1
|
Oka GU, Souza DP, Sgro GG, Guzzo CR, Dunger G, Farah CS. Xanthomonas immunity proteins protect against the cis-toxic effects of their cognate T4SS effectors. EMBO Rep 2024; 25:1436-1452. [PMID: 38332152 PMCID: PMC10933484 DOI: 10.1038/s44319-024-00060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
Many bacteria kill rival species by translocating toxic effectors into target cells. Effectors are often encoded along with cognate immunity proteins that could (i) protect against "friendly-fire" (trans-intoxication) from neighboring sister cells and/or (ii) protect against internal cis-intoxication (suicide). Here, we distinguish between these two mechanisms in the case of the bactericidal Xanthomonas citri Type IV Secretion System (X-T4SS). We use a set of X. citri mutants lacking multiple effector/immunity protein (X-Tfe/X-Tfi) pairs to show that X-Tfis are not absolutely required to protect against trans-intoxication by wild-type cells. Our investigation then focused on the in vivo function of the lysozyme-like effector X-TfeXAC2609 and its cognate immunity protein X-TfiXAC2610. In the absence of X-TfiXAC2610, we observe X-TfeXAC2609-dependent and X-T4SS-independent accumulation of damage in the X. citri cell envelope, cell death, and inhibition of biofilm formation. While immunity proteins in other systems have been shown to protect against attacks by sister cells (trans-intoxication), this is an example of an antibacterial secretion system in which the immunity proteins are dedicated to protecting cells against cis-intoxication.
Collapse
Affiliation(s)
- Gabriel U Oka
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
- Structure and Function of Bacterial Nanomachines, Institut Européen de Chimie et Biologie-CNRS, UMR 5234 Microbiologie Fondamentale et Pathogénicité University of Bordeaux, Pessac, France
| | - Diorge P Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Germán G Sgro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Cristiane R Guzzo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - German Dunger
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
- Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral), Universidad Nacional del Litoral, CONICET, Facultad de Ciencias Agrarias, Esperanza, Argentina
| | - Chuck S Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
A consolidative synopsis of the MALDI-TOF MS accomplishments for the rapid diagnosis of microbial plant disease pathogens. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
An Extracytoplasmic Function Sigma Factor Required for Full Virulence in Xanthomonas citri pv. citri. J Bacteriol 2022; 204:e0062421. [PMID: 35446118 DOI: 10.1128/jb.00624-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Xanthomonas includes more than 30 phytopathogenic species that infect a wide range of plants and cause severe diseases that greatly impact crop productivity. These bacteria are highly adapted to the soil and plant environment, being found in decaying material, as epiphytes, and colonizing the plant mesophyll. Signal transduction mechanisms involved in the responses of Xanthomonas to environmental changes are still poorly characterized. Xanthomonad genomes typically encode several representatives of the extracytoplasmic function σ (σECF) factors, whose physiological roles remain elusive. In this work, we functionally characterized the Xanthomonas citri pv. citri EcfL, a σECF factor homologous to members of the iron-responsive FecI-like group. We show that EcfL is not required or induced during iron starvation, despite presenting the common features of other FecI-like σECF factors. EcfL positively regulates one operon composed of three genes that encode a TonB-dependent receptor involved in cell surface signaling, an acid phosphatase, and a lectin-domain containing protein. Furthermore, we demonstrate that EcfL is required for full virulence in citrus, and its regulon is induced inside the plant mesophyll and in response to acid stress. Together, our study suggests a role for EcfL in the adaptation of X. citri to the plant environment, in this way contributing to its ability to cause citrus canker disease. IMPORTANCE The Xanthomonas genus comprises a large number of phytopathogenic species that infect a wide variety of economically important plants worldwide. Bacterial adaptation to the plant and soil environment relies on their repertoire of signal transduction pathways, including alternative sigma factors of the extracytoplasmic function family (σECF). Here, we describe a new σECF factor found in several Xanthomonas species, demonstrating its role in Xanthomonas citri virulence to citrus plants. We show that EcfL regulates a single operon containing three genes, which are also conserved in other Xanthomonas species. This study further expands our knowledge on the functions of the widespread family of σECF factors in phytopathogenic bacteria.
