the Chilean aquaculture. However, there is a lack of information regarding the whole genomic transcriptional response according to different extracellular environments. We used next generation sequencing (NGS) of RNA (RNA-seq) to study the whole transcriptome of an isolate of P. salmonis (FAVET-INBIOGEN) using a cell line culture and a modified cell-free liquid medium, with or without iron supplementation. This was done in order to obtain information about the factors there are involved in virulence and iron acquisition. First, the isolate was grown in the Sf21 cell line; then, the bacteria were cultured into a cell-free liquid medium supplemented or not with iron. We identified in the transcriptome, genes associated with type IV secretion systems, genes related to flagellar structure assembly, several proteases and sigma factors, and genes related to the development of drug resistance. Additionally, we identified for the first time several iron-metabolism associated genes including at least two iron uptake pathways (ferrous iron and ferric iron uptake) that are actually expressed in the different conditions analyzed. We further describe putative genes that are related with the use and storage of iron in the bacteria, which have not been previously described. Several sets of genes related to virulence were expressed in both the cell line and cell-free culture media (for example those related to flagellar structure; such as basal body, MS-ring, C-ring, proximal and distal rod, and filament), which may play roles in other basic processes rather than been restricted to virulence.
Collapse
Affiliation(s)
- Alvaro Machuca
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Victor Martinez
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
19
|
Urbanus ML, Quaile AT, Stogios PJ, Morar M, Rao C, Di Leo R, Evdokimova E, Lam M, Oatway C, Cuff ME, Osipiuk J, Michalska K, Nocek BP, Taipale M, Savchenko A, Ensminger AW. Diverse mechanisms of metaeffector activity in an intracellular bacterial pathogen, Legionella pneumophila. Mol Syst Biol 2016; 12:893. [PMID: 27986836 PMCID: PMC5199130 DOI: 10.15252/msb.20167381] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pathogens deliver complex arsenals of translocated effector proteins to host cells during infection, but the extent to which these proteins are regulated once inside the eukaryotic cell remains poorly defined. Among all bacterial pathogens, Legionella pneumophila maintains the largest known set of translocated substrates, delivering over 300 proteins to the host cell via its Type IVB, Icm/Dot translocation system. Backed by a few notable examples of effector–effector regulation in L. pneumophila, we sought to define the extent of this phenomenon through a systematic analysis of effector–effector functional interaction. We used Saccharomyces cerevisiae, an established proxy for the eukaryotic host, to query > 108,000 pairwise genetic interactions between two compatible expression libraries of ~330 L. pneumophila‐translocated substrates. While capturing all known examples of effector–effector suppression, we identify fourteen novel translocated substrates that suppress the activity of other bacterial effectors and one pair with synergistic activities. In at least nine instances, this regulation is direct—a hallmark of an emerging class of proteins called metaeffectors, or “effectors of effectors”. Through detailed structural and functional analysis, we show that metaeffector activity derives from a diverse range of mechanisms, shapes evolution, and can be used to reveal important aspects of each cognate effector's function. Metaeffectors, along with other, indirect, forms of effector–effector modulation, may be a common feature of many intracellular pathogens—with unrealized potential to inform our understanding of how pathogens regulate their interactions with the host cell.
Collapse
Affiliation(s)
- Malene L Urbanus
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Andrew T Quaile
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mariya Morar
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Chitong Rao
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rosa Di Leo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Elena Evdokimova
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Mandy Lam
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Christina Oatway
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Marianne E Cuff
- Biosciences Division, Argonne National Laboratory, Structural Biology Center, Lemont, IL, USA.,Midwest Center for Structural Genomics, Lemont IL, USA
| | - Jerzy Osipiuk
- Biosciences Division, Argonne National Laboratory, Structural Biology Center, Lemont, IL, USA.,Midwest Center for Structural Genomics, Lemont IL, USA
| | - Karolina Michalska
- Biosciences Division, Argonne National Laboratory, Structural Biology Center, Lemont, IL, USA.,Midwest Center for Structural Genomics, Lemont IL, USA
| | - Boguslaw P Nocek
- Biosciences Division, Argonne National Laboratory, Structural Biology Center, Lemont, IL, USA.,Midwest Center for Structural Genomics, Lemont IL, USA
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada .,Midwest Center for Structural Genomics, Lemont IL, USA
| | - Alexander W Ensminger
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Public Health Ontario, Toronto, ON, Canada
| |
Collapse
|
20
|
Multiple major disease-associated clones of Legionella pneumophila have emerged recently and independently. Genome Res 2016; 26:1555-1564. [PMID: 27662900 PMCID: PMC5088597 DOI: 10.1101/gr.209536.116] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 09/16/2016] [Indexed: 12/29/2022]
Abstract
Legionella pneumophila is an environmental bacterium and the leading cause of Legionnaires' disease. Just five sequence types (ST), from more than 2000 currently described, cause nearly half of disease cases in northwest Europe. Here, we report the sequence and analyses of 364 L. pneumophila genomes, including 337 from the five disease-associated STs and 27 representative of the species diversity. Phylogenetic analyses revealed that the five STs have independent origins within a highly diverse species. The number of de novo mutations is extremely low with maximum pairwise single-nucleotide polymorphisms (SNPs) ranging from 19 (ST47) to 127 (ST1), which suggests emergences within the last century. Isolates sampled geographically far apart differ by only a few SNPs, demonstrating rapid dissemination. These five STs have been recombining recently, leading to a shared pool of allelic variants potentially contributing to their increased disease propensity. The oldest clone, ST1, has spread globally; between 1940 and 2000, four new clones have emerged in Europe, which show long-distance, rapid dispersal. That a large proportion of clinical cases is caused by recently emerged and internationally dispersed clones, linked by convergent evolution, is surprising for an environmental bacterium traditionally considered to be an opportunistic pathogen. To simultaneously explain recent emergence, rapid spread and increased disease association, we hypothesize that these STs have adapted to new man-made environmental niches, which may be linked by human infection and transmission.
Collapse
|
21
|
Eisenreich W, Heuner K. The life stage-specific pathometabolism of Legionella pneumophila. FEBS Lett 2016; 590:3868-3886. [PMID: 27455397 DOI: 10.1002/1873-3468.12326] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/08/2016] [Accepted: 07/21/2016] [Indexed: 12/17/2022]
Abstract
The genus Legionella belongs to Gram-negative bacteria found ubiquitously in aquatic habitats, where it grows in natural biofilms and replicates intracellularly in various protozoa (amoebae, ciliates). L. pneumophila is known as the causative agent of Legionnaires' disease, since it is also able to replicate in human alveolar macrophages, finally leading to inflammation of the lung and pneumonia. To withstand the degradation by its host cells, a Legionella-containing vacuole (LCV) is established for intracellular replication, and numerous effector proteins are secreted into the host cytosol using a type four B secretion system (T4BSS). During intracellular replication, Legionella has a biphasic developmental cycle that alternates between a replicative and a transmissive form. New knowledge about the host-adapted and life stage-dependent metabolism of intracellular L. pneumophila revealed a bipartite metabolic network with life stage-specific usages of amino acids (e.g. serine), carbohydrates (e.g. glucose) and glycerol as major substrates. These metabolic features are associated with the differentiation of the intracellular bacteria, and thus have an important impact on the virulence of L. pneumophila.