Collapse
|
4
|
Rai R, Pasion J, Majumdar T, Green CE, Hind SR. Genome Sequencing and Functional Characterization of Xanthomonas cucurbitae, the Causal Agent of Bacterial Spot Disease of Cucurbits. PHYTOPATHOLOGY 2021; 111:1289-1300. [PMID: 33734871 DOI: 10.1094/phyto-06-20-0228-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial leaf spot disease caused by Xanthomonas cucurbitae has severely affected the pumpkin industries in the Midwestern region of United States, with the bacteria mainly infecting pumpkin leaves and fruits, and leading to significant yield losses. In this study, we utilized genomics and genetics approaches to elucidate X. cucurbitae molecular mechanisms of pathogenesis during interaction with its host. We generated the first reference-quality whole-genome sequence of the X. cucurbitae type isolate and compared with other Xanthomonas species, X. cucurbitae has a smaller genome size with fewer virulence-related genes. RNA-seq analysis of X. cucurbitae under plant-mimicking media conditions showed altered transcriptional responses, with upregulation of virulence genes and downregulation of cellular homeostasis genes. Additionally, characterization of key virulence genes using gene deletion methods revealed that both type II enzymes and type III effectors are necessary for X. cucurbitae to cause infection in the pumpkin host.
Collapse
Affiliation(s)
- Rikky Rai
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Julius Pasion
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Tanvi Majumdar
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Cory E Green
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Sarah R Hind
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| |
Collapse
|
5
|
The Xanthomonas citri pv. citri Type VI Secretion System is Induced During Epiphytic Colonization of Citrus. Curr Microbiol 2019; 76:1105-1111. [PMID: 31289847 DOI: 10.1007/s00284-019-01735-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/01/2019] [Indexed: 12/26/2022]
Abstract
Xanthomonas citri pv. citri (X. citri pv. citri) is the causal agent of Asiatic citrus canker and infects economically important citrus crops. X. citri pv. citri contains one type VI secretion system (T6SS) required for resistance to predation by the soil amoeba Dictyostelium discoideum and induced by the ECF sigma factor EcfK in the presence of amoeba. In this work, we describe the analysis of T6SS gene expression during interaction with host plants. We show that T6SS genes and the cognate positive regulator ecfK are upregulated during growth in the plant surface (epiphytic) and maintain low expression levels during growth inside plant mesophyll. In addition, expression of the virulence-associated T3SS is also induced during epiphytic growth and shows a temporal induction pattern during growth inside plant leaves. The T6SS is not required for adhesion to leaf surface and biofilm formation during the first stages of plant colonization nor for killing of yeasts cells. Since the phyllosphere is colonized by eukaryotic predators of bacteria, induction of the X. citri pv. citri anti-amoeba T6SS during epiphytic growth suggests the presence of an environmental signal that triggers the resistance phenotype.
Collapse
|
6
|
Cabrejos DAL, Alexandrino AV, Pereira CM, Mendonça DC, Pereira HD, Novo-Mansur MTM, Garratt RC, Goto LS. Structural characterization of a pathogenicity-related superoxide dismutase codified by a probably essential gene in Xanthomonas citri subsp. citri. PLoS One 2019; 14:e0209988. [PMID: 30615696 PMCID: PMC6322740 DOI: 10.1371/journal.pone.0209988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/14/2018] [Indexed: 11/24/2022] Open
Abstract
Citrus canker is a plant disease caused by the bacteria Xanthomonas citri subsp. citri that affects all domestic varieties of citrus. Some annotated genes from the X. citri subsp. citri genome are assigned to an interesting class named "pathogenicity, virulence and adaptation". Amongst these is sodM, which encodes for the gene product XcSOD, one of four superoxide dismutase homologs predicted from the genome. SODs are widespread enzymes that play roles in the oxidative stress response, catalyzing the degradation of the deleterious superoxide radical. In Xanthomonas, SOD has been associated with pathogenesis as a counter measure against the plant defense response. In this work we initially present the 1.8 Å crystal structure of XcSOD, a manganese containing superoxide dismutase from Xanthomonas citri subsp. citri. The structure bears all the hallmarks of a dimeric member of the MnSOD family, including the conserved hydrogen-bonding network residues. Despite the apparent gene redundancy, several attempts to obtain a sodM deletion mutant were unsuccessful, suggesting the encoded protein to be essential for bacterial survival. This intriguing observation led us to extend our structural studies to the remaining three SOD homologs, for which comparative models were built. The models imply that X. citri subsp. citri produces an iron-containing SOD which is unlikely to be catalytically active along with two conventional Cu,ZnSODs. Although the latter are expected to possess catalytic activity, we propose they may not be able to replace XcSOD for reasons such as distinct subcellular compartmentalization or differential gene expression in pathogenicity-inducing conditions.