Collapse
Affiliation(s)
| | - Klaus Heuner
- Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
22
|
Garcia-Mazcorro JF, Barcenas-Walls JR. Thinking beside the box: Should we care about the non-coding strand of the 16S rRNA gene? FEMS Microbiol Lett 2016; 363:fnw171. [DOI: 10.1093/femsle/fnw171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2016] [Indexed: 12/22/2022] Open
|
23
|
Abstract
Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.
Collapse
|
24
|
Low LY, Harrison PF, Lin YH, Boyce JD, Rood JI, Cheung JK. RNA-seq analysis of virR and revR mutants of Clostridium perfringens. BMC Genomics 2016; 17:391. [PMID: 27216822 PMCID: PMC4877802 DOI: 10.1186/s12864-016-2706-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/05/2016] [Indexed: 12/15/2022] Open
Abstract
Background Clostridium perfringens causes toxin-mediated diseases, including gas gangrene (clostridial myonecrosis) and food poisoning in humans. The production of the toxins implicated in gas gangrene, α-toxin and perfringolysin O, is regulated by the VirSR two-component regulatory system. In addition, RevR, an orphan response regulator, has been shown to affect virulence in the mouse myonecrosis model. RevR positively regulates the expression of genes that encode hydrolytic enzymes, including hyaluronidases and sialidases. Results To further characterize the VirSR and RevR regulatory networks, comparative transcriptomic analysis was carried out with strand-specific RNA-seq on C. perfringens strain JIR325 and its isogenic virR and revR regulatory mutants. Using the edgeR analysis package, 206 genes in the virR mutant and 67 genes in the revR mutant were found to be differentially expressed. Comparative analysis revealed that VirR acts as a global negative regulator, whilst RevR acts as a global positive regulator. Therefore, about 95 % of the differentially expressed genes were up-regulated in the virR mutant, whereas 81 % of the differentially expressed genes were down-regulated in the revR mutant. Importantly, we identified 23 genes that were regulated by both VirR and RevR, 18 of these genes, which included the sporulation-specific spoIVA, sigG and sigF genes, were regulated positively and negatively by RevR and VirR, respectively. Furthermore, analysis of the mapped RNA-seq reads visualized as depth of coverage plots showed that there were 93 previously unannotated transcripts in intergenic regions. These transcripts potentially encode small RNA molecules. Conclusion In conclusion, using strand-specific RNA-seq analysis, this study has identified differentially expressed chromosomal and pCP13 native plasmid-encoded genes, antisense transcripts, and transcripts within intergenic regions that are controlled by the VirSR or RevR regulatory systems. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2706-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lee-Yean Low
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia
| | - Paul F Harrison
- Monash Bioinformatics Platform, Monash University, Clayton, 3800, Australia
| | - Ya-Hsun Lin
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia
| | - John D Boyce
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia
| | - Jackie K Cheung
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
25
|
Wang C, Schröder MS, Hammel S, Butler G. Using RNA-seq for Analysis of Differential Gene Expression in Fungal Species. Methods Mol Biol 2016; 1361:1-40. [PMID: 26483013 DOI: 10.1007/978-1-4939-3079-1_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The ability to extract, identify and annotate large amounts of biological data is a key feature of the "omics" era, and has led to an explosion in the amount of data available. One pivotal advance is the use of Next-Generation Sequencing (NGS) techniques such as RNA-sequencing (RNA-seq). RNA-seq uses data from millions of small mRNA transcripts or "reads" which are aligned to a reference genome. Comparative transcriptomics analyses using RNA-seq can provide the researcher with a comprehensive view of the cells' response to a given environment or stimulus.Here, we describe the NGS techniques (based on Illumina technology) that are routinely used for comparative transcriptome analysis of fungal species. We describe the entire process from isolation of RNA to computational identification of differentially expressed genes. We provide instructions to allow the beginner to implement packages in R such as Bioconductor. The methods described are not limited to yeast, and can also be applied to other eukaryotic organisms.
Collapse
Affiliation(s)
- Can Wang
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Markus S Schröder
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Stephen Hammel
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Geraldine Butler
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, 4, Ireland.
| |
Collapse
|
26
|
Schroeder CLC, Narra HP, Rojas M, Sahni A, Patel J, Khanipov K, Wood TG, Fofanov Y, Sahni SK. Bacterial small RNAs in the Genus Rickettsia. BMC Genomics 2015; 16:1075. [PMID: 26679185 PMCID: PMC4683814 DOI: 10.1186/s12864-015-2293-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/14/2015] [Indexed: 01/02/2023] Open
Abstract
Background Rickettsia species are obligate intracellular Gram-negative pathogenic bacteria and the etiologic agents of diseases such as Rocky Mountain spotted fever (RMSF), Mediterranean spotted fever, epidemic typhus, and murine typhus. Genome sequencing revealed that R. prowazekii has ~25 % non-coding DNA, the majority of which is thought to be either “junk DNA” or pseudogenes resulting from genomic reduction. These characteristics also define other Rickettsia genomes. Bacterial small RNAs, whose biogenesis is predominantly attributed to either the intergenic regions (trans-acting) or to the antisense strand of an open reading frame (cis-acting), are now appreciated to be among the most important post-transcriptional regulators of bacterial virulence and growth. We hypothesize that intergenic regions in rickettsial species encode for small, non-coding RNAs (sRNAs) involved in the regulation of its transcriptome, leading to altered virulence and adaptation depending on the host niche. Results We employed a combination of bioinformatics and in vitro approaches to explore the presence of sRNAs in a number of species within Genus Rickettsia. Using the sRNA Identification Protocol using High-throughput Technology (SIPHT) web interface, we predicted over 1,700 small RNAs present in the intergenic regions of 16 different strains representing 13 rickettsial species. We further characterized novel sRNAs from typhus (R. prowazekii and R. typhi) and spotted fever (R. rickettsii and R. conorii) groups for their promoters and Rho-independent terminators using Bacterial Promoter Prediction Program (BPROM) and TransTermHP prediction algorithms, respectively. Strong σ70 promoters were predicted upstream of all novel small RNAs, indicating the potential for transcriptional activity. Next, we infected human microvascular endothelial cells (HMECs) with R. prowazekii for 3 h and 24 h and performed Next Generation Sequencing to experimentally validate the expression of 26 sRNA candidates predicted in R. prowazekii. Reverse transcriptase PCR was also used to further verify the expression of six putative novel sRNA candidates in R. prowazekii. Conclusions Our results yield clear evidence for the expression of novel R. prowazekii sRNA candidates during infection of HMECs. This is the first description of novel small RNAs for a highly pathogenic species of Rickettsia, which should lead to new insights into rickettsial virulence and adaptation mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2293-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Casey L C Schroeder
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Hema P Narra
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Mark Rojas
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Abha Sahni
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Jignesh Patel
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Kamil Khanipov
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Yuriy Fofanov
- Department of Pharmacology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| | - Sanjeev K Sahni
- Department of Pathology, the University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
27
|
Burenina OY, Elkina DA, Hartmann RK, Oretskaya TS, Kubareva EA. Small noncoding 6S RNAs of bacteria. BIOCHEMISTRY (MOSCOW) 2015; 80:1429-46. [DOI: 10.1134/s0006297915110048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Aurass P, Gerlach T, Becher D, Voigt B, Karste S, Bernhardt J, Riedel K, Hecker M, Flieger A. Life Stage-specific Proteomes of Legionella pneumophila Reveal a Highly Differential Abundance of Virulence-associated Dot/Icm effectors. Mol Cell Proteomics 2015; 15:177-200. [PMID: 26545400 DOI: 10.1074/mcp.m115.053579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Indexed: 12/28/2022] Open
Abstract
Major differences in the transcriptional program underlying the phenotypic switch between exponential and post-exponential growth of Legionella pneumophila were formerly described characterizing important alterations in infection capacity. Additionally, a third state is known where the bacteria transform in a viable but nonculturable state under stress, such as starvation. We here describe phase-related proteomic changes in exponential phase (E), postexponential phase (PE) bacteria, and unculturable microcosms (UNC) containing viable but nonculturable state cells, and identify phase-specific proteins. We present data on different bacterial subproteomes of E and PE, such as soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins. In total, 1368 different proteins were identified, 922 were quantified and 397 showed differential abundance in E/PE. The quantified subproteomes of soluble whole cell proteins, outer membrane-associated proteins, and extracellular proteins; 841, 55, and 77 proteins, respectively, were visualized in Voronoi treemaps. 95 proteins were quantified exclusively in E, such as cell division proteins MreC, FtsN, FtsA, and ZipA; 33 exclusively in PE, such as motility-related proteins of flagellum biogenesis FlgE, FlgK, and FliA; and 9 exclusively in unculturable microcosms soluble whole cell proteins, such as hypothetical, as well as transport/binding-, and metabolism-related proteins. A high frequency of differentially abundant or phase-exclusive proteins was observed among the 91 quantified effectors of the major virulence-associated protein secretion system Dot/Icm (> 60%). 24 were E-exclusive, such as LepA/B, YlfA, MavG, Lpg2271, and 13 were PE-exclusive, such as RalF, VipD, Lem10. The growth phase-related specific abundance of a subset of Dot/Icm virulence effectors was confirmed by means of Western blotting. We therefore conclude that many effectors are predominantly abundant at either E or PE which suggests their phase specific function. The distinct temporal or spatial presence of such proteins might have important implications for functional assignments in the future or for use as life-stage specific markers for pathogen analysis.
Collapse
Affiliation(s)
- Philipp Aurass
- From the ‡Robert Koch-Institut, Wernigerode Branch, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany
| | - Thomas Gerlach
- From the ‡Robert Koch-Institut, Wernigerode Branch, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany
| | - Dörte Becher
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Birgit Voigt
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Susanne Karste
- From the ‡Robert Koch-Institut, Wernigerode Branch, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany
| | - Jörg Bernhardt
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Katharina Riedel
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Michael Hecker
- §Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Str. 15, 17487 Greifswald, Germany
| | - Antje Flieger
- From the ‡Robert Koch-Institut, Wernigerode Branch, Division of Enteropathogenic Bacteria and Legionella (FG11), Burgstr. 37, 38855 Wernigerode, Germany;
| |
Collapse
|
29
|
Abstract
6S RNA is a highly abundant small non-coding RNA widely spread among diverse bacterial groups. By competing with DNA promoters for binding to RNA polymerase (RNAP), the RNA regulates transcription on a global scale. RNAP produces small product RNAs derived from 6S RNA as template, which rearranges the 6S RNA structure leading to dissociation of 6S RNA:RNAP complexes. Although 6S RNA has been experimentally analysed in detail for some species, such as Escherichia coli and Bacillus subtilis, and was computationally predicted in many diverse bacteria, a complete and up-to-date overview of the distribution among all bacteria is missing. In this study we searched with new methods for 6S RNA genes in all currently available bacterial genomes. We ended up with a set of 1,750 6S RNA genes, of which 1,367 are novel and bona fide, distributed among 1,610 bacteria, and had a few tentative candidates among the remaining 510 assembled bacterial genomes accessible. We were able to confirm two tentative candidates by Northern blot analysis. We extended 6S RNA genes of the Flavobacteriia significantly in length compared to the present Rfam entry. We describe multiple homologs of 6S RNAs (including split 6S RNA genes) and performed a detailed synteny analysis.
Collapse
Affiliation(s)
- Stefanie Wehner
- a Department for Bioinformatics; Faculty of Mathematics and Computer Science ; Friedrich-Schiller-University of Jena , Jena , Germany
| | | | | | | |
Collapse
|
30
|
Zhao S, Zhang Y, Gordon W, Quan J, Xi H, Du S, von Schack D, Zhang B. Comparison of stranded and non-stranded RNA-seq transcriptome profiling and investigation of gene overlap. BMC Genomics 2015; 16:675. [PMID: 26334759 PMCID: PMC4559181 DOI: 10.1186/s12864-015-1876-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/24/2015] [Indexed: 12/17/2022] Open
Abstract
Background While RNA-sequencing (RNA-seq) is becoming a powerful technology in transcriptome profiling, one significant shortcoming of the first-generation RNA-seq protocol is that it does not retain the strand specificity of origin for each transcript. Without strand information it is difficult and sometimes impossible to accurately quantify gene expression levels for genes with overlapping genomic loci that are transcribed from opposite strands. It has recently become possible to retain the strand information by modifying the RNA-seq protocol, known as strand-specific or stranded RNA-seq. Here, we evaluated the advantages of stranded RNA-seq in transcriptome profiling of whole blood RNA samples compared with non-stranded RNA-seq, and investigated the influence of gene overlaps on gene expression profiling results based on practical RNA-seq datasets and also from a theoretical perspective. Results Our results demonstrated a substantial impact of stranded RNA-seq on transcriptome profiling and gene expression measurements. As many as 1751 genes in Gencode Release 19 were identified to be differentially expressed when comparing stranded and non-stranded RNA-seq whole blood samples. Antisense and pseudogenes were significantly enriched in differential expression analyses. Because stranded RNA-seq retains strand information of a read, we can resolve read ambiguity in overlapping genes transcribed from opposite strands, which provides a more accurate quantification of gene expression levels compared with traditional non-stranded RNA-seq. In the human genome, it is not uncommon to find genomic loci where both strands encode distinct genes. Among the over 57,800 annotated genes in Gencode release 19, there are an estimated 19 % (about 11,000) of overlapping genes transcribed from the opposite strands. Based on our whole blood mRNA-seq datasets, the fraction of overlapping nucleotide bases on the same and opposite strands were estimated at 2.94 % and 3.1 %, respectively. The corresponding theoretical estimations are 3 % and 3.6 %, well in agreement with our own findings. Conclusions Stranded RNA-seq provides a more accurate estimate of transcript expression compared with non-stranded RNA-seq, and is therefore the recommended RNA-seq approach for future mRNA-seq studies. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1876-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanrong Zhao
- Clinical Genetics and Bioinformatics, Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA.