Collapse
Affiliation(s)
- Diego Antonio Leonardo Cabrejos
- Laboratório de Biologia Estrutural, Grupo de Cristalografia, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - André Vessoni Alexandrino
- Laboratório de Bioquímica e Biologia Molecular Aplicada—LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Camila Malvessi Pereira
- Laboratório de Bioquímica e Biologia Molecular Aplicada—LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Deborah Cezar Mendonça
- Laboratório de Biologia Estrutural, Grupo de Cristalografia, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Humberto D'Muniz Pereira
- Laboratório de Biologia Estrutural, Grupo de Cristalografia, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Maria Teresa Marques Novo-Mansur
- Laboratório de Bioquímica e Biologia Molecular Aplicada—LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Richard Charles Garratt
- Laboratório de Biologia Estrutural, Grupo de Cristalografia, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Leandro Seiji Goto
- Laboratório de Bioquímica e Biologia Molecular Aplicada—LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
7
|
Bayer-Santos E, Lima LDP, Ceseti LDM, Ratagami CY, de Santana ES, da Silva AM, Farah CS, Alvarez-Martinez CE. Xanthomonas citri T6SS mediates resistance to Dictyostelium predation and is regulated by an ECF σ factor and cognate Ser/Thr kinase. Environ Microbiol 2018; 20:1562-1575. [PMID: 29488354 DOI: 10.1111/1462-2920.14085] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/21/2018] [Accepted: 02/24/2018] [Indexed: 11/25/2022]
Abstract
Plant-associated bacteria of the genus Xanthomonas cause disease in a wide range of economically important crops. However, their ability to persist in the environment is still poorly understood. Predation by amoebas represents a major selective pressure to bacterial populations in the environment. In this study, we show that the X. citri type 6 secretion system (T6SS) promotes resistance to predation by the soil amoeba Dictyostelium discoideum. We found that an extracytoplasmic function (ECF) sigma factor (EcfK) is required for induction of T6SS genes during interaction with Dictyostelium. EcfK homologues are found in several environmental bacteria in association with a gene encoding a eukaryotic-like Ser/Thr kinase (pknS). Deletion of pknS causes sensitivity to amoeba predation and abolishes induction of T6SS genes. Phosphomimetic mutagenesis of EcfK identified a threonine residue (T51) that renders EcfK constitutively active in standard culture conditions. Moreover, susceptibility of ΔpknS to Dictyostelium predation can be overcome by expression of the constitutively active version EcfKT51E from a multicopy plasmid. Together, these results describe a new regulatory cascade in which PknS functions through activation of EcfK to promote T6SS expression. Our work reveals an important aspect of Xanthomonas physiology that affects its ability to persist in the environment.
Collapse
Affiliation(s)
- Ethel Bayer-Santos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - Lídia Dos Passos Lima
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Brazil
| | - Lucas de Moraes Ceseti
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Brazil
| | - Camila Yuri Ratagami
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Brazil
| | - Eliane Silva de Santana
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Brazil
| | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - Chuck Shaker Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil
| | - Cristina Elisa Alvarez-Martinez
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Brazil
| |
Collapse
|
8
|
Goto LS, Vessoni Alexandrino A, Malvessi Pereira C, Silva Martins C, D'Muniz Pereira H, Brandão-Neto J, Marques Novo-Mansur MT. Structural and functional characterization of the phosphoglucomutase from Xanthomonas citri subsp. citri. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1658-1666. [PMID: 27567706 DOI: 10.1016/j.bbapap.2016.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 01/22/2023]
Abstract
Citrus canker, caused by bacteria Xanthomonas citri subsp. citri, can affect all economically important varieties of citrus. Studying Xanthomonas genes related to the invasive capacity may improve the knowledge on how this works and ultimately use the information to avoid the disease. Some annotated genes from Xanthomonas citri subsp. citri published genome are addressed to an interesting class of genes named "pathogenicity, virulence and adaptation". One of them is xanA, which encodes a predicted phosphoglucomutase. Phosphoglucomutases are ubiquitous enzymes among the living kingdoms that play roles in carbohydrate metabolism, catalyzing the reversible conversion of 1- to 6-phosphoglucose. In Xanthomonas, phosphoglucomutase activity is required to synthesize precursors of the pathogenesis-related polysaccharide xanthan. In this work, a characterization of this gene product is presented by structural and functional studies. Molecular cloning was used for heterologous expression and deletion of xanA. A Michaelis-Menten kinetics model was obtained using the recombinant protein. The protein structure was also determined by X-ray diffraction on the recombinant enzyme substrate-free, bound to glucose-1,6-biphosphate and to glucose-1-phosphate. Deletion of xanA was done with a suicide plasmid construct and the obtained mutant was tested for pathogenic capacity. This study is the first describing the properties of the Xanthomonas citri subsp. citri phosphoglucomutase.