| | - Ying Zhang
- Precision Medicine - Bioanalytical, PTx Clinical R&D, Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA.
| | - William Gordon
- Precision Medicine - Bioanalytical, PTx Clinical R&D, Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA.
| | - Jie Quan
- Computational Sciences Centers of Excellence, Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA.
| | - Hualin Xi
- Computational Sciences Centers of Excellence, Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA.
| | - Sarah Du
- Precision Medicine - Bioanalytical, PTx Clinical R&D, Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA.
| | - David von Schack
- Precision Medicine - Bioanalytical, PTx Clinical R&D, Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA.
| | - Baohong Zhang
- Clinical Genetics and Bioinformatics, Pfizer Worldwide Research & Development, Cambridge, MA, 02139, USA.
| |
Collapse
|
31
|
Oliva G, Sahr T, Buchrieser C. Small RNAs, 5′ UTR elements and RNA-binding proteins in intracellular bacteria: impact on metabolism and virulence. FEMS Microbiol Rev 2015; 39:331-349. [DOI: 10.1093/femsre/fuv022] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
32
|
Ortega AD, Quereda JJ, Pucciarelli MG, García-del Portillo F. Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells. Front Cell Infect Microbiol 2014; 4:162. [PMID: 25429360 PMCID: PMC4228915 DOI: 10.3389/fcimb.2014.00162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/20/2014] [Indexed: 01/06/2023] Open
Abstract
Intracellular bacterial pathogens have evolved distinct lifestyles inside eukaryotic cells. Some pathogens coexist with the infected cell in an obligate intracellular state, whereas others transit between the extracellular and intracellular environment. Adaptation to these intracellular lifestyles is regulated in both space and time. Non-coding small RNAs (sRNAs) are post-transcriptional regulatory molecules that fine-tune important processes in bacterial physiology including cell envelope architecture, intermediate metabolism, bacterial communication, biofilm formation, and virulence. Recent studies have shown production of defined sRNA species by intracellular bacteria located inside eukaryotic cells. The molecules targeted by these sRNAs and their expression dynamics along the intracellular infection cycle remain, however, poorly characterized. Technical difficulties linked to the isolation of “intact” intracellular bacteria from infected host cells might explain why sRNA regulation in these specialized pathogens is still a largely unexplored field. Transition from the extracellular to the intracellular lifestyle provides an ideal scenario in which regulatory sRNAs are intended to participate; so much work must be done in this direction. This review focuses on sRNAs expressed by intracellular bacterial pathogens during the infection of eukaryotic cells, strategies used with these pathogens to identify sRNAs required for virulence, and the experimental technical challenges associated to this type of studies. We also discuss varied techniques for their potential application to study RNA regulation in intracellular bacterial infections.
Collapse
Affiliation(s)
- Alvaro D Ortega
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC) Madrid, Spain
| | - Juan J Quereda
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC) Madrid, Spain
| | - M Graciela Pucciarelli
- Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas (CNB-CSIC) Madrid, Spain ; Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Biología Molecular 'Severo Ochoa' (CBMSO-CSIC) Madrid, Spain
| | | |
Collapse
|
33
|
Caswell CC, Oglesby-Sherrouse AG, Murphy ER. Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles. Front Cell Infect Microbiol 2014; 4:151. [PMID: 25389522 PMCID: PMC4211561 DOI: 10.3389/fcimb.2014.00151] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/07/2014] [Indexed: 11/13/2022] Open
Abstract
Small RNA molecules (sRNAs) are now recognized as key regulators controlling bacterial gene expression, as sRNAs provide a quick and efficient means of positively or negatively altering the expression of specific genes. To date, numerous sRNAs have been identified and characterized in a myriad of bacterial species, but more recently, a theme in bacterial sRNAs has emerged: the presence of more than one highly related sRNAs produced by a given bacterium, here termed sibling sRNAs. Sibling sRNAs are those that are highly similar at the nucleotide level, and while it might be expected that sibling sRNAs exert identical regulatory functions on the expression of target genes based on their high degree of relatedness, emerging evidence is demonstrating that this is not always the case. Indeed, there are several examples of bacterial sibling sRNAs with non-redundant regulatory functions, but there are also instances of apparent regulatory redundancy between sibling sRNAs. This review provides a comprehensive overview of the current knowledge of bacterial sibling sRNAs, and also discusses important questions about the significance and evolutionary implications of this emerging class of regulators.
Collapse
Affiliation(s)
- Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, VA-MD Regional College of Veterinary Medicine, Virginia Tech Blacksburg, VA, USA
| | - Amanda G Oglesby-Sherrouse
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, MD, USA ; Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, MD, USA
| | - Erin R Murphy
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine Athens, OH, USA
| |
Collapse
|
34
|
Alperstein A, Ulrich B, Garofalo DM, Dreisbach R, Raff H, Sheppard K. The predatory bacterium Bdellovibrio bacteriovorus aspartyl-tRNA synthetase recognizes tRNAAsn as a substrate. PLoS One 2014; 9:e110842. [PMID: 25338061 PMCID: PMC4206432 DOI: 10.1371/journal.pone.0110842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 09/20/2014] [Indexed: 11/29/2022] Open
Abstract
The predatory bacterium Bdellovibrio bacteriovorus preys on other Gram-negative bacteria and was predicted to be an asparagine auxotroph. However, despite encoding asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, B. bacteriovorus also contains the amidotransferase GatCAB. Deinococcus radiodurans, and Thermus thermophilus also encode both of these aminoacyl-tRNA synthetases with GatCAB. Both also code for a second aspartyl-tRNA synthetase and use the additional aspartyl-tRNA synthetase with GatCAB to synthesize asparagine on tRNAAsn. Unlike those two bacteria, B. bacteriovorus encodes only one aspartyl-tRNA synthetase. Here we demonstrate the lone B. bacteriovorus aspartyl-tRNA synthetase catalyzes aspartyl-tRNAAsn formation that GatCAB can then amidate to asparaginyl-tRNAAsn. This non-discriminating aspartyl-tRNA synthetase with GatCAB thus provides B. bacteriovorus a second route for Asn-tRNAAsn formation with the asparagine synthesized in a tRNA-dependent manner. Thus, in contrast to a previous prediction, B. bacteriovorus codes for a biosynthetic route for asparagine. Analysis of bacterial genomes suggests a significant number of other bacteria may also code for both routes for Asn-tRNAAsn synthesis with only a limited number encoding a second aspartyl-tRNA synthetase.