Collapse
Affiliation(s)
- Leandro Seiji Goto
- Laboratório de Bioquímica e Biologia Molecular Aplicada - LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - André Vessoni Alexandrino
- Laboratório de Bioquímica e Biologia Molecular Aplicada - LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Camila Malvessi Pereira
- Laboratório de Bioquímica e Biologia Molecular Aplicada - LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Carla Silva Martins
- Laboratório de Bioquímica e Biologia Molecular Aplicada - LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Humberto D'Muniz Pereira
- Laboratório de Biologia Estrutural, Grupo de Cristalografia, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - José Brandão-Neto
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Maria Teresa Marques Novo-Mansur
- Laboratório de Bioquímica e Biologia Molecular Aplicada - LBBMA, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
9
|
Gordon JL, Lefeuvre P, Escalon A, Barbe V, Cruveiller S, Gagnevin L, Pruvost O. Comparative genomics of 43 strains of Xanthomonas citri pv. citri reveals the evolutionary events giving rise to pathotypes with different host ranges. BMC Genomics 2015; 16:1098. [PMID: 26699528 PMCID: PMC4690215 DOI: 10.1186/s12864-015-2310-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/15/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The identification of factors involved in the host range definition and evolution is a pivotal challenge in the goal to predict and prevent the emergence of plant bacterial disease. To trace the evolution and find molecular differences between three pathotypes of Xanthomonas citri pv. citri that may explain their distinctive host ranges, 42 strains of X. citri pv. citri and one outgroup strain, Xanthomonas citri pv. bilvae were sequenced and compared. RESULTS The strains from each pathotype form monophyletic clades, with a short branch shared by the A(w) and A pathotypes. Pathotype-specific recombination was detected in seven regions of the alignment. Using Ancestral Character Estimation, 426 SNPs were mapped to the four branches at the base of the A, A*, A(w) and A/A(w) clades. Several genes containing pathotype-specific nonsynonymous mutations have functions related to pathogenicity. The A pathotype is enriched for SNP-containing genes involved in defense mechanisms, while A* is significantly depleted for genes that are involved in transcription. The pathotypes differ by four gene islands that largely coincide with regions of recombination and include genes with a role in virulence. Both A* and A(w) are missing genes involved in defense mechanisms. In contrast to a recent study, we find that there are an extremely small number of pathotype-specific gene presences and absences. CONCLUSIONS The three pathotypes of X. citri pv. citri that differ in their host ranges largely show genomic differences related to recombination, horizontal gene transfer and single nucleotide polymorphism. We detail the phylogenetic relationship of the pathotypes and provide a set of candidate genes involved in pathotype-specific evolutionary events that could explain to the differences in host range and pathogenicity between them.
Collapse
Affiliation(s)
- Jonathan L Gordon
- Université de la Réunion, UMR PVBMT, 97410, Saint-Pierre, La Réunion, France.
- Current Address: CIRAD, UMR CMAEE, F-97170, Petit-Bourg, Guadeloupe, France.
| | | | - Aline Escalon
- CIRAD, UMR PVBMT, 97410, Saint-Pierre, La Réunion, France.
| | - Valérie Barbe
- CEA/DSV/IG/Genoscope, 2 rue Gaston Crémieux, BP5706, 91057, Evry, France.
| | | | - Lionel Gagnevin
- CIRAD, UMR PVBMT, 97410, Saint-Pierre, La Réunion, France.