Collapse
Affiliation(s)
- Ariel Alperstein
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Brittany Ulrich
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Denise M. Garofalo
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Ruth Dreisbach
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Hannah Raff
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
| | - Kelly Sheppard
- Chemistry Department, Skidmore College, Saratoga Springs, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Cavanagh AT, Wassarman KM. 6S RNA, a Global Regulator of Transcription inEscherichia coli,Bacillus subtilis, and Beyond. Annu Rev Microbiol 2014; 68:45-60. [DOI: 10.1146/annurev-micro-092611-150135] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amy T. Cavanagh
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706;
| | - Karen M. Wassarman
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin 53706;
| |
Collapse
|
36
|
Sigurgeirsson B, Emanuelsson O, Lundeberg J. Analysis of stranded information using an automated procedure for strand specific RNA sequencing. BMC Genomics 2014; 15:631. [PMID: 25070246 PMCID: PMC4247151 DOI: 10.1186/1471-2164-15-631] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/10/2014] [Indexed: 01/19/2023] Open
Abstract
Background Strand specific RNA sequencing is rapidly replacing conventional cDNA sequencing as an approach for assessing information about the transcriptome. Alongside improved laboratory protocols the development of bioinformatical tools is steadily progressing. In the current procedure the Illumina TruSeq library preparation kit is used, along with additional reagents, to make stranded libraries in an automated fashion which are then sequenced on Illumina HiSeq 2000. By the use of freely available bioinformatical tools we show, through quality metrics, that the protocol is robust and reproducible. We further highlight the practicality of strand specific libraries by comparing expression of strand specific libraries to non-stranded libraries, by looking at known antisense transcription of pseudogenes and by identifying novel transcription. Furthermore, two ribosomal depletion kits, RiboMinus and RiboZero, are compared and two sequence aligners, Tophat2 and STAR, are also compared. Results The, non-stranded, Illumina TruSeq kit can be adapted to generate strand specific libraries and can be used to access detailed information on the transcriptome. The RiboZero kit is very effective in removing ribosomal RNA from total RNA and the STAR aligner produces high mapping yield in a short time. Strand specific data gives more detailed and correct results than does non-stranded data as we show when estimating expression values and in assembling transcripts. Even well annotated genomes need improvements and corrections which can be achieved using strand specific data. Conclusions Researchers in the field should strive to use strand specific data; it allows for more confidence in the data analysis and is less likely to lead to false conclusions. If faced with analysing non-stranded data, researchers should be well aware of the caveats of that approach. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-631) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Joakim Lundeberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), Tomtebodavägen 23A, 17165 Solna, Stockholm, Sweden.
| |
Collapse
|
37
|
Identification of novel small RNAs and characterization of the 6S RNA of Coxiella burnetii. PLoS One 2014; 9:e100147. [PMID: 24949863 PMCID: PMC4064990 DOI: 10.1371/journal.pone.0100147] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/20/2014] [Indexed: 11/30/2022] Open
Abstract
Coxiella burnetii, an obligate intracellular bacterial pathogen that causes Q fever, undergoes a biphasic developmental cycle that alternates between a metabolically-active large cell variant (LCV) and a dormant small cell variant (SCV). As such, the bacterium undoubtedly employs complex modes of regulating its lifecycle, metabolism and pathogenesis. Small RNAs (sRNAs) have been shown to play important regulatory roles in controlling metabolism and virulence in several pathogenic bacteria. We hypothesize that sRNAs are involved in regulating growth and development of C. burnetii and its infection of host cells. To address the hypothesis and identify potential sRNAs, we subjected total RNA isolated from Coxiella cultured axenically and in Vero host cells to deep-sequencing. Using this approach, we identified fifteen novel C. burnetii sRNAs (CbSRs). Fourteen CbSRs were validated by Northern blotting. Most CbSRs showed differential expression, with increased levels in LCVs. Eight CbSRs were upregulated (≥2-fold) during intracellular growth as compared to growth in axenic medium. Along with the fifteen sRNAs, we also identified three sRNAs that have been previously described from other bacteria, including RNase P RNA, tmRNA and 6S RNA. The 6S regulatory sRNA of C. burnetii was found to accumulate over log phase-growth with a maximum level attained in the SCV stage. The 6S RNA-encoding gene (ssrS) was mapped to the 5′ UTR of ygfA; a highly conserved linkage in eubacteria. The predicted secondary structure of the 6S RNA possesses three highly conserved domains found in 6S RNAs of other eubacteria. We also demonstrate that Coxiella’s 6S RNA interacts with RNA polymerase (RNAP) in a specific manner. Finally, transcript levels of 6S RNA were found to be at much higher levels when Coxiella was grown in host cells relative to axenic culture, indicating a potential role in regulating the bacterium’s intracellular stress response by interacting with RNAP during transcription.
Collapse
|
38
|
Stubben CJ, Micheva-Viteva SN, Shou Y, Buddenborg SK, Dunbar JM, Hong-Geller E. Differential expression of small RNAs from Burkholderia thailandensis in response to varying environmental and stress conditions. BMC Genomics 2014; 15:385. [PMID: 24884623 PMCID: PMC4035088 DOI: 10.1186/1471-2164-15-385] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 05/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial small RNAs (sRNAs) regulate gene expression by base-pairing with downstream target mRNAs to attenuate translation of mRNA into protein at the post-transcriptional level. In response to specific environmental changes, sRNAs can modulate the expression levels of target genes, thus enabling adaptation of cellular physiology. RESULTS We profiled sRNA expression in the Gram-negative bacteria Burkholderia thailandensis cultured under 54 distinct growth conditions using a Burkholderia-specific microarray that contains probe sets to all intergenic regions greater than 90 bases. We identified 38 novel sRNAs and performed experimental validation on five sRNAs that play a role in adaptation of Burkholderia to cell stressors. In particular, the trans-encoded BTH_s1 and s39 exhibited differential expression profiles dependent on growth phase and cell stimuli, such as antibiotics and serum. Furthermore, knockdown of the highly-expressed BTH_s39 by antisense transcripts reduced B. thailandensis cell growth and attenuated host immune response upon infection, indicating that BTH_s39 functions in bacterial metabolism and adaptation to the host. In addition, expression of cis-encoded BTH_s13 and s19 found in the 5' untranslated regions of their cognate genes correlated with tight regulation of gene transcript levels. This sRNA-mediated downregulation of gene expression may be a conserved mechanism of post-transcriptional gene dosage control. CONCLUSIONS These studies provide a broad analysis of differential Burkholderia sRNA expression profiles and illustrate the complexity of bacterial gene regulation in response to different environmental stress conditions.
Collapse
|
39
|
Landstorfer R, Simon S, Schober S, Keim D, Scherer S, Neuhaus K. Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces. BMC Genomics 2014; 15:353. [PMID: 24885796 PMCID: PMC4048457 DOI: 10.1186/1471-2164-15-353] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 03/31/2014] [Indexed: 12/26/2022] Open
Abstract
Background Multiple infection sources for enterohemorrhagic Escherichia coli O157:H7 (EHEC) are known, including animal products, fruit and vegetables. The ecology of this pathogen outside its human host is largely unknown and one third of its annotated genes are still hypothetical. To identify genetic determinants expressed under a variety of environmental factors, we applied strand-specific RNA-sequencing, comparing the SOLiD and Illumina systems. Results Transcriptomes of EHEC were sequenced under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes in strain EDL933 (genome and plasmid), a surprising minority of only 144 had null sequencing reads under all conditions. We therefore developed a statistical method to distinguish weakly transcribed genes from background transcription. We find that 96% of all genes and 91.5% of the hypothetical genes exhibit a significant transcriptional signal under at least one condition. Comparing SOLiD and Illumina systems, we find a high correlation between both approaches for fold-changes of the induced or repressed genes. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up-regulated on radish sprouts, cattle feces, or in the presence of antibiotics. Furthermore, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates. Conclusions Since only a minority of genes (2.7%) were not active under any condition tested (null reads), we suggest that the assumption of significant genome over-annotations is wrong. Environmental transcriptomics uncovered hitherto unknown gene functions and unique regulatory patterns in EHEC. For instance, the environmental function of azoR had been elusive, but this gene is highly active on radish sprouts. Thus, NGS-transcriptomics is an appropriate technique to propose new roles of hypothetical genes and to guide future research. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-353) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Klaus Neuhaus
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany.