- Current Address: UMR IPME, IRD-CIRAD-Université Montpellier, 34394, Montpellier, France.
| | | |
Collapse
|
10
|
Andrade MO, Farah CS, Wang N. The post-transcriptional regulator rsmA/csrA activates T3SS by stabilizing the 5' UTR of hrpG, the master regulator of hrp/hrc genes, in Xanthomonas. PLoS Pathog 2014; 10:e1003945. [PMID: 24586158 PMCID: PMC3937308 DOI: 10.1371/journal.ppat.1003945] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/09/2014] [Indexed: 11/28/2022] Open
Abstract
The RsmA/CsrA family of the post-transcriptional regulators of bacteria is involved in the regulation of many cellular processes, including pathogenesis. In this study, we demonstrated that rsmA not only is required for the full virulence of the phytopathogenic bacterium Xanthomonas citri subsp. citri (XCC) but also contributes to triggering the hypersensitive response (HR) in non-host plants. Deletion of rsmA resulted in significantly reduced virulence in the host plant sweet orange and a delayed and weakened HR in the non-host plant Nicotiana benthamiana. Microarray, quantitative reverse-transcription PCR, western-blotting, and GUS assays indicated that RsmA regulates the expression of the type 3 secretion system (T3SS) at both transcriptional and post-transcriptional levels. The regulation of T3SS by RsmA is a universal phenomenon in T3SS-containing bacteria, but the specific mechanism seems to depend on the interaction between a particular bacterium and its hosts. For Xanthomonads, the mechanism by which RsmA activates T3SS remains unknown. Here, we show that RsmA activates the expression of T3SS-encoding hrp/hrc genes by directly binding to the 5′ untranslated region (UTR) of hrpG, the master regulator of the hrp/hrc genes in XCC. RsmA stabilizes hrpG mRNA, leading to increased accumulation of HrpG proteins and subsequently, the activation of hrp/hrc genes. The activation of the hrp/hrc genes by RsmA via HrpG was further supported by the observation that ectopic overexpression of hrpG in an rsmA mutant restored its ability to cause disease in host plants and trigger HR in non-host plants. RsmA also stabilizes the transcripts of another T3SS-associated hrpD operon by directly binding to the 5′ UTR region. Taken together, these data revealed that RsmA primarily activates T3SS by acting as a positive regulator of hrpG and that this regulation is critical to the pathogenicity of XCC. Pathogenic bacteria demonstrate sophisticated capacity to regulate gene expression to meet requirements of living in different environmental niches, including in the hosts. The activation of the Type 3 secretion system (T3SS) genes in response to the host enviroment is under the control of several factors, such as the post-transcriptional regulator RsmA/CsrA. Here, we show that RsmA contributes to the pathogenicity of Xanthomonas citri in host plants and the HR-triggering activity in non-host plants by regulating the expression of T3SS-encoding hrp/hrc genes. RsmA directly interacts with the 5′ UTRs of hrpG and hrpD mRNAs, which leads to increased HrpG protein levels by stabilizing the hrpG transcript. Further, overexpression of hrpG in an rsmA mutant restored its pathogenicity and ability to cause HR. The deletion of rsmA did not affect the phosphorylation of HrpG, which is also required for T3SS activation. This work provides mechanistic insights for the first time into RsmA-mediated regulation of T3SS gene expression by acting as a positive regulator of hrpG at the post-transcription level.
Collapse
Affiliation(s)
- Maxuel O. Andrade
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Chuck S. Farah
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
11
|
Hartmann N, Schulz S, Lorenz C, Fraas S, Hause G, Büttner D. Characterization of HrpB2 from Xanthomonas campestris pv. vesicatoria identifies protein regions that are essential for type III secretion pilus formation. Microbiology (Reading) 2012; 158:1334-1349. [DOI: 10.1099/mic.0.057604-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Nadine Hartmann
- Institute of Biology, Genetics Department, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Steve Schulz
- Institute of Biology, Genetics Department, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Christian Lorenz
- Institute of Biology, Genetics Department, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| | - Simone Fraas
- Biocenter of the Martin-Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Gerd Hause
- Biocenter of the Martin-Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
| | - Daniela Büttner
- Institute of Biology, Genetics Department, Martin-Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle (Saale), Germany
| |
Collapse
|