| |
Collapse
|
40
|
Steuten B, Hoch PG, Damm K, Schneider S, Köhler K, Wagner R, Hartmann RK. Regulation of transcription by 6S RNAs: insights from the Escherichia coli and Bacillus subtilis model systems. RNA Biol 2014; 11:508-21. [PMID: 24786589 DOI: 10.4161/rna.28827] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Whereas, the majority of bacterial non-coding RNAs and functional RNA elements regulate post-transcriptional processes, either by interacting with other RNAs via base-pairing or through binding of small ligands (riboswitches), 6S RNAs affect transcription itself by binding to the housekeeping holoenzyme of RNA polymerase (RNAP). Remarkably, 6S RNAs serve as RNA templates for bacterial RNAP, giving rise to the de novo synthesis of short transcripts, termed pRNAs (product RNAs). Hence, 6S RNAs prompt the enzyme to act as an RNA-dependent RNA polymerase (RdRP). Synthesis of pRNAs exceeding a certain length limit (~13 nt) persistently rearrange the 6S RNA structure, which in turn, disrupts the 6S RNA:RNAP complex. This pRNA synthesis-mediated "reanimation" of sequestered RNAP molecules represents the conceivably fastest mechanism for resuming transcription in cells that enter a new exponential growth phase. The many different 6S RNAs found in a wide variety of bacteria do not share strong sequence homology but have in common a conserved rod-shaped structure with a large internal loop, termed the central bulge; this architecture mediates specific binding to the active site of RNAP. In this article, we summarize the overall state of knowledge as well as very recent findings on the structure, function, and physiological effects of 6S RNA examples from the two model organisms, Escherichia coli and Bacillus subtilis. Comparison of the presently known properties of 6S RNAs in the two organisms highlights common principles as well as diverse features.
Collapse
Affiliation(s)
- Benedikt Steuten
- Heinrich-Heine-Universität Düsseldorf; Institut für Physikalische Biologie Universitätsstr; Düsseldorf, Germany
| | | | - Katrin Damm
- Philipps-Universität Marburg; Marburg, Germany
| | - Sabine Schneider
- Heinrich-Heine-Universität Düsseldorf; Institut für Physikalische Biologie Universitätsstr; Düsseldorf, Germany
| | | | - Rolf Wagner
- Heinrich-Heine-Universität Düsseldorf; Institut für Physikalische Biologie Universitätsstr; Düsseldorf, Germany
| | | |
Collapse
|
41
|
Steuten B, Schneider S, Wagner R. 6S RNA: recent answers--future questions. Mol Microbiol 2014; 91:641-8. [PMID: 24308327 DOI: 10.1111/mmi.12484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2013] [Indexed: 01/31/2023]
Abstract
6S RNA is a non-coding RNA, found in almost all phylogenetic branches of bacteria. Through its conserved secondary structure, resembling open DNA promoters, it binds to RNA polymerase and interferes with transcription at many promoters. That way, it functions as transcriptional regulator facilitating adaptation to stationary phase conditions. Strikingly, 6S RNA acts as template for the synthesis of small RNAs (pRNA), which trigger the disintegration of the inhibitory RNA polymerase-6S RNA complex releasing 6S RNA-dependent repression. The regulatory implications of 6S RNAs vary among different bacterial species depending on the lifestyle and specific growth conditions that they have to face. The influence of 6S RNA can be seen on many different processes including stationary growth, sporulation, light adaptation or intracellular growth of pathogenic bacteria. Recent structural and functional studies have yielded details of the interaction between E. coli 6S RNA and RNA polymerase. Genome-wide transcriptome analyses provided insight into the functional diversity of 6S RNAs. Moreover, the mechanism and physiological consequences of pRNA synthesis have been explored in several systems. A major function of 6S RNA as a guardian regulating the economic use of cellular resources under limiting conditions and stress emerges as a common perception from numerous recent studies.
Collapse
Affiliation(s)
- Benedikt Steuten
- Molecular Biology of Bacteria, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | | | | |
Collapse
|
42
|
Wee BA, Woolfit M, Beatson SA, Petty NK. A distinct and divergent lineage of genomic island-associated Type IV Secretion Systems in Legionella. PLoS One 2013; 8:e82221. [PMID: 24358157 PMCID: PMC3864950 DOI: 10.1371/journal.pone.0082221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 10/25/2013] [Indexed: 12/21/2022] Open
Abstract
Legionella encodes multiple classes of Type IV Secretion Systems (T4SSs), including the Dot/Icm protein secretion system that is essential for intracellular multiplication in amoebal and human hosts. Other T4SSs not essential for virulence are thought to facilitate the acquisition of niche-specific adaptation genes including the numerous effector genes that are a hallmark of this genus. Previously, we identified two novel gene clusters in the draft genome of Legionella pneumophila strain 130b that encode homologues of a subtype of T4SS, the genomic island-associated T4SS (GI-T4SS), usually associated with integrative and conjugative elements (ICE). In this study, we performed genomic analyses of 14 homologous GI-T4SS clusters found in eight publicly available Legionella genomes and show that this cluster is unusually well conserved in a region of high plasticity. Phylogenetic analyses show that Legionella GI-T4SSs are substantially divergent from other members of this subtype of T4SS and represent a novel clade of GI-T4SSs only found in this genus. The GI-T4SS was found to be under purifying selection, suggesting it is functional and may play an important role in the evolution and adaptation of Legionella. Like other GI-T4SSs, the Legionella clusters are also associated with ICEs, but lack the typical integration and replication modules of related ICEs. The absence of complete replication and DNA pre-processing modules, together with the presence of Legionella-specific regulatory elements, suggest the Legionella GI-T4SS-associated ICE is unique and may employ novel mechanisms of regulation, maintenance and excision. The Legionella GI-T4SS cluster was found to be associated with several cargo genes, including numerous antibiotic resistance and virulence factors, which may confer a fitness benefit to the organism. The in-silico characterisation of this new T4SS furthers our understanding of the diversity of secretion systems involved in the frequent horizontal gene transfers that allow Legionella to adapt to and exploit diverse environmental niches.
Collapse
Affiliation(s)
- Bryan A. Wee
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Megan Woolfit
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Scott A. Beatson
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail: (NKP); (SAB)
| | - Nicola K. Petty
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- The ithree institute, University of Technology Sydney, Ultimo, New South Wales, Australia
- * E-mail: (NKP); (SAB)
| |
Collapse
|
43
|
Hoffmann C, Harrison CF, Hilbi H. The natural alternative: protozoa as cellular models forLegionellainfection. Cell Microbiol 2013; 16:15-26. [DOI: 10.1111/cmi.12235] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 12/22/2022]
Affiliation(s)
- Christine Hoffmann
- Max von Pettenkofer Institute; Department of Medicine; Ludwig-Maximilians University Munich; 80336 Munich Germany
| | - Christopher F. Harrison
- Max von Pettenkofer Institute; Department of Medicine; Ludwig-Maximilians University Munich; 80336 Munich Germany
| | - Hubert Hilbi
- Max von Pettenkofer Institute; Department of Medicine; Ludwig-Maximilians University Munich; 80336 Munich Germany
| |
Collapse
|
44
|
Pawlik A, Garnier G, Orgeur M, Tong P, Lohan A, Le Chevalier F, Sapriel G, Roux AL, Conlon K, Honoré N, Dillies MA, Ma L, Bouchier C, Coppée JY, Gaillard JL, Gordon SV, Loftus B, Brosch R, Herrmann JL. Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus. Mol Microbiol 2013; 90:612-29. [PMID: 23998761 DOI: 10.1111/mmi.12387] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2013] [Indexed: 12/13/2022]
Abstract
Mycobacterium abscessus is an emerging pathogen that is increasingly recognized as a relevant cause of human lung infection in cystic fibrosis patients. This highly antibiotic-resistant mycobacterium is an exception within the rapidly growing mycobacteria, which are mainly saprophytic and non-pathogenic organisms. M. abscessus manifests as either a smooth (S) or a rough (R) colony morphotype, which is of clinical importance as R morphotypes are associated with more severe and persistent infections. To better understand the molecular mechanisms behind the S/R alterations, we analysed S and R variants of three isogenic M. abscessus S/R pairs using an unbiased approach involving genome and transcriptome analyses, transcriptional fusions and integrating constructs. This revealed different small insertions, deletions (indels) or single nucleotide polymorphisms within the non-ribosomal peptide synthase gene cluster mps1-mps2-gap or mmpl4b in the three R variants, consistent with the transcriptional differences identified within this genomic locus that is implicated in the synthesis and transport of Glyco-Peptido-Lipids (GPL). In contrast to previous reports, the identification of clearly defined genetic lesions responsible for the loss of GPL-production or transport makes a frequent switching back-and-forth between smooth and rough morphologies in M. abscessus highly unlikely, which is important for our understanding of persistent M. abscessus infections.
Collapse
Affiliation(s)
- Alexandre Pawlik
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France; EA 3647, University Versailles St Quentin in Yvelines, Garches, France; Microbiology Laboratory, Assistance Publique - Hôpitaux de Paris, Raymond Poincaré Hospital, Garches, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Yan Y, Su S, Meng X, Ji X, Qu Y, Liu Z, Wang X, Cui Y, Deng Z, Zhou D, Jiang W, Yang R, Han Y. Determination of sRNA expressions by RNA-seq in Yersinia pestis grown in vitro and during infection. PLoS One 2013; 8:e74495. [PMID: 24040259 PMCID: PMC3770706 DOI: 10.1371/journal.pone.0074495] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 08/02/2013] [Indexed: 12/21/2022] Open
Abstract
Background Small non-coding RNAs (sRNAs) facilitate host-microbe interactions. They have a central function in the post-transcriptional regulation during pathogenic lifestyles. Hfq, an RNA-binding protein that many sRNAs act in conjunction with, is required for Y. pestis pathogenesis. However, information on how Yersinia pestis modulates the expression of sRNAs during infection is largely unknown. Methodology and Principal Findings We used RNA-seq technology to identify the sRNA candidates expressed from Y. pestis grown invitro and in the infected lungs of mice. A total of 104 sRNAs were found, including 26 previously annotated sRNAs, by searching against the Rfam database with 78 novel sRNA candidates. Approximately 89% (93/104) of these sRNAs from Y. pestis are shared with its ancestor Y. pseudotuberculosis. Ninety-seven percent of these sRNAs (101/104) are shared among more than 80 sequenced genomes of 135 Y. pestis strains. These 78 novel sRNAs include 62 intergenic and 16 antisense sRNAs. Fourteen sRNAs were selected for verification by independent Northern blot analysis. Results showed that nine selected sRNA transcripts were Hfq-dependent. Interestingly, three novel sRNAs were identified as new members of the transcription factor CRP regulon. Semi-quantitative analysis revealed that Y. pestis from the infected lungs induced the expressions of six sRNAs including RyhB1, RyhB2, CyaR/RyeE, 6S RNA, RybB and sR039 and repressed the expressions of four sRNAs, including CsrB, CsrC, 4.5S RNA and sR027. Conclusions and Significance This study is the first attempt to subject RNA from Y. pestis-infected samples to direct high-throughput sequencing. Many novel sRNAs were identified and the expression patterns of relevant sRNAs in Y. pestis during invitro growth and invivo infection were revealed. The annotated sRNAs accounted for the most abundant sRNAs either expressed in bacteria grown invitro or differentially expressed in the infected lungs. These findings suggested these sRNAs may have important functions in Y. pestis physiology or pathogenesis.
Collapse
Affiliation(s)
- Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shanchun Su
- Microbiology Laboratory, Sichuan Agricultural University, Yaan, Sichuan province, China
| | - Xiangrong Meng
- Clinical Laboratory, Huzhong Hispital, Guangzhou, Guangdong province, China
| | - Xiaolan Ji
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yi Qu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zizhong Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoyi Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhongliang Deng
- Department of Sanitary Inspection, School of Public Health, University of South China, Hengyang, Hunan province, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wencan Jiang
- Microbiology Laboratory, Sichuan Agricultural University, Yaan, Sichuan province, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (YH); (RY)
| | - Yanping Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (YH); (RY)
| |
Collapse
|
46
|
Chacko N, Lin X. Non-coding RNAs in the development and pathogenesis of eukaryotic microbes. Appl Microbiol Biotechnol 2013; 97:7989-97. [PMID: 23948725 DOI: 10.1007/s00253-013-5160-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 12/15/2022]
Abstract
RNA has long been regarded as the important intermediary in the central dogma of gene expression. Recently, the importance of RNAs in the regulation of gene expression became evident with the identification and characterization of non-protein coding transcripts named non-coding RNAs (ncRNAs). The ncRNAs, small and long, are ubiquitously present in all three domains of life and are being recognized for their important roles in genome defense and development. Some of the ncRNAs have been associated with diseases, and therefore, they offer diagnostic and therapeutic potential. In this mini-review, we have highlighted some recent research on the ncRNAs identified in eukaryotic microbes, with special emphasis on fungi that are pathogenic to humans or plants when possible. It is our contention that further elucidation and understanding of ncRNAs will advance our understanding of the development and pathogenesis of eukaryotic microbes and offer alternatives in the diagnosis and treatment of the diseases caused by these pathogens.
Collapse
Affiliation(s)
- Nadia Chacko
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA
| | | |
Collapse
|
47
|
Cabrera-Ostertag IJ, Cavanagh AT, Wassarman KM. Initiating nucleotide identity determines efficiency of RNA synthesis from 6S RNA templates in Bacillus subtilis but not Escherichia coli. Nucleic Acids Res 2013; 41:7501-11. [PMID: 23761441 PMCID: PMC3753640 DOI: 10.1093/nar/gkt517] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 6S RNA is a non-coding small RNA that binds within the active site of housekeeping forms of RNA polymerases (e.g. Eσ70 in Escherichia coli, EσA in Bacillus subtilis) and regulates transcription. Efficient release of RNA polymerase from 6S RNA regulation during outgrowth from stationary phase is dependent on use of 6S RNA as a template to generate a product RNA (pRNA). Interestingly, B. subtilis has two 6S RNAs, 6S-1 and 6S-2, but only 6S-1 RNA appears to be used efficiently as a template for pRNA synthesis during outgrowth. Here, we demonstrate that the identity of the initiating nucleotide is particularly important for the B. subtilis RNA polymerase to use RNA templates. Specifically, initiation with guanosine triphosphate (GTP) is required for efficient pRNA synthesis, providing mechanistic insight into why 6S-2 RNA does not support robust pRNA synthesis as it initiates with adenosine triphosphate (ATP). Intriguingly, E. coli RNA polymerase does not have a strong preference for initiating nucleotide identity. These observations highlight an important difference in biochemical properties of B. subtilis and E. coli RNA polymerases, specifically in their ability to use RNA templates efficiently, which also may reflect the differences in GTP and ATP metabolism in these two organisms.
Collapse
|
48
|
Trigui H, Dudyk P, Sum J, Shuman HA, Faucher SP. Analysis of the transcriptome of Legionella pneumophila hfq mutant reveals a new mobile genetic element. MICROBIOLOGY-SGM 2013; 159:1649-1660. [PMID: 23728622 DOI: 10.1099/mic.0.067983-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hfq is a small RNA-binding protein involved in the post-transcriptional regulation of gene expression by affecting the stability of the mRNA and by mediating efficient pairing between small regulatory RNAs and their target mRNAs. In Legionella pneumophila, the aetiological agent of Legionnaires' disease, mutation of hfq results in increased duration of the lag phase and reduced growth in low-iron medium. In an effort to uncover genes potentially regulated by Hfq, the transcriptome of an hfq mutant strain was compared to that of the wild-type. Unexpectedly, many genes located within a 100 kb genomic island, including a section of the previously identified efflux island, were overexpressed in the hfq mutant strain. Since this island contains a putative conjugative system and an integrase, it was postulated that it could be a new integrated mobile genetic element. PCR analysis revealed that this region exists both as an integrated and as an episomal form in the cell population and that it undergoes differential excision in the hfq mutant background, which was further confirmed by trans-complementation of the hfq mutation. This new plasmid-like element was named pLP100. Differential excision did not affect the copy number of pLP100 at the population level. This region contains a copper efflux pump encoded by copA, and increased resistance to copper was observed for the hfq mutant strain that was abrogated in the complemented strain. A strain carrying a mutation of hfq and a deletion of the right side recombination site, attR, showed that overexpression of pLP100 genes and increased copper resistance in the hfq mutant strain were dependent upon excision of pLP100.
Collapse
Affiliation(s)
- Hana Trigui
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Paulina Dudyk
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Janet Sum
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Howard A Shuman
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Sebastien P Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
49
|
Aurass P, Schlegel M, Metwally O, Harding CR, Schroeder GN, Frankel G, Flieger A. The Legionella pneumophila Dot/Icm-secreted effector PlcC/CegC1 together with PlcA and PlcB promotes virulence and belongs to a novel zinc metallophospholipase C family present in bacteria and fungi. J Biol Chem 2013; 288:11080-92. [PMID: 23457299 PMCID: PMC3630882 DOI: 10.1074/jbc.m112.426049] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/19/2013] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila is a water-borne bacterium that causes pneumonia in humans. PlcA and PlcB are two previously defined L. pneumophila proteins with homology to the phosphatidylcholine-specific phospholipase C (PC-PLC) of Pseudomonas fluorescens. Additionally, we found that Lpg0012 shows similarity to PLCs and has been shown to be a Dot/Icm-injected effector, CegC1, which is designated here as PlcC. It remained unclear, however, whether these L. pneumophila proteins exhibit PLC activity. PlcC expressed in Escherichia coli hydrolyzed a broad phospholipid spectrum, including PC, phosphatidylglycerol (PG), and phosphatidylinositol. The addition of Zn(2+) ions activated, whereas EDTA inhibited, PlcC-derived PLC activity. Protein homology search revealed that the three Legionella enzymes and P. fluorescens PC-PLC share conserved domains also present in uncharacterized fungal proteins. Fifteen conserved amino acids were essential for enzyme activity as identified via PlcC mutagenesis. Analysis of defined L. pneumophila knock-out mutants indicated Lsp-dependent export of PG-hydrolyzing PLC activity. PlcA and PlcB exhibited PG-specific activity and contain a predicted Sec signal sequence. In line with the reported requirement of host cell contact for Dot/Icm-dependent effector translocation, PlcC showed cell-associated PC-specific PLC activity after bacterial growth in broth. A PLC triple mutant, but not single or double mutants, exhibited reduced host killing in a Galleria mellonella infection model, highlighting the importance of the three PLCs in pathogenesis. In summary, we describe here a novel Zn(2+)-dependent PLC family present in Legionella, Pseudomonas, and fungi with broad substrate preference and function in virulence.
Collapse
Affiliation(s)
- Philipp Aurass
- From the Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany and
| | - Maren Schlegel
- From the Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany and
| | - Omar Metwally
- From the Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany and
| | - Clare R. Harding
- the MRC Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gunnar N. Schroeder
- the MRC Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gad Frankel
- the MRC Centre for Molecular Bacteriology and Infection, Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Antje Flieger
- From the Division of Bacterial Infections, Robert Koch-Institut, Burgstrasse 37, 38855 Wernigerode, Germany and
| |
Collapse
|
50
|
Sahr T, Buchrieser C. cDNA library construction for next-generation sequencing to determine the transcriptional landscape of Legionella pneumophila. Methods Mol Biol 2013; 954:555-66. [PMID: 23150420 DOI: 10.1007/978-1-62703-161-5_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The adaptation of Legionella pneumophila to the different conditions it encounters in the environment and in the host is governed by a complex regulatory system. Current knowledge of these regulatory networks and the transcriptome responses of L. pneumophila is mainly based on microarray analysis and limited to transcriptional products of annotated protein-coding genes. The application of the Next-Generation Sequencing (NGS) technology allows now genome-wide strand-specific sequencing and accurate determination of all expressed regions of the genome to reveal the complete transcriptional network and the dynamic interplay of specific regulators on a genome-wide level. NGS-based techniques promote deeper understanding of the global transcriptional organization of L. pneumophila by identifying transcription start sites (TSS), alternative TSS and operon organization, noncoding RNAs, antisense RNAs, and 5'-/3'-untranslated regions. In this chapter we describe the construction of cDNA libraries for (1) RNA deep sequencing (RNA-seq) and (2) TSS mapping using the Illumina technology.
Collapse
Affiliation(s)
- Tobias Sahr
- Biologie des Bactéries Intracellulaires, Institut Pasteur, Paris, France
| | | |
Collapse
